用户名: 密码: 验证码:
含活性剂液滴的铺展过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含有活性剂的液滴或溶液放置在固体表面或预置液膜表面上,液滴或溶液将铺展成薄液膜。该过程在石油化工、磁流体材料制备和微电子硅片清洗以及医疗等领域有着广泛的应用,现已成为流体力学、胶体和表面科学领域的前沿课题,是一个学科交叉的研究热点。
     本文采用理论推导和数值计算相结合的方法,深入研究了界面存在热效应时以及分离压作用下含活性剂液滴的铺展问题,主要包括以下内容:
     (1)针对含不溶性活性剂液滴的铺展过程,推导了温度和活性剂浓度协同驱动、不存在蒸发和存在蒸发两种情形下液膜厚度和表面活性剂单体浓度的演化方程组。并对这两组模型分别在均匀和非均匀加热条件下的演化历程进行了数值模拟,分析了其演化特征和Marangoni数、气液界面Biot数、液滴表面Peclet数以及存在蒸发时界面热阻、蒸汽反冲数和蒸发数对铺展过程的影响规律。计算结果表明,热毛细力和Marangoni力是铺展过程的主要驱动力,上述物性参数通过影响这两种驱动力进而影响液滴的铺展过程。
     (2)针对含低浓度可溶性活性剂液滴的铺展过程,推导了温度和活性剂浓度协同驱动、不存在蒸发和存在蒸发两种情形下液膜厚度和表面、内部活性剂单体浓度的演化方程组。通过对两组演化模型在均匀加热条件下演化历程的数值模拟,分析了其演化特征和难溶性系数、吸附系数、液滴内部Peclet数对铺展过程的影响规律。计算结果表明,活性剂的表面单体和内部单体间的吸附通量减弱了Marangoni力对铺展的稳定作用,是造成可溶性活性剂具有独特铺展特征的内在原因。
     (3)针对含超过临界胶束浓度的高浓度可溶性活性剂液滴的铺展过程,推导了温度和活性剂浓度协同驱动、不存在蒸发和存在蒸发两种情形下液膜厚度和表面、内部活性剂单体和胶束浓度的演化方程组。通过对两组演化模型在均匀加热条件下演化历程的数值模拟,分析了其演化特征和活性剂总量、分配系数、胶束表面Peclet数、组成胶束的活性剂单体个数和缔合系数对铺展过程的影响规律。计算结果表明,胶束的缔合或解离导致铺展区域的不同部分被热毛细力和Marangoni力交替控制,使得各区域铺展的主导驱动力出现了差异,令液滴的铺展呈现出新的特点。
     (4)针对分离压作用下含不溶性活性剂液膜的铺展问题,基于已有实验结果,通过考虑活性剂特性和浓度对分子间引力和斥力的不同影响,建立了通用的分离压理论模型,给出了自由能表达式,并分析了分离压和自由能与活性剂浓度、液膜厚度比间的变化关系;推导了分离压作用下含不溶性活性剂液膜铺展过程的演化方程并进行了数值模拟。
The liquid drop of surfactant solutions will spread into thin film when deposited on the solid substrate or precursor. Such flows that are driven by so-called interfacial Marangoni stresses are of great importance in a wide range of industrial and biomedical applications including petrochemical engineering, magnetofluid preparation, drying of semiconductor wafers in the microelectronics industry and surfactant replacement therapy for neonates. The spreading of surfactant solutions has attracted considerable interest in the field of fluid mechanics, colloid and interface science both theoretically and experimentally. It is an advancing topic of investigation with subject intersection.
     The spreading of surfactant laden-drops on thin liquid film in presence of interfacial heating or disjoining pressure are investigated thoroughly and intensively in the thesis, combining the method of model derivation and numerical simulation. The main parts of the thesis are as following:
     (1) For the spreading of drop containing insoluble surfactant driven by thermal and concentration gradients, use of lubrication theory yields two coupled sets of partial differential equations for the film thickness and surfactant surface concentration on conditions of evaporation and no evaporation, respectively. Both coupled equations are numerical simulated for different heating conditions, uniform and non-uniform. The evolution characteristics and the effects of dimensionless parameters on the spreading process are analyzed, including Marangoni parameter, air-liquid Biot number and surface Peclet number, and interfacial thermal resistance, vapor recoil number and evaporation number for evaporation condition. It is shown that thermocapillary and Marangoni stress are main driving force,which are influenced by the above parameters leading to variations of the spreading process.
