钛合金等离子体浸没离子注入表面力学性能与抗氧化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti6Al4V具有良好的力学性能,其比重小,比强度高,有着广泛的应用领域。但是,该合金硬度低,耐磨性能差,并且化学活性高。当它与氧化性溶液(如双氧水等)接触后,由于合金的双相结构极易形成腐蚀原电池,加速氧化腐蚀过程,使零件过早的失效。因此,延长钛合金在氧化性氛围中的使用寿命,越来越受到人们的关注。
     本文采用等离子体浸没离子注入(PIII)技术,在Ti6Al4V合金表面制备一层改性层,用来提高该合金的抗氧化腐蚀性能。采用正交试验系统研究了注入电压、射频功率、注入气压、注入时间、注入元素种类五个注入参数对改性后Ti6Al4V的机械性能、电化学腐蚀性能、抗氧化化性能的影响。在此基础上,进一步研究了氮气注入条件下,注入气压单参数变化对改性后Ti6Al4V性能的影响规律,以及氧气注入条件下,注入时间单参数变化对改性后Ti6Al4V性能的影响规律。
     采用超小载荷显微硬度计测量试样改性后的显微硬度值,结果表明经过离子注入后试样的显微硬度均较基体提高。利用自制球盘式摩擦磨损试验机测量试样的摩擦系数,并且利用积分摩擦系数来表征材料的耐磨性能。采用电化学腐蚀测试仪测量改性层腐蚀极化曲线,根据塔菲尔(Tafel)外推法计算改性层的腐蚀电位、腐蚀电流,来表征改性层的电化学腐蚀性能。用精密天平称量双氧水浸泡10天前后的质量,计算单位质量损失率来表征材料抗氧化腐蚀性能,优化后的试验结果证实,注入后试样质量损失均比基体减小。
     扫描电子显微镜(SEM)观察离子注入形貌、电化学腐蚀形貌、氧化腐蚀形貌,氧化腐蚀后观察到晶界腐蚀、均匀腐蚀、均匀腐蚀加孔蚀及孔蚀四种典型形貌。在上述分析的基础上,提出了晶界缺陷密度和晶粒缺陷密度决定的腐蚀形貌判据。采用X射线光电子谱(XPS)分析浸泡氧化腐蚀前后试样表面成分,表明注入后试样表面形成化合物,氮注入后试样形成了TiNx。氧注入试样形成了TiO2,同时在注入试样表面发现了三价的钛原子,浸泡后试样表面发现了Ti-OH化合物。在上述结果基础上,提出了改性层氧化腐蚀的基本化学反应过程。
     综上所述,由于离子轰击、辐照作用,给表面带来了空位、位错和还原原子等缺陷。等离子体浸没离子注入处理,并不能阻止氧化腐蚀的进行,但是在适当的工艺条件下,对原子扩散氧化起抑制作用,延缓材料的氧化腐蚀行为,提高材料在氧化性溶液中的使用寿命。
Ti6Al4V alloy has been used widely in many fields owing to its excellent mechanical properties, i.e. low density, high strength-to-weight ratio. However, more extensive utilization has primarily been hindered by its low hardness, inferior tribological properties and high chemical activity. When the alloy is brought into contact with oxidizer, for example, hydrogen peroxide, it will be oxidized quickly and dissolved into oxidation solutions. The two-phase structures played vital role for they have different chemical potential which can accelerate the electrochemical corrosion. Finally, the specimens were caused failure early. Thus, many techniques are highlighted in order to improve the oxidation resistance of the Ti6Al4V.
     The plasma immersion ion implantation (PIII) technique was employed to make a modification layer form on the surface of Ti6Al4V alloy in this paper, and the layer was expected to improve the resistance of oxidized properties. The five parameters were investigated systemically by using orthogonal experiments, including pulse bias voltage, radio frequency (RF) power, gas pressure, implantation time, class of implantation elements. Effect of those parameters on the mechanical properties and electrochemical corrosion and oxidized resistance was characterized by different techniques. Furthermore, the effect of the gas pressure on the mechanical properties, electrochemical corrosion behavior, and oxidation resistance was studied in detail at the condition of nitrogen-PIII. And the effect of implantation time on the properties aforementioned was also researched in detail at the condition of oxygen-PIII.
