直流脉冲等离子体源离子渗氮不锈钢的电化学腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用自行设计研制的LDL-50型直流脉冲等离子氮化设备,对316不锈钢进行活性屏离子渗氮改性。利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析改性前后316不锈钢的表面相结构、成分和形貌;利用显微硬度计研究渗氮前后316不锈钢的硬度变化;通过阳极极化曲线,电化学交流阻抗谱以及Mott-Schottky曲线的测试,研究了渗氮改性前后316不锈钢在3.5% NaCl溶液中的自钝化及钝化膜的半导体特性,进一步探索了γN改性层钝化膜的耐蚀性机理。研究结果表明:
     当气压一定时,随着渗氮温度升高,合金表面氮含量增加,在500 Pa下,由400℃的4.15 at%升高到450℃的24.72 at%;当温度一定时,对样品施加250 V负偏压,可显著增加γN层的厚度,提高改性层的均匀性和致密性。
     直流脉冲等离子体源活性屏渗氮改性316不锈钢的最佳工艺参数为250 V负偏压作用下450℃,500 Pa,渗氮6 h。γN改性层的厚度13μm,平均硬度达HV0.1N 1.39GPa,比316不锈钢提高了五倍。
     改性前后316不锈钢在3.5% NaCl溶液中均能实现自钝化,但316不锈钢钝化膜在200 mV时发生点蚀击穿,γN改性层无点蚀出现,随着浸泡时间的延长,γN改性层EIS图谱中的容抗弧直径增大,相位角平台变宽,高度增加,浸泡3 h时,低频端的“峰”变平,相位角接近90°,说明γN改性层钝化膜的致密性远优于316不锈钢。
     从Mott-Schottky曲线可知,改性前后316不锈钢的钝化膜在负于平带电位范围内表现为p型半导体,在高于平带电位范围内表现为n型半导体,说明钝化膜层由两部分组成,内层为Cr2O3,外层为Fe2O3;与316不锈钢相比,γN改性层钝化膜的空间电荷层电容、厚度、施主浓度及受主浓度均降低了一个数量级,施主平带电位负移,氧扩散系数提高了近一个数量级,说明钝化膜的内部缺陷降低、电容特性增大、氧化性增强、保护能力提高。
developed in our laberatory. The phase microstructure, composition and surface morphology of 316 austenitic stainless steel andγN phase layer were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM); the hardness of 316 austenitic stainless steel andγN phase layer are studied by microhardness tester; the passivation of high-nitrogen f.c.c. (γN) phase formed on AISI 316 austenitic stainless steel and the semiconductor characteristics of the passive film were studied by using anodic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky plot, to explore the pitting corrosion mechanism of the stainless steel. The self- passivation of theγN phase layer in 3.5 % NaCl solution was observed. The results indicate that:
     At a fixed nitriding pressure, the content of nitrogen in surface increases with the increase of the permeability nitrid temperature, from 4.15 at.% of 400℃to 24.72 at % of 450℃.At a fixed nitriding temperature applying 250V negative bias consideraloly enhanced, the thickness ofγN layer improved its uniformity. And it showed the uniform structure.
     The optimal working parameters of direct current pulsed plasma source ion nitriding 316 stainless steel are 250V as well as negative bias 450℃500 Pa, 6h,γΝphase layer is about 13μm thick, and the average microhardness of nitried 316 stainless steel isΗV0.1N1.39GPa, five times higher than that of 316 stainless steel.
     Both the original and nitrided presented self-passivation in 3.5% NaCl solution. At 200mV, the 316 stainless steel showed pitting breakdown.γN phase layer had no pitting breakdown. With the marinated time extension, the EIS of 316 stainless steel andγN phase layer in 3.5% NaCl solution shows that, the diameters of the capacitive increase, the phase angle platform widened, highly increasing. After 3h immersion, the |z|-logf ofγN phase layer low-frequency peak change flat, phase angle increased height closer to 90°, the passive film ofγN-phase-modified layer was more compact than 316 stainless steel.