     (2) For the spreading of drop containing soluble surfactant driven by thermal and concentration gradients, use of lubrication theory yields two coupled sets of partial differential equations for the film thickness, surfactant concentrations on the surface and in the bulk on conditions of evaporation and no evaporation, respectively. Both coupled equations are numerical simulated only for uniform heating conditions. The evolution characteristics and the effects of dimensionless parameters on the spreading process are analyzed, including solubility parameter, dimensionless desorption rate constant and bulk Peclet number. It is shown that sorptive flux between surface monomer and bulk monomer of surfactant weakened the stabilizing effect of Marangoni stress,which leads to unstable aspects in the spreading of soluble surfactant.
     (3) For the spreading of a drop containing high concentration of soluble surfactant, which is beyond the CMC, in the presence of thermal effect, use of lubrication theory yields two coupled sets of partial differential equations for the film thickness, surfactant monomer concentrations on the surface and in the bulk and micelle concentration on conditions of evaporation and no evaporation, respectively. Both coupled equations are numerical simulated only for uniform heating conditions. The evolution characteristics and the effects of dimensionless parameters on the spreading process are analyzed, including dimensionless surfactant mass, aggregation constant, micelle size, bulk kinetics parameter and micelle Peclet number. It is shown that the creation of micelles or the breakup of micelles result in the different spreading region dominated by different driving force, either thermocapillary or Marangoni stress,which leads to distinct features in the spreading, such as appearance of secondary leading front.
     (4) For the spreading of thin film containing insoluble surfactant under the disjoining pressure, a universal model is constructed on the base of experiment data by considering the influence of surfactant features and concentration on the intermolecular attraction force and repulsion force. The equation of free energy is also presented. The dependences of attraction/repulsion ratio, disjoining pressure and free energy are analyzed due to the variation of surfactant concentration and film thickness. A coupled set of partial differential equations for the film thickness and surfactant surface concentration under disjoining pressure is derived. The results of numerical simulations are presented.
引文
[1] Bezuglyi B. A., Chemodanov S. I., Tarasov O. A. New approach to Diagnostics of Organic Impurities in Water[J]. Colloids and Surfaces A, 2004, 239(1-3): 11-17
    [2] Afsar-Siddiqui A. B., Luckham P. F., Matar O. K. The Spreading of Surfactant Solutions on Thin Liquid Films[J]. Advances in Colloid and Interface Science, 2003, 106: 183-236
    [3] Lee K. S., Ivanova N., Starov V. M., et al. Kinetics of Wetting and Spreading by Aqueous Surfactant Solutions[J]. Advances in Colloid and Interface Science, 2008, 144(1-2): 54-65
    [4]庞红宇,张现峰,张红艳,等.农药助剂溶液在靶标表面的动态润湿性[J].农药学学报, 2006, 8(2): 157-161