     The micro-hardness of modification layer was measured by dynamic ultra-microhardness tester with Vickers’diamond square-faced pyramid indenter, and the result showed that all the implantation samples are more hardness than the substrate. The friction coefficient was memorized in situ by the ball-on-disk friction machine made in our laboratory, and the integrated friction coefficient calculated was used as a standard to characterize the wear resistance. Moreover, the polarized curves of the implantation samples were also documented by the electrochemical analyzer and the corrosion potential and current were solved by Tafel’s technique. And the mass of samples before and after 10 days immersion into hydrogen peroxide was also measured by precise balance, and the optimized experiment resulted in decreasing significantly the rate of mass loss after PIII treatment.
     The morphology of samples, including implantation, electrochemical corrosion and hydrogen peroxide oxidation, are characterized by scanning electron microscope (SEM), and four classical corrosion behavior are detected, i.e. grain boundary corrosion, location corrosion, location and pit corrosion, and pit corrosion. Furthermore, the conclusion that whether the grain boundaries or the matrix is chemically attacked may be determined by the balance between the degree of defects density at grain boundaries and at matrix was deduced. TiNx and TiO2 were detected respectively for the samples modified by nitrogen-PIII and oxygen-PIII by X-ray photoelectron spectroscopy (XPS). In addition, the trivalent titanium and the Ti-OH complex were also found. Furthermore, the basic reactions were suggested after immersion into hydrogen peroxide on the surface of Ti6Al4V modified by PIII.
     In summary, the oxidation can not be prevented on the implantation layer, because many defect structures, such as vacancies, dislocations and reduced species, were created on the surface of the alloy by the ion bombardment, ion irradiation. However, the diffusion rate of atoms can be decelerated when they cross the modified layer, and the utilization period can be expanded at condition of oxidizer, as long as the PIII technique is employed by proper parameters.
引文
1 R. R. Boyer. An Overview on the Use of Titanium in the Aerospace Industry. Materials Science and Engineering A. 1996, 213:103~114
    2罗国珍,周廉,邓炬.中国钛的研究与发展.稀有金属材料与工程. 1997, 26:1~6
    3于思荣.生物医学钛合金的研究现状及发展趋势.材料科学与工程. 2000, 18:131~135
    4赵永庆.钛合金的研究与发展. Ti工业进展. 2005, 22:1~7
    5孙荣禄.钛及钛合金表面耐磨热处理.宇航材料工艺. 1999, 5:15~19
    6 M. F. Lopez, J. A. Jimenez and A. Gutierrez. Corrosion Study of Surface-modified Vanadium-free Titanium Alloys. Electrochimica Acta. 2003, 48:1395~1401
    7赵化侨.等离子体化学及其应用.大学化学. 1994, 9(4):1~5.
    8 J. R. Conrad, J. L. Radtke and R. A. Dodd, et al. Plasma Source Ion-implantation Technique for Surface Modification of Materials. Journal of Applied Physics. 1987, 62(11):4591~4595
    9夏立芳.材料的等离子体基离子注入表面改性.材料热处理学报. 2001, 22(1): 42~45
    10汤宝寅.等离子体源离子注入(Ι).物理. 1994, 01:41~45
    11雷明凯.等离子体基低能离子注入技术的研究与进展.真空科学与技术学报. 1999, 19(04):265~272
    12柳襄怀.八十年代表面处理新技术-离子注入工艺(二).热处理. 1986, 02:12~15
    13曾照明,汤宝寅,王松雁等.金属等离子体浸没离子注入改善9Cr18轴承钢表面耐磨性的研究.真空科学与技术学报. 2000, 20(2):77~80
    14 P. Budzynski, A. A. Youssef and J. Sielanko. Surface Modification of Ti–6Al–4V Alloy by Nitrogen Ion Implantation. Wear. 2006, 261(11-12):1271~1276
    15王浪平,汤宝寅,王小峰等.钇的预注入对Ti6Al4V合金氮等离子体浸没离子注入行为的影响.中国稀土学报. 2000, 18(4):337~340