     The Mott-Schottky plot shows that the passivation films ofγN/316 stainless steel behave as n-type and p-type semiconductor in the potential range about and below the flat band potential. It showed that: the passive film had two parts, the endothecium was Cr2O3, the deep space was Fe2O3, compare to the 316 stainless steel, the capacitance of space charge, donor density and accept density ofγN decreased by 1 order. The flat-band moved negatively, the value of oxygen vacancy diffusion coefficient increased by 1 order, it restricted the self-catalysed- The surface modification of 316 stainless steel has been investigated by the direct current pulsed plasma source ion nitriding (DCPPSIN) apparatus LDL-50, which designed and acidification, decreased the disfigurement of passive film, increased the capacitive character and the oxidation and protect capability of passive film toned up.
引文
[1]杨和梅,陈云富,丁兰英等,不锈钢表面改性研究的进展[J].江苏冶金,2006,34(5)11
    [2]刘洪泽,赵红,齐民等.γ-APS改性不锈钢在模拟体液中的抗腐蚀性[J] .功能材料,2006 ,37 (4) :618 -620.
    [3] Breslin C B, Chen C, Mansfeld F. The elect rochemical behavior of stainless steels following surface modifica tion in cerium coatings solutions [J] . Corrosion Sci2 Ence, 1997, 39 (6): 1 061 -1 073.
    [4] Liu C, Leyland A. Elect rochemical impedance spec2t roscopy of PVC2TiN coatings on mild steel and AISI 316subst rates [J] . Surface and Coatings Technology, 1995, 76: 615.
    [5]梁成浩,高彦静,史维东.离子镀TiN膜对不锈钢在海水中缝隙腐蚀行为的影响[J] .腐蚀科学与防护技术, 1995, 7 (2) :167.
    [6] Neumann H G, Beck U. Multilayer Systems for corro2sion protection of stainless steel implant s [J] . Surface and Coatings Technology, 1998, 98: 1157.
    [7]刘富春,石玉敏,韩恩厚.不锈钢表面处理方法的进展[J] .沈阳工业大学学报,2001 ,23 :8 -9.
    [8] Sedriks A.J. Corrosion of Stainless Steels,New York.Wiley,1979
    [9] Marcus P, et al.XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels [J]. App1. Surf.Sci. 1992. 59:7
    [10] Z.L.Zhang, T.Bell. Structure and corrosion resistance of plasma nitrided stainless steel [J].Surfaee Engineering, 1985,1(2): 131-136
    [11] Samandi M, et a1. Microstructure, corrosion and tribological behaviour of plasma immersion ion-implanted austenitic stainless steel [J] . Surf.Coat. Technol. (l993), 59: 261
    [12] M.K.Lei, Z.L.Zhang, plasma souvce ion nitriding: a new low-temperature, low-pressure nitriding approach in journal of vacuum [J]. Science and Technology A13 (1995)2986-2990
    [13]陆世英,张廷凯,康喜范等编,不锈钢.北京:原子能出版社,1995
    [14]肖纪美.不锈钢的金属学问题.北京:冶金工业出版社,1983,289,246
    [15]陆世英.不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢.北京:原子能出版社,1985,76-89.
    [16]贺彩红,王世宏.不锈钢的腐蚀种类及影响因素,北京:当代化工,2006
    [17]徐滨士,朱绍华,刘世参编著.材料表面工程[M].哈尔滨:哈尔滨工业出版社,2005.
    [18] Brown I G, Anders A. Recent advances in surface Pro2cessing with metal Plasma and ion beam [J]. Surface and Coatings Technology 1999,112: 271 -277.
    [19] M.K.Lei, Z.L.Zhang. Microstructure and corrosion vesistance of plasma source ion nitrided austenitic stainless steel[J]. Journal of Vacuum Science and Technology, A15(1997)421-427.