    [5]肖进新,暴艳霞,寿建宏,等.碳氟-碳氢表面活性剂混合水溶液在油面上铺展[J].化学研究与应用, 2002, 14(2): 137-140
    [6]谢绛凝.肺表面活性物质治疗新生儿呼吸窘迫综合征26例分析[J].国际医药卫生导报, 2007, 13(10): 44-45
    [7]李西平,司云森.物理化学[M].昆明:云南大学出版社, 2006: 335-336
    [8]赵世民.表面活性剂:原理,合成,测定及应用[M].北京:中国石化出版社, 2005: 14-15
    [9] Jensen O. E., Naire S. The Spreading and Stability of a Surfactant-laden Drop on a Prewetted Substrate[J]. Journal of Fluid Mechanics, 2006, 554: 5-24
    [10] Huh C, Scriven L. E. Hydrodynamic Model of Steady Movement of a Solid Liquid Fluid Contact Line[J]. Journal of Colloid and Interface Science, 1971, 35(1): 85-101
    [11] Miller S. M. Fabrication of Macroelectronics by Letterpress Printing and Guidelines for Printable Structures[D]: New Jersey: Princeton University, 2004
    [12] Lee K. S., Starov V. M. Spreading of Surfactant Solutions over Thin Aqueous Layers: Influence of Solubility and Micelles Disintegration[J].Journal of Colloid and Interface Science, 2007, 314(2): 631-642
    [13] Oron A., Davis S. H., Bankoff S. G. Long-scale Evolution of Thin Liquid Films[J]. Reviews of Modern Physics, 1997, 69(3): 931-980
    [14] Davis, S. H. Thermocapillary Instabilities[J]. Annual Review of Fluid Mechanics, 1987, 19: 403-435
    [15] Burelbach, J. P., Bankoff S. G., Davis S. H. Nonlinear Stability of Evaporating/Condensing Liquid Films[J]. Journal of Fluid Mechanics, 1988, 195: 463-494
    [16] de Witt, A., Gallez D., Christov C. I. Nonlinear Evolution Equations for Thin Liquid Films with Insoluble Surfactants[J]. Physics of Fluids, 1994, 6(10): 3256-3266
    [17] Jensen, O. E., Grotberg J. B. The Spreading of a Heat or Soluble Surfactant along a Thin Liquid Film[J]. Physics of Fluids A, 1993, 5(1): 58-68
    [18] Miladinova S., Lebon G. Effects of Nonuniform Heating and Thermocapillarity in Evaporating Films Falling Down an Inclined Plate[J]. Acta Mechanica, 2005, 174(1-2): 33-49
    [19] Tatiana Gambaryan-Roisman. Marangoni Convection, Evaporation and Interface Deformation in Liquid Films on Heated Substrates with Non-uniform Thermal Conductivity[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 390-402
    [20] Edmonstoene B. D., Matar O. K. Simultaneous Thermal and Surfactant -induced Marangoni Effects in Thin Liquid Films. Journal of Colloid and Interface Science, 2004, 274(1):183-199
    [21] Yiantsios S. G., Higgins B. G. A Mechanism of Marangoni Instability in Evaporating Thin Liquid Films due to Soluble Surfactant[J]. Physics of Fluids, 2010, 22(2): 9282
    [22]李冬梅,贺占博. Marangoni效应与液膜振荡[J].化学进展, 2003, 15(1):1-7
    [23]胡军,胡国辉,孙德军,等.薄膜沿均匀加热平板下落的直接数值模拟[J].计算物理, 2004, 21(5): 415-420
    [24]叶学民,王松岭,李春曦,等.热非平衡效应下蒸发或冷凝剪切液膜流的非稳定性[J].中国电机工程学报. 2009, 29(2): 75-80
    [25]马学虎,高大志,兰忠,等.功能表面材料与流体界面相互作用对垂直降液膜流动特性的影响[J].高校化学工程学报, 2004, 18(3): 269-274
    [26] Troian S. M., Wu X. L., Safran S. A. Fingering Instability in Thin Wetting Films[J]. Physical Review Letters, 1989, 62(13): 1496-1499
    [27] Hamraoui A., Cachile M., Poulard C, et al. Fingering Phenomena During Spreading of Surfactant Solutions[J]. Colloids and Surfaces A, 2004, 250(1-3): 215-221
    [28] Afsar-Siddiqui A. B., Luckham P. F., Matar O. K. Unstable Spreading of an Anionic Surfactant on Liquid Films. Part I: Sparingly Soluble Surfactant[J]. Langmuir, 2003, 19(3): 696-702
