黑鲷幼鱼适宜蛋白需要量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是影响鱼类生长和饲料成本的主要因素。一般情况下,增加饲料中蛋白质的含量可以提高养殖产量,但是饲料蛋白质含量过高,会造成蛋白质的浪费,而且氨基酸代谢产生的氨会破坏水质;另一方面,如果饲料蛋白质含量低于水产动物的营养需要,又会影响其生长。因此,饲料中蛋白质含量必需适宜,才能保证养殖产量的提高,并保持较为合理的成本。
     本试验以黑鲷幼鱼为研究对象,通过研究饲料蛋白质不同水平对黑鲷幼鱼生长、饲料利用效果、鱼体常规营养成分含量以及消化酶和血浆生化指标的影响,以确定黑鲷幼鱼正常生长最适宜的蛋白水平,寻找符合其最佳生长的饲料配方,促使其快速生长,提高养殖产量和经济效益。
     试验选取同一放养批次、体质健康的黑鲷幼鱼,随机分为6组,每组3个重复,每个重复20尾鱼,平均体重为16.64±0.16g,分别投喂蛋白水平为31.95%、35.28%、38.53%、41.77%、45.15%和48.53%的六种饲料。在进行为期56天的养殖试验后,分析、计算黑鲷幼鱼的饲养指标和饲料指标,并宰杀所有试验鱼,采集全鱼、血浆、肝脏、肌肉、胃、幽门盲囊和肠样品,进行相关指标分析。
     实验结果表明,饲料中蛋白水平的提高能显著影响黑鲷幼鱼的生长和饲料利用效果(P<0.05)。随着饲料中蛋白水平的提高,黑鲷幼鱼的增重率、特定生长率、饲料总表观消化率及蛋白质、钙磷等营养成分的表观消化率变化趋势基本一致,均在一定范围内呈上升趋势,在饲料蛋白水平为41.77%时达到最高值,继续增加蛋白水平反而有所下降;与此相反,黑鲷幼鱼的肥满度、肝体指数、饲料系数和蛋白质效率随着饲料中蛋白水平的升高而降低,脂肪的表观消化率在一定范围内也呈下降趋势。
     饲料中不同的蛋白水平对黑鲷幼鱼体组成也有较大的影响。试验各组全鱼、肌肉和肝脏蛋白含量的变化趋势基本一致,即随着蛋白水平的升高而增大,在饲料蛋白含量为41.77%时达到最大值;相反,在一定的范围内,随着饲料中蛋白水平的提高、脂肪含量的降低,黑鲷幼鱼组织中脂肪的含量逐渐减小;黑鲷幼鱼组织中水分含量和粗灰分含量均随饲料中蛋白含量的增加大致呈现升高趋势,其中饲料蛋白水平对全鱼和肝脏中水分含量有显著影响(P<0.05),而对肌肉中水分含量和各组织中粗灰分含量均没有显著影响(P>0.05)。
     饲料中蛋白水平的提高可以改善黑鲷幼鱼的肉质,提高其营养价值和风味。黑鲷幼鱼肌肉总氨基酸含量、必需氨基酸总量和呈味氨基酸总量随饲料蛋白水平的增加而升高,各试验组总必需氨基酸占总氨基酸的比例也随饲料中蛋白水平的升高呈逐渐增大的趋势。
     饲料蛋白水平对消化道消化酶的活力有显著影响(P<0.05)。蛋白酶活力在胃中最高,在一定范围内,饲料蛋白水平的升高可以提高黑鲷幼鱼各消化道中蛋白酶活力,在蛋白水平为41.77%(肝脏中蛋白酶在蛋白水平为45.22%时达到最高)时达到最高,进一步提高蛋白水平则又表现出下降趋势;蛋白水平在一定范围内降低脂肪酶和淀粉酶的活力,脂肪酶活力以前肠中最高,淀粉酶活力在肝脏中最高;试验各组两种酶活力以中间蛋白组(38.53%、41.77%)偏高。
     饲料蛋白水平对血浆葡萄糖含量没有显著影响(P>0.05),但对血浆中总胆固醇、甘油三脂浓度以及谷丙转氨酶(GPT)、谷草转氨酶(GOT)活力则有显著影响(P<0.05)。血浆总胆固醇和甘油三脂随饲料蛋白水平的增加呈明显的下降趋势。谷丙转氨酶活力随蛋白水平的增加而升高,谷草转氨酶在一定范围内呈下降趋势,当饲料蛋白水平大于38.53%时,谷草转氨酶活力又呈现出上升趋势;饲料蛋白水平的提高在一定范围内可以减轻肝脏负担,降低血脂浓度。
     综合黑鲷幼鱼的生长效果和饲料效率以及体组成等相关指标,得出在水温28±1℃的条件下,初始体重为16g左右,终体重为55g左右的黑鲷幼鱼饲料中适宜的蛋白水平为38.53%~41.77%,黑鲷幼鱼获得最佳增重效果时饲料蛋白水平为41.22%。
Protein is the dominating factor which affects fish growth and feed costs. Generally, enhancing the protein content in diet can increase the aquaculture output. However, if the protein content in diet is excess, it may cause waste of protein and the water quality may be destroyed by ammonia produced in the metabolism of amino acids. On the other hand, growth will be affected if the protein content in diet can not meet the aquatic animal nutritional requirement. Therefore, protein content in the diet must be suitable to guarantee the improvement of aquaculture output and to maintain an advisable cost.
     The experiments were conducted to study the influences of different dietary protein levels on growth performance, feed utilization efficiency, body compositions, digestive enzyme activities and biochemical indices of juvenile black sea bream (Sparus macrocephalus). The aims of this research was to deduce the optimum dietary protein level for juvenile black sea bream, so as to impel it grow rapidly and enhance the output and economic efficiency.