    16刘洪喜,汤宝寅,王浪平等.钛合金的等离子体浸没离子注入表面强化处理.稀有金属材料与工程. 2005, 34(8):1318~1321
    17 M. Ueda, M. M. Silva and C. Otani, et al. Improvement of Tribological Properties of Ti6Al4V by Nitrogen Plasma Immersion Ion Implantation. Surface and Coatings Technology. 2003, 169-170:408~410
    18 S. M. Johns, T. Bell and M. Samandi, et al. Wear Resistance of Plasma Immersion Ion Implanted Ti6Al4V. Surface and Coatings Technology. 1996, 85(1-2):7~14
    19 A. Loinaz, M. Rinner and F. Alonso, et al. Effects of Plasma Immersion Ion Implantation of Oxygen on Mechanical Properties and Microstructure of Ti6Al4V. Surface and Coatings Technology. 1998, 103-104:262~267
    20 X. Tian, C. Gong and S. Yang, et al. Oxygen Plasma Ion Implantation of Biomaterial Titanium Alloy. IEEE Transactions on Plasma Science. 2006, 34(4):1235~1240
    21 S. M?ndl. PIII Treatment of Ti Alloys and NiTi for Medical Applications. Surface and Coatings Technology. 2007, 201:6833~6838
    22 D. M. Rück, H. Schmidt and A. Schminke. Tribological Behaviour of Ion-implanted Ti6Al4V Sliding against Polymers. Wear. 1997, 209(1-2):49~56
    23 Z. He, Z. Wang and W. Wang, et al. Surface Modification of Titanium Alloy Ti6Al4V by Plasma Niobium Alloying Process. Surface and Coatings Technology. 2007, 201(9-11):5705~5709
    24 R. Narayanan, S. K. Seshadri. Phosphoric Acid Anodization of Ti–6Al–4V Structural and Corrosion Aspects. Corrosion Science. 2007, 49(2):542~558
    25 G. J. Wan, N. Huang and Y. X. Leng, et al. TiN and Ti–O/TiN Films Fabricated by PIII-D for Enhancement of Corrosion and Wear Resistance of Ti–6Al–4V. Surface and Coatings Technology. 2004, 186(1-2):136~140
    26 I. Tsyganov, E. Wieser and W. Matz, et al. Phase Formation in Aluminium Implanted Titanium and the Correlated Modification of Mechanical and Corrosive Properties. Thin Solid Films. 2000, 376(1-2):188~197
    27刘道新,唐宾,何家文.钛合金表面离子束增强沉积膜层的环境适应性和接触相容性.稀有金属材料与工程. 2005, 34(7):1009~1012
    28 M. K. Lei, X. P. Zhu and X. J. Wang. Oxidation Resistance of Ion-implantedγ-TiAl-Base Intermetallics. Oxidation of Metals. 2002, 58(3-4):361~374
    29 U. Hornauer, E. Richter and E. Wieser, et al. Improvement of the High Temperature Oxidation Resistance of Ti50Al via Ion-implantation. Nuclear Instruments and Methods in Physics Research B. 1999, 148:858~862
    30 U. Hornauer, R. Gunzel and H. Reuther, et al. Protection ofγ-based TiAl Against High Temperature Oxidation Using Ion Implantation of Chlorine. Surface and Coatings Technology. 2000, 125(1-3):89~93
    31 G. Schumacher, F. Dettenwanger and M. Schutze, et al. Microalloying Effects in the Oxidation of TiAl Materials. Intermetallics. 1999, 7(10):1113~1120
    32 U. Hornauer,E. Richter and W. Matz, et al. Microstructure and Oxidation Kinetics of Intermetallic TiAl After Si-and Mo-ion Implantation. Surface and Coatings Technology. 2000, 128-129:418~422
    33 M. Schutze, G. Schumacher and F. Dettenwanger, et al. The Halogen Effect in the Oxidation of Intermetallic Titanium Aluminides. Corrosion Science. 2002, 44:303~318
    34 F. J. Gil, C. Aparicio and J. A. Planell. Effect of Oxygen Content on Grain Growth Kinetics of Titanium. Journal of Materials Synthesis and Processing. 2002, 10(5): 263~266
    35 H. Garbacz, M. Lewandowska. Microstructural Changes during Oxidation of Titanium Alloys. Materials Chemistry and Physics. 2003, 81(2-3):542~547
    36李金龙,孙明仁,马欣新. Ti6Al4V合金等离子体基离子注氧层XPS研究.中国有色金属学报. 2004, 14(9):1615~1620
    37 G. Thorwarth, S. Mandl and B. Rauschenbach. Rutile Formation and Oxygen Diffusion in Oxygen PIII-treated Titanium. Surface and Coatings Technology. 2001, 136:236~240