    [29] Afsar-Siddiqui A. B., Luckham P. F., Matar O. K. Unstable Spreading of an Anionic Surfactant on Liquid Films. Part II: Highly Soluble Surfactant[J]. Langmuir, 2003, 19(3): 703-708
    [30] Craster R. V., Matar O. K. Dynamics and Stability of Thin Liquid Films[J]. Reviews of Modern Physics, 2009, 81(3):1131-1198
    [31] Matar O. K; Craster R. V. Dynamics of Surfactant-assisted Spreading[J]. Soft matter, 2009, 5(20): 3801-3809
    [32] Lee K. S., Starov V. M. Spreading of Surfactant Solutions over Thin Aqueous Layers at Low Concentrations: Influence of Solubility[J]. Journal of Colloid and Interface Science,2009, 329(2): 361-365
    [33] Cachile M., Schneemilch M., Hamraoui A., et al. Films Driven by Surface Tension Gradients[J]. Advances in Colloid and Interface Science, 2002, 96(1-3): 59-74
    [34]陆规,彭晓峰,王晓东.核化沸腾液滴的铺展实验观察[J].热科学与技术. 2006, 5(3):195-200
    [35]王晓东,彭晓峰,李笃中.粗糙表面上的移动接触线和动态接触角[J].化工学报, 2004, 55 (3): 402-407
    [36] Min Qi, DuanYuan-Yuan, Wang Xiao-Dong, et al. Spreading of Completely Wetting, Non-Newtonian Fluids with Non-power-law Rheology[J]. Journal of Colloid and Interface Science, 2010, 348(1):250-254
    [37]张越,张高勇,韩富.新型三硅氧烷表面活性剂在低能表面的铺展机理[J].化学学报, 2007, 65(5):465-469
    [38] Zhang Yue, Zhang Gaoyong, Han Fu. The Spreading and Superspeading Behavior of New Glucosamide-based Trisiloxane Surfactants on Hydrophobic Foliage[J]. Colloids and Surfaces A, 2006, 276(1-3):100-106
    [39] Troian S. M., Herbolzheimer E., Safran S. A. Model for the Fingering Instability of Spreading Surfactant Drops[J]. Physical Review Letters, 1990, 65(3): 333-336
    [40] Fischer B. J., Troian S. M. Thinning and Disturbance Growth in Liquid Films Mobilized by Continuous Surfactant Delivery[J]. Physics of Fluids, 2003, 15(12): 3837-3845
    [41]Fischer B. J., Troian S. M. Growth and Decay of Localized Disturbances on a Surfactant-coated Spreading Film[J]. Physical Review E, 2003, 67(1): 016309
    [42] Matar O. K., Troian S. M. The Development of Transient Fingering Patterns During the Spreading of Surfactant Coated Films[J]. Physics of Fluids A, 1999, 11(11): 3232-3246
    [43] Dussaud A. D., Matar O. K., Troian S. M. Spreading Characteristics of an Insoluble Surfactant Film on a Thin Liquid Layer: Comparison between Theory and Experiment[J]. Journal of Fluid Mechanics, 2005, 544: 23-52
    [44] Warner M. R. E., Craster R. V., Matar O. K. Fingering Phenomena Associated with Insoluble Surfactant Spreading on Thin Liquid Films[J]. Journal of Fluid Mechanics, 2004, 510: 169-200
    [45] Warner M. R. E., Craster R. V., Matar O. K. Pattern Formation in Thin Liquid Films with Charged Surfactants[J]. Journal of Colloid and Interface Science, 2003, 268(2): 448-463
    [46] Zhang Y. L., Craster R. V., Matar O. K. Surfactant Driven Flow Overlying a Hydrophobic Epithelium: Film Rupture in the Presence of Slip[J]. Journal of Colloid and Interface Science, 2003, 264(1): 160-175
    [47] Matar O. K., Craster R. V., Warner M. R. E. Surfactant Transport on Highly Viscous Surface Films[J]. Journal of Fluid Mechanics, 2002, 466: 85-111
    [48] Warner M. R. E., Craster R. V., Matar O. K. Surface Patterning via Evaporation of Ultrathin Films Containing Nanoparticles[J]. Journal of Colloid and Interface Science, 2003, 267(1): 92-110