     The healthy black sea bream juveniles of the same batch were randomly allotted to six groups with triplicate of 20 fish (average body weight 16.64±0.16g). There were six experimental diets formulated to provide varying protein levels as follows: 31.95%,35.28%,38.53%,41.77%,45.15%and 48.53%. Fish were reared in tanks for 8 weeks with the diets aforementioned respectively. All the fish were killed to collect the carcass, plasma, liver, muscle, stomach, pylorus and intestine samples, and then analyzed the indices respectively.
     The growth trial suggested that the increased dietary protein levels could improve the growth of juvenile black sea bream and feed utilization. Weight gain rate (WGR), specific growth rate (SGR), general apparent digestibility of diet and apparent digestibility of nutrition ingredients such as protein, Ca and P changed consistently and increased with the increasing of dietary protein levels, which achieved the highest when the protein content was 41.77%, and inclined while the protein level was increased continually. On the contrary, the condition factor (CF), hepatosomatic index (HSI), feed conversion ratio (FCR) and protein efficiency ratio (PER) inclined with the increase of dietary protein levels, and so did apparent digestibility of lipid inclined in certain range.
     Fish body composition was significantly related to different dietary protein levels (P<0.05). The protein contents of whole fish, muscle and liver changed congruously with each other, which increased with the improving of dietary protein levels, and it achieved the highest when the protein content was 41.77%. Contrarily, in fixed range, the lipid of the tissue of juvenile black sea bream descended with the improving of dietary protein levels and decreasing of lipid content. The water content and crude ash in the tissue of juvenile black sea bream increased with the hoist of dietary protein levels, and the water content of whole fish and liver was observably related to the improvement of dietary protein levels (P<0.05), while the water content of muscle and crude ash content of tissues were not significantly related to it (P>0.05).
     The flesh quality, nutritional value and flavor of juvenile black sea bream muscle became better with the improving of dietary protein levels. The content of total amino acid, total essential amino acid and total flavor amino acid of juvenile black sea bream muscle increased with the improving of dietary protein levels, and the ratio of total essential amino acids to total amino acids also increased.