    38 J. De Damborenea, A. Conde and C. Palacio, et al. Modification of Corrosion Properties of Titanium by N-implantation. Surface and Coatings Technology. 1997, 91(1-2):1~6
    39 A. Mitsuo, S. Uchida and N. Nihira, et al. Improvement of High-temperature Oxidation Resistance of Titanium Nitride and Titanium Carbide Films by Aluminum Ion Implantation. Surface and Coatings Technology. 1998, 103–104:98~103
    40胡凡俊,播茂庆.航空钛合金防氧化离子注入技术.中国表面工程. 2003, 2:44~46
    41 C. Fonseca, M. A. Barbosa. Corrosion Behaviour of Titanium in Biofluids Containing H2O2 Studied by Electrochemical Impedance Spectroscopy. Corrosion Science. 2001, 43:547~559
    42 N. A. Al-mobarak, A. M. Al-Mayouf and A. A. Al-Swayih. The Effect of Hydrogen Peroxide on the Electrochemical Behavior of Ti and Some of Its Alloys for Dental Applications. Materials Chemistry and Physics. 2006, 99:333~340
    43 X. X. Wang, S. Hayakawa and K. Tsuru, et al. Bioactive Titania Gel Layers Formed by Chemical Treatment of Ti Substrate with a H2O2/HCl Solution. Biomaterials. 2002, 23(5):1353~1357
    44 F. P. Fehlner, N. F. Mott. Low-temperature Oxidation. Oxidation of Metals. 1970, 2(1):59~99
    45柳襄怀.八十年代表面处理新技术-离子注入工艺(三).热处理. 1986, 02:10~17
    46王钧石,晏永华,陈桂容.钛合金等离子体源离子注入表面改性.稀有金属. 2006, 30(5):582~585
    47王钧石,陈元儒,陈庆武. Ti6Al4V等离子体浸没离子注入.材料研究学报. 2001, 25(2):225~229
    48 W. C. Oliver, G. M. Pharr. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research. 1992, 7:1564~83.
    49 O. Casals, J. Alcalá. The Duality in Mechanical Property Extractions from Vickers and Berkovich Instrumented Indentation Experiments. Acta Materialia. 2005, 53(13):3545~3561
    50易茂中,胡奈赛,何家文等.涂层压入仪的研制及其应用.粉末冶金材料科学与工程. 2000, 5(1):79~86
    51 D. Sansom, J. L. Viviente and F. Alonso. Ion Implantation of TiN Films with Carbon or Nitrogen for Improved Tribomechanical Properties. Surface and Coatings Technology. 1996, 84:519~523
    52 S. Satitas, M. Procter and A. Grant. The Use of Ion Implantation to Modify the Triboligical Properties of Ti6Al4V Alloy. Materials Science and Engineering. 1987, 90:291~306.
    53 H. Bender, J. Brutscher and W. Ensinger, et al. Influence of Plasma Density andPlasma Sheath Dynamics on the Ion Implantation by Plasma Immersion Technique. Nuclear Instrument and Methods in Physics Research B. 1996, 113(1-4): 266~269
    54 M. Rinner, J. Gerlach and W. Ensinger. Formation of Titanium Oxide Films on Titanium and Ti6Al4V by O2 -plasma Immersion Ion Implantation. Surface and Coatings Technology. 2000, 132: 111~116
    55张建华.氮离子注入剂量与金属表面硬度的关系研究.材料科学与工艺. 1997, 5 (3): 66~70
    56 A. Molinari, G.. Straffelini and B. Tesi, et al. Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy. Wear. 1997, 208(1-2):105~112
    57 S. Yerramareddy, S. Bahadur. Effect of Operational Variables, Microstructure and Mechanical Properties on the Erosion of Ti-6Al-4V. Wear. 1991, 142(2):253~263
    58 F. Alonso, M. Rinner and A. Loinaz, et al. Characterization of Ti6Al4V Modified by Nitrogen Plasma Immersion Ion Implantation. Surface and Coatings Technology. 1997, 93(2-3):305~308
    59 R. A. Yankov, N. Shevchenko and A. Rogozin, et al. Reactive Plasma Immersion Ion Implantation for Surface Passivation. Surface and Coatings Technology. 2007, 201(15):6752~6758
    60 X. Wang, M. K. Lei and J. S. Zhang. Surface Modification of 316L Stainless Steel With High-intensity Pulsed Ion Beams. Surface and Coatings Technology. 2007, 201(12):5884~5890