    [49] Warner M. R. E., Craster R. V., Matar O. K. Fingering Phenomena Created by a Soluble Surfactant Deposition on a Thin Liquid Film[J]. Physics of Fluids, 2004, 16(8): 2933-2951
    [50] Edmonstone B. D., Matar O. K., Craster R. V. Surfactant-induced Fingering Phenomena beyond the Critical Micelle Concentration[J]. Journal of Fluid Mechanics.2006, 564:105-138
    [51] Matar O. K., Craster R. V. Numerical Simulations of Fingering Instabilities in Surfactant-driven Thin Films[J]. Physics of Fluids, 2006, 18(3):1-12
    [52] Craster R. V., Matar O. K. On Autophobing in Surfactant-driven Thin Films[J]. Langmuir, 2007, 23(5): 2588-2601
    [53] Beacham D. R., Matar O. K., Craster R. V. Surfactant-Enhanced Rapid Spreading of Drops on Solid Surfaces[J]. Langmuir, 2009, 25(24): 14174-14181
    [54] Lin C. K., Hwang C. C., Uen W. Y. A Nonlinear Rupture Theory of Thin Liquid Films with Soluble Surfactant[J]. Journal of Colloid and Interface Science, 2000, 231(2): 379–393
    [55] Exerowa D., Zacharieva M., Coben R. et al. Dependence of the Equilibrium Thickness and Double Layer Potential of Foam Films on the SurfactantConcentration[J]. Colloid and Polymer Science, 1979, 257(10):1089-1098
    [56] Churaev N. V. Surface forces in wetting films[J]. Advances in Colloid and Interface Science, 2003, 103(3): 197-218
    [57] Drew Myers.表面、界面和胶体-原理及应用[M].第二版.吴大诚等译.北京:化学工业出版社, 2005: 30-72
    [58] Subhayu B., Mukul M. S. Measurement of Critical Disjoining Pressure for Dewetting of Solid Surfaces[J]. Journal of Colloid and Interface Science, 1996, 181(2): 443–455
    [59] Warner M. R. E., Craster R. V., Matar O. K. Unstable van de Waals Driven Line Rupture in Marangoni Driven Thin Viscous Films[J]. Physics of Fluids, 2002, 14(5): 1642-1654
    [60] Golovin A. A., Rubinstein B. Y., Pismen L. M. Effect of van der Waals Interactions on the Fingering Instability of Thermally Driven Thin Wetting Films[J]. Langmuir, 2001, 17(13): 3930-3936
    [61] Schwartz L. W., Eley R. R. Simulation of Droplet on Low-energy and Heterogeneous Surfaces[J]. Journal of Colloid and Interface Science, 1998, 202(1): 173-188
    [62] Schwartz L. W., Roy R. V. Modeling Draining Flow in Mobile and Immobile Soap Films[J]. Journal of Colloid and Interface Science, 1999, 218(1): 309-323
    [63] Chengara A., Nikolov A. D., Wasan T, et al. Spreading of Nanofluids Driven by the Structure Disjoining Pressure Gradient[J]. Journal of Colloid and Interface Science, 2004, 280(1): 192-201
    [64] Bhakta A., Ruchkenstein E. Decay of Standing Foams: Drainage, Coalescence and Collapse. Advances in Colloid and Interface Science, 1997, 70: 1-124
    [65] Alexander B. M., Alexander A. N. Long-Wavelength Marangoni Convection in a Liquid Layer with Insoluble Surfactant: Linear Theory[J]. Microgravity Science and Technology, 2010, 22(3): 415-423
    [66]戴干策,陈敏恒.化工流体力学[M].第二版.北京:化学工业出版社, 2005: 10-12
    [67]傅献彩.物理化学[M].北京:高等教育出版社, 2006: 315-316
    [68] Matar O. K. The Dynamic Behavior of an Insoluble Surfactant Monolayer Spreading on a Thin Liquid Film[D]: New Jersey: Princeton University, 1998
    [69]朱谱新.高分子表面活性剂在气/液界面上的物理化学性质研究[D].成都:四川大学, 2002.