     Dietary protein levels had significant effects on digestive enzymes (P<0.05). At a certain range of protein levels, protease activity in the alimentary tract enhanced with the increasing dietary protein levels, which was the highest in stomach and reached the top level at 41.77%dietary protein level (protease activity in liver reached the top level at 45.22%), then decreased with continuously enhancing dietary protein levels. Lipase activity, the highest in foregut, and amylase activity which was the highest in liver, inclined with the dietary protein levels within certain range, and the two kinds of enzyme activity in middle protein teams (38.53%, 41.77%) was higher in each group compared to the other treatments.
     No significant correlation was found between glucose concentration and dietary protein levels (P>0.05). However, dietary protein levels had significant influences on triglycerides (TG), total cholesterol (T-CHO), glutamate pyruvate transaminase (GPT) and glutamete oxaloacetate transaminase (GOT) in plasma (P<0.05). The concentration of TG and T-CHO decreased with the increasing of dietary protein levels. GPT activity increased with the increasing of dietary protein levels; GOT activity reduced to the lowest levels at the dietary protein levels of 38.53%, then decreased. Enhancement of dietary protein levels could alleviate theliver burden and reduce the plasma lipids.
     Generally considering growth performance, feed efficiency and body compositions as the evaluating index, it has been concluded that when the water temperature is 28±1℃, the feasible dietary protein levels for black sea bream juvenile (wt 16-55g) is within the range of 38.53%to 41.77%, and the optimum level is 41.22%based on the best weight gain.
引文
Alvarez-Gonzalez, C.A., Civera-Cerecedo, R., Ortiz-Galindo, J.L.,2001. Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aquaculture,194:151-159
    Barrows, Frederic T., Lellis, William A.,1999. The effect of dietary protein and lipid source on dorsal fin erosion in rainbow trout, Oncorhynchus mykiss. Aquaculture,180:167-175
    Bailey, J.,2006. Digestible energy need (DEN) of selected farmed fish species. Aquaculture,251: 438-455
    Boujard, T., Gelineau, A., Coves, D., etal.,2004. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets,. Aquaculture,231:529-545
    Brecha, B.J., Kohler, C.C., et al,1995. Effects of dietary protein concentration on growth, survival and body concentration of muskellunge Esox masquinongy and tiger muskellunge E. maquinongy ×E. lucis finger lings. J. World Aquaculture,119:265-271
    Britz, Peter, J., Hecht, T.,1997. Effect of dietary protein and energy level on growth and body composition of South African abalone,:Haliotis midae. Aquaculture,156:195-210
    Bromley, P.J.,1980. Effect of dietary protein, lipid and energy content on the growth of turbot {Scophthalmus maximus L.). Aquaculture,19:359-369
    Catacutan, M.R., Coloso,R.M.,1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture, 131:125-133
    Chen, H.Y., Tsai, J. C.,1994. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semi-purified diets. Aquaculture,119:265-271
    Chien, Y.H., Pan, C.H., Hunter, B,2003. The resitance to physical stress by Penaeus monodon juveniles fed diets supplemented with astaxanthin, Aquaculture,216:177-191
    Cho, C.Y., Kaushik, S.J.,1985. Effects of protein intake on metabolizable and net energy values offish diets. Academic Press,95-117
    Company, R., Calduch-Giner, J.A., Kaushik, S., et al,1999. Growth performance-and adiposity in gilthead sea bream(Sparus aurata):risks and benefits of high energy diets. Aquaculture, 171:279-292
    Daniels, W.H., Robinson, E.H.,1986. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus). Aquaculture,53:243-252