    61 A. S. Gandy, S. E. Donnelly and M. F. Beaufort, et al. The Effect of Ion-beam Specimen Preparation Techniques on Vacancy-type Defects in Silicon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2006, 242(1-2):610~613
    62 L. L. G. da Silva, M. Ueda and M. M. Silva, et al. Corrosion Behavior of Ti–6Al–4V Alloy Treated by Plasma Immersion Ion Implantation Process. Surface and Coatings Technology. 2007, In Press.(Available online 12 March 2007)
    63 L. Zhou, Y. Yao. Single Crystal Bulk Material Micro/Nano Indentation Hardness Testing by Nanoindentation Instrument and AFM. Materials Science and Engineering: A. 2007, 460-461:95~100
    64王治国,祖小涛,封向东等. Ti-2Al-2.5Zr合金N+离子注入表面XPS和XRD分析. 2001, S2: 207~210
    65 J. H. Huang, K. W. Lau and G. P. Yu. Effect of Nitrogen Flow Rate on Structure and Properties of Nanocrystalline TiN Thin Films Produced by Unbalanced Magnetron Sputtering. Surface and Coatings Technology. 2005, 191:17~24
    66 A. Molinari, G. Straffelini and B. Tesi, et al. Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy. Wear. 1997, 208:105~112
    67 F. Alonso, A. Arizaga and S. Quainton, et al. Mechanical Properties and Structure of Ti6Al4V Alloy Implanted with Different Light Ions. Surface and Coatings Technology. 1995, 74-75:986~992
    68唐光昕,张人佶,朱张校等. TC11钛合金表面离子轰击改性层的组织结构分析.金属热处理. 2002, 27 (11): 18~20
    69刘洪喜,李小棒,李琪军.氮等离子体浸没离子注入技术改善轴承钢滚动接触疲劳寿命和机械性能研究.真空科学与技术学报. 2007, 27(1):31~35
    70 A. A. Youssef, P. Budzynski and J. Filiks, et al. Improvement of Wear and Hardness of Steel by Nitrogen Implantation. Vacuum. 2004, 77(1):37~45
    71 H. Schmidt, G. Stechemesser and J. Witte, et al. Depth Distributions and Anodic Polarization Behavior of Ion Implanted Ti6Al4V. Corrosion Science. 1998, 40(9):1533~1545
    72 S. Williams, M. J. Conway and B. C. Williams, et al. Direct Observation of Voids in the Vacancy Excess Region of Ion Bombarded Silicon. Journal of Applied Physics Letter. 2001, 78(19):2867~2869
    73 L. McCulloch. The Rapid Corrosion of Metals by Acids within Capillaries. Reply to Ulick R.Evans. Journal of American Chemical Society. 1926, 48(6):1603~1604
    74 L. McCulloch. The Rapid Corrosion of Metals by Acids within Capillaries. Journal of American Chemical Society. 1925, 47(7):1940~1942
    75 W. W. Russell. Effect of Surface on the Behaviour of Metals. Journal of American Chemical Society. 1959, 81(13):3488~3488
    76 K. Kondou, A. Hasegawa and K. Abe. Study on Irradiation Induced Corrosion Behavior in Austenitic Stainless Steel using Hydrogen-ion Bombardment. Journal of Nuclear Materials. 2004, 329-333:652~656
    77 L. Wan, J. F. Li and J. Y. Feng, et al. Improved Optical Response andPhotocatalysis for N-doped Titanium Oxide (TiO2) Films Prepared by Oxidation of TiN. Applied Surface Science. 2007, 253(10):4764~4767
    78 A. Lacoste, S. Bechu and Y. Arnal, et al. Nitrogen Profiles in Materials Implanted via Plasma-based Ion Implantation. Surface and Coatings Technology. 2002, 156:125~130
    79 H. Hochst, R. D. Bringans and P. Steiner, et al. Photoemission Study of the Electronic Structure of Stoichiometric and Substoichiometric TiN and ZrN. Physical Review B. 1982, 25(12):7183~7191
    80 H. Xin, L. M.Watson and T. N. Baker. Surface Analytical Studies of a Laser Nitrided Ti-6Al-4V Alloy: A Comparison of Spinning and Stationary Laser Beam Modes. Acta Materialia. 1998, 46(6):1949~1961
    81 I. Bertoti, M. Mohai and J. L. Sullivan, et al. Surface Characterization of Plasma-nitrided Titanium an XPS Study. Applied Surface Science. 1995, 84:357~371