    [70] Dussan E. B. V., Davis S. H. On the Motion of a Fluid-fluid Interface Along a Solid Surface[J]. Journal of Fluid Mechanics, 1974, 65(1): 71-95
    [71] Ehrhard P., Davis S. H. Non-isothermal Spreading of Liquid Drops on Horizontal Plates[J]. Journal of Fluid Mechanics, 1991, 229(1): 365-388
    [72] Anderson D. M., Davis S. H. The Spreading of Volatile Liquid Droplets on Heated Surfaces[J]. Physics of Fluids, 1995, 7(2): 248-265
    [73] Ajaev, V. S. Spreading of Thin Volatile Liquid Droplets on Uniformly Heated Surfaces[J]. Journal of Fluid Mechanics, 2005, 528: 279-296
    [74] Yeo L.Y., Craster R. V., Matar O.K. Marangoni Instability of a Thin Liquid Film Resting on a Locally Heated Horizontal Wall[J]. Physical Review E, 2003, 67(5): 56315-1-14
    [75] Thess A., Boos W. A Model for Marangoni Drying[J]. Physics of Fluids, 1999, 11(12): 3852-3855
    [76] Oron A. Nonlinear Dynamics of Three-dimensional Long-wave Marangoni Instability in Thin Liquid Films[J]. Physics of Fluids, 2000, 12(7): 1633-1645
    [77] Marmur A., Lelah M. D. The Spreading of Aqueous Surfactant Solutions on Glass[J]. Chemical Engineering Communications, 1981, 13(1-3): 133-143
    [78] Lee K. S., Cheah C.Y., Copleston R.J., et al. Spreading and Evaporation of Sessile Droplets: Universal Behaviour in the Case of Complete Wetting[J]. Colloids and Surfaces A, 2008, 323(1-3): 63-72
    [79] Halpern D., Grotberg J. B. Dynamics and Transport of a Localized Soluble Surfactant on a Thin Film[J]. Journal of Fluid Mechanics, 1992, 237: 1-11
    [80] Matar O. K. Nonlinear Evolution of Thin Free Viscous Films in the Presence of Soluble Surfactant[J]. Physics of Fluids, 2002, 14(12): 4216-4234
    [81] Fisher L. S., Golovin A. A. Instability of a Two-layer Thin Liquid Film with Surfactants: Dewetting Waves[J]. Journal of Colloid and Interface Science, 2007, 307(1): 203-214
    [82] Craster R. V., Matar O. K., Papageorgiou D. T. Breakup of Surfactant-laden Jets Above the Critical Micelle Concentration[J]. Journal of Fluid Mechanics, 2009, 629: 195-219
    [83] Schwartz L. W., Roy R. V. A Mathematical Model for an Expanding Foam[J]. Journal of Colloid and Interface Science, 2003, 264(1): 237-249
    [84] Thiele U., John K., B?r M. Dynamical Model for Chemically Driven Running Droplets[J]. Physical Review Letters, 2004, 93(2): 027802-1-4
    [85] John K., B?r M., Thiele U. Self-propelled Running Droplets on Solid Substrates Driven by Chemical Reactions[J]. European Physical Journal E: Soft Matter and Biological Physics, 2005, 18: 183-199
    [86] Chengara A., Nikolov A. D., Wasan T., et al. Spreading of Nanofluids Driven by the Structure Disjoining Pressure Gradient[J]. Journal of Colloid and Interface Science, 2004, 280(1): 192-201
    [87] Teletzke G. F., Davis H. T. Scriven L. E. Wetting Hydrodynamics[J]. Review of Physics Application, 1988, 23: 989-1007
    [88] Mitlin V. S. Dewetting of Solid Surface: Analogy with Spinodal Decomposition. Journal of Colloid and Interface Science, 1993, 156(2): 491-497
    [89] Mitlin V. S., Petviashvili N. V. Nonlinear Dynamics of Dewetting: Kinetically Stable Structures[J]. Physics Letters A, 1994, 192: 323-326
    [90] Williams M. B., Davis S. H. Nonlinear Theory of Film Rupture. Journal of Colloid and Interface Science, 1982, 90(1): 220-228