    [20] M.K.Lei, X.M.Zhu. Effects of nitrogen-induced h.c.p martensite formation on corrosion resistance of plasma source ion nitrided austenitic stainless steel [J]. Journal of Materials Science Letters18 (1999) 1537-1538.
    [21]雷明凯,朱雪梅,袁力江等.钢的等离子体基低能离子注入的传质机制.金属学报,1999,35(7): 767
    [22]雷明凯,朱雪梅,袁力江等.奥氏体不锈钢表面改性层耐蚀性实验研究.金属学报,1999,35(10): 1080
    [23]雷明凯,朱雪梅.奥氏体不锈钢表面改性层耐蚀性实验研究.金属学报,1999,35(10):1085
    [24] Li.A.Y, Knystautas E J, Krishnadev M. Enhanced microhardness of four modern steels following nitrogen ion implantation[J]. Surface and Coatings Technology, 2001, 138:220-228
    [25] Koumei Baba, Ruriko Hatada. Nitrogen ion implantation into three-dimensional substrates by plasma source ion implantation[J]. Materials Chemistry and Physics, 1998, 54:135-138
    [26] J R Conrad, Radtke J L, Dodd R A, et a1.Plasma source ion‐implantation technique for surface modification of materials[J]. J Appl Phys, 1987, 62:4591
    [27] Kournei Baba, Ruriko Hatada. Ion implantation into inner wall surface of millimeter size diameter steel tube by plasma source ion implantation[J]. Surf & Coats Technol,2002,158-159:741-743.
    [28] Wanga W, Booske J H, Baum C, et a1. Modification of bearing steel surface by nitrogen plasma source ion implantation for corrosion protection[J]. Surf & Coats Technol, 1999, l11:97-102
    [29]汤宝寅.等离子体源离子注入(1)原理与技术[J].物理,1994,23 (1):41-45
    [30]汤宝寅.等离子体源离子注入(2)技术扩展及初步研究结果[J].物理,1994,23(2):106-111
    [31]潘邻.我国离子化学热处理技术的现状与展望.热加工,2005,(11):8-1
    [32] Georges J. Proceedings of the 12th international federation of heat treatment and surface engineering congress[C]. TC plasma nitriding. Melbourne. Australia.Vol. 3(2000):229-235.
    [33] Georges J. TC plasma nitriding [P].US Patent: 5989363.1999
    [34] Li.C.X, Bell.T. Principles, mechanisms and applications of active screen plasma nitriding[J].Heat Treatment of Metals Vol.1(2003):1-7.
    [35] Li.C.X, Georges.J, Li.X.Y. Active screen plasma nitriding of austenitic stainless steel[J]. Surface Engineering.Vol.18(6)(2002):453-458.
    [36]曾晓雁,吴鼓平.表面工程学.北京:机械工业出版社,2005,1-2
    [37] J.Kёlbe. Forsehungsber. Landes Nordrhein-Westfalen, 1965
    [38] Edenhofer B. Physical and metallurgical aspects of ion nitriding [J]. Heat treatlnent of metals. 1974, 1(1): 23-28
    [39] Wells A, Strydon I.Le.R.Sputtering and redeposition of cathode material during plasma nitriding [J]. Surfaee Engineering, 1986, 2(4): 263-267
    [40] M.Hudis.Study of ion-nitriding.Journal of Applied Physics[J].1973,(44):1489-1496
    [41] G.G.Tibbetts. Role of nitrogen atoms in ion-nitriding.Journal of Applied Physics[J]. 1974, 45(11): 5072-5073
    [42] Xu Bingzhong, Zhang YingZhi.Collision dissociation model in ion nitriding [J]. Surface Engineering, 1987, 3(3): 226-232
    [43]赵程.活性屏离子渗氮技术的研究.金属热处理, 2004(3):1-4
    [44] Kuta J, Yeager E. Techniques of Electrochemistry.Ed. by Yeager E,Salkind A J.Vol.1,Chap 3 Wiley-Interscience, 1972.