    82 J. Li, M. Sun and X. Ma, et al. Structure and Tribological Performance of Modified Layer on Ti6Al4V Alloy by Plasma-based Ion Implantation with Oxygen. Wear. 2006, 261(11-12):1247~1252
    83 I. Milosev, M. Metikos-Hukovic and H. H. Strehblow. Passive Film on Orthopaedic TiAlV Alloy Formed in Physiological Solution Investigated by X-ray Photoelectron Spectroscopy. Biomaterials. 2000, 21(20):2103~2113
    84 J. Li, M. Sun and X. Ma. Structural Characterization of Titanium Oxide Layers Prepared by Plasma Based Ion Implantation with Oxygen on Ti6Al4V Alloy. Applied Surface Science. 2006, 252(20):7503~7508
    85 T. N. Taylor, M. T. Paffett. Oxide Properties of aγ-TiAl: A Surface Science Study. Materials Science and Engineering A. 1992, 153(1-2):584~590
    86 V. Maurice, G. Despert and S. Zanna, et al. XPS Study of the Initial Stages of Oxidation ofα2-Ti3Al andγ-TiAl Intermetallic Alloys. Acta Materialia. 2007, 55(10):3315~3325
    87 V. E. Henrich, P. A.Cox. The Surface Science of Metal Oxides. Cambridge University Press: New York. 1996:72~74
    88 M. A. Henderson, W. S. Epling and C. L. Perkins, et al. Interaction of Molecular Oxygen with the Vacuum-annealed TiO2(110) Surface: Molecular and Dissociative Channels. Journal of Physical Chemistry B. 1999,103(25):5328~5337.
    89 M. H. Mohamed, H. R.Sadeghi and V. E. Henrich. Electron-energy-loss study of the TiO2(110) surface. Physical Review B. 1988, 37:8417~8423.
    90 S. Petigny, H. Mostefa-Sba and B. Domenechini, et al. Superficial Defects Induced by Argon and Oxygen Bombardments on (110) TiO2 Surfaces. Surface Science. 1998, 410:250~257.
    91 W. S. Epling, C. H. F. Peden and M. A. Henderson, et al. Evidence for Oxygen Adatoms on TiO2(110) Resulting From O2 Dissociation at Vacancy Sites. Surf. Sci. 1998, 412-413:333~343.
    92 N. Nitta, M. Taniwaki and Y. Hayashi, et al. Cellular Structure Formed by Ion-implantation-induced Point Defect. Physica B: Condensed Matter. 2006, 376-377:881~885
    93 J. Jun, J. H. Shin and M. Dhayal. Surface State of TiO2 Treated with Low Ion Energy Plasma. Applied Surface Science. 2006, 252(10):3871~3877
    94 S. A. Bilmes, P. Mandelbaum and F. Alvarez, et al. Surface and Electronic Structure of Titanium Dioxide Photocatalysts. Journal of Physical Chemistry B. 2000, 104(42):9851~9858
    95 R. W. Matthews. Hydroxylation Reactions Induced by Near-ultraviolet Photolysis of Aqueous Titanium Dioxide Suspensions. Journal of the Chemical Society, Faraday Transactions. 1984, 80:457~471
    96 M. A. Henderson. Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces. Langmuir. 1996, 12(21):5093~5098
    97 K. Takakura, B. Ranby. Free-radical Species from the Reactions of Titanium (III) Ions with Hydrogen Peroxide. Journal of Physical Chemistry B. 1968, 72(1):164~168
    98 G. Czapski, A. Samuni and D. Meisel. Reaction of Organic Radicals Formed by Some "Fenton-like" Reagents. Journal of Physical Chemistry. 1971, 75(21):3271~3280
    99 C. J. Brinker, G. W. Scherer. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press: New York. 1990:240
    100 Y. W. Wang, H. Xu and X. B. Wang, et al. A General Approach to Porous Crystalline TiO2, SrTiO3, and BaTiO3 Spheres. Journal of Physical Chemistry B. 2006, 110(28):13835~13840.
    101 U. Diebold. The Surface Science of Titanium Dioxide. Surface Science Reports. 2003, 48(5-8):53~229

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700