    [91] Sharma A., Jameel A. T. Nonlinear Stability, Rupture, and Morphological Phase Separation of Thin Fluid Films on Apolar and Polar Substrates. Journal of Colloid and Interface Science, 1993, 161(1): 190-208
    [92] Jameel A. T., Sharma A. Morphological Phase Separation in Thin Liquid Films. Journal of Colloid and Interface Science, 1994, 164(2): 416-427
    [93] Paulsen F. G, Pan R, Bousfield D W, et al. The Dynamics of Bubble/Particle Attachment and the Application of Two Disjoining Film Rupture Models to Flotation[J]. Journal of Colloid and Interface Science, 1996, 178(2): 400-410
    [94] Hocking L. M. The Influence of Intermolecular Forces on Thin Fluid Layers[J]. Physics of Fluids, 1993, 5(4): 793–799
    [95] Wu Q. F., Wong H. A Slope-dependent Disjoining Pressure for Non-zero Contact Angles[J]. Journal of Fluid Mechanics, 2004, 506: 157-185
    [96] Dai B., Gary L. L., Antonio R. Disjoining Pressure for Nonuniform ThinFilms[J]. Virtual Journal of Nanoscale Science and Technology, 2008, 25(18): 13-16
    [97] Warner M. R. E., Craster R. V., Matar O. K. Dewetting of Ultrathin Surfactant-covered Films[J]. Physics of Fluids, 2002, 14(11): 4040-4054
    [98] Hu G. H. Linear Stability of Ultrathin Slipping Films with Insoluble Surfactant[J]. Physics of Fluids, 2005, 17(8): 088105-1-4
    [99] Bonn D., Eggers J., Indekeu J., et al. Wetting and Spreading[J]. Reviews of Modern Physics, 2009, 81(2): 739-805
    [100] Rauscher M., Mnch B. R., Wagner B. Spinodal Dewetting of Thin Films with Large Interfacial Slip: Implications from the Dispersion Relation[J]. Langmuir, 2008, 24(21): 12290-12294
    [101] Kuroda A., Ishihara T., Takeshige H., et al. Fabrication of Spatially Periodic Double Roughness Structures by Directional Viscous Fingering and Spinodal Dewetting for Water-repellent Surfaces[J]. Journal of Physical Chemistry: B, 2008, 112(4): 1163-1169
    [102] Verma R., Sharma A. Defect Sensitivity in Instability and Dewetting of Thin Liquid Films: Two Regimes of Spinodal Dewetting[J]. Industrial and Engineering Chemistry Research, 2007, 46(10): 3108-3118
    [103] Fetzer R., Rauscher M., Seemann R., et al. Thermal Noise Influences Fluid Flow in Thin Films during Spinodal Dewetting[J]. Virtual Journal of Nanoscale Science and Technology, 2007, 16(13)
    [104]周恒,赵耕夫.流动稳定性[M].北京:国防工业出版社, 2003: 2-4
    [105]庄礼贤,尹协远,马晖扬.流体力学[M].第二版.合肥:中国科学技术大学出版社, 2009: 343-356
    [106]李芳.同轴带电射流的稳定性分析[D].合肥:中国科学技术大学. 2007
    [107] Islam M. N., Azaiez J. Miscible Thermo-Viscous Fingering Instability in Porous Media. Part 1: Linear Stability Analysis[J]. Transport in Porous Media, 2010, 84(3): 821-844
    [108] Islam M. N., Azaiez J. Miscible Thermo-Viscous Fingering Instability in Porous Media. Part 2: Numerical Simulations[J]. Transport in Porous Media, 2010, 84(3): 845-861
    [109] Nouar C., Kabouya N., Dusek J., et al. Modal and Non-modal Linear Stability of the Plane Bingham-Poiseuille Flow[J]. Journal of Fluid Mechanics, 2007, 577: 211-239
    [110] Momoniat E., Mason D. P. Spreading of a Thin Film with Suction or Blowing Including Surface Tension Effects[J]. Computers and Mathematics with Applications, 2007, 53 (2): 198-208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700