    [45]田昭武.电化学研究方法.北京:科学出版社,1984.
    [46] Vetter, K. J. General kinetics of passive layers on metals[J]. Electrochim. Acta 1971,16, 1923.
    [47] M.D. Belo, N.E.Hakiki, Semiconducting properties of passive films formed on nickel–base alloys type Alloy 600: influence of the alloying elements[J]. Ferreira, M.G.S. Electrochim. Acta, 1999, 44: 2473
    [48] Schultze, J.W. Lohrengel, M.M. Stability, reactivity and breakdown of passive films. Problems of recent and future research[J]. Electrochim.Acta, 2000, 45; 2499
    [49] Sánchez M, Gregori J, Alonso M C,García-Jareno J J, Vicente F. Anodic growth of passive layers on steel rebars in an alkaline medium simulating the concrete pores[J]. Electrochim Acta, 2006; 52:47.
    [50] Sikora J, Sikora E, Macdonald D D. The electronic structure of the passive film on tungsten [J] . Electrochim. Acta, 2000, 45 (12):1875.
    [51] Schmuki P, Bêhni H. IIIumination effects on the stability of the passive on iron [J]. Electrochim Acta, 1995, 40 (6):775.
    [52] Cheng,Y.F.;Luo,J.L.J. Electronic structure and pitting susceptibility of passive film on carbon steel[J]. Eletrochim.Acta, 1999, 44(17):2947
    [53]林玉华,杜荣归,胡融刚等.不锈钢钝化膜耐蚀性与半导体特性的关联研究.物理化学学报,2005,21(7)741
    [54] G.L.Makar, J. Kruger, A. Joshi. Advances in Magnesium Alloys and Composited[J]. TMS, 1988, PP. 105-121
    [55] Chler S M, Vogel A, Mathieu H J et al. The chemical composition of the passive film on Fe-24Cr-11 Mo studied by AES, XPS and SIMS[J]. Corros Sci,1991, 32; 925.
    [56] Montemor M F, Ferreira M G S, Hakiki N E, et al. Chemical composition and electronic structure of the oxide films formed on 304L stainless steel and nickel based alloys in high tempera2 ture aqueous environments [J]. Corrosion Science, 2000, 42: 1635.
    [57] Piao T, Park S M. Spectroelectrochemical studies of passivation and transpassive breakdown reactions of stainless steel [J]. Electrochem Soc, 1997,144: 3371.
    [58] Li,W.S.; Luo,J.L. Electric properties and pitting susceptibility of passive films formed on iron in chromate solution[J]. Electrochemistry Communication, 1999, 1: 349
    [59] Chao C Y, Lin L F, MacDonald D D. A point defectmodel for anodic passive filmsⅠFilm growth kinectics[J]. J. Electrochem. Soc, 1981, 128: 1187-1194
    [60] Lin L F, Chao C Y, MacDonald D D. A point defectmodel for anodic passive filmsⅡChemical breakdown and pit initiation[J]. J. Electrochem. Soc, 1981,128: 1194-1198
    [61] Chao C Y, Lin L F, MacDonald D D. A point defectmodel for anodic passive filmsⅢImpedance response[J]. J. Electrochem. Soc, 1982, 129: 1874-1879
    [62] Bockris,J.O’M. Khan,S.U.M.Surface electrochemistry: A molecular level approach[J]. New York: Plenum Press, 1993: 170, 179, 486
    [63] Stimming,U. A semiconductor model of the passive layer on iron electrodes and its application to electrochemical reactions[J]. Schultze, J.W. Electrochim. Acta, 1979, 24:859
    [64] Pistorius P C, Burstein G T. Gross of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros Sic, 1992, 033: 1885.
    [65] Sikora, J. Sikora, E.J.; MacDonald, D.D.J. A new method for estimating the diffusivities of vacancies in passive films[J]. Electrochim. Acta, 1996, 41(6): 783

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700