    Dias, J.; Alvarez, M.J.; Diez, A., et al.,1998. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass(Dicentrarchus labrax), Aquaculture,161:
    169-186
    Encarnacao, P., De L., Cornelis, R.M., et al.,2004. Diet digestible energy content affects lysine utilization, but not dietary lysine requirements of rainbow trout (Oncorhynchus mykiss) for maximum growth, Aquaculture,235:569-586
    Tibaldi, E., Beraldo, P., Volpelli, L.A., et al.,1995. Growth response of juvenile dentex (Dentex dentex L.) to vzrying protein level and protein to lipid ratio in practical diets. Aquaculture, 139:91-99
    Fotedar, R.,2004. Effect of dietary protein and lipid source on the growth, survival, condition indices, and body composition of mar ron, Cherax tenuimanus (Smith). Aquaculture,230: 439-455
    Gibson, G.T., Gatlin Ⅲ, D.M.,2001. Dietary protein and energy modifications to maximize compensatory growth of channel catfish(Ictalurus punctatus), Aquaculture,194:337-348
    Henken A.M., Kleingeld D.W.,1985. The effect of feeding level on apparent digestibility of dietary dry matter, crud protein and gross energy in the African catfish, Clarias gairephinus (Burchells 1982). Aquaculture,51:1-11
    Hidalgo, F., Alliot, E.,1988. Influence of water temperature on protein requirement and protein utilization in juvenile sea bass, Dicentrachus labrax. Aquaculture,72:115-129
    Hilge, V., Grop, H.J.,1985. Zum Protein und Fettbedarf des Europaischen Welses_Silirus glanis L. In:Steffens, W._Ed.., Principles of Fish Nutrition. Ellis Horwood, England, p.3810.
    Jauncey, K.,1982. The effect of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapia (Sarotherodon mossambicus). Aquaculture,27:43-54
    Jeong-Dae, K., Santosh, P.L.,2001. Effects of dietary protein level on growth and utilizution of protein and energy by juvenile haddock (Melanogrammus aeglefinus).Aquaculture,195: 311-319
    Jose, M.V., Fernandez-Palacios, H., et al,1996. The effects of varying dietary protein level on the growth, feed efficiency, protein utilization and body composition of gilthead sea fry. Fish. Sci,62:620-623
    Juancey K.,1982. The efects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias(Sarotherodon mossam bicus). Aquaculture,27:43-54
    Keembiyehetty, C.N., Wilson, R.P.,1998. Effect of water temperature on growth and nutrient utilization of sunshine bass (Morone chrysops × Morone saxatilis) fed diets containing different energy/protein ratios. Aquaculture,166:151-162
    Khan, M.S., Ang, K.J., Ambak, M.A., et al,1993. Optimum dietary protein requirement of a Malaysian freshwater catfish, Mystus nemurus. Aquaculture,112:227-235
    Kim, Lee Oh; Lee, Sang-Min,2005. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco. Aquaculture,243:323-329.
    Kim, J.D., Lall, S.P.,2001. Effects of dietary protein level on growth and utilization of protein and energy by juvenile haddock (Melanogrammus aeglefinus). Aquaculture,195:311-319
    Lupatsch, I., Kissil, G.W., Sklan, D.,2003. Comparison of energy and protein efficiency among three fish species gilthead sea bream (Sparus aurata), European sea bass(Dicentrarchus labrax) and white grouper(Epinephelus aeneus):energy expenditure for protein and lipid deposition. Aquaculture,225:175-189
    Machiels, M. A. M., Henken, A.M.,1985. Growth rate, feed utilization and energy metabolism of the African catfish, Clarias gariepinus (Burchell,1822), as affected by dietary protein and energy content. Aquaculture,44:271-284
    Mathis, N., Feidt, C., Brun-Bellut, J.,2003. Influence of protein/energy ratio on carcass quality during the growing period of Eurasian perch(Perca fluviatilis). Aquaculture,217:453-464
    McGoogan, Bruce B, Gatlin Ⅲ, Delbert M,1999. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus I. Effects of dietary protein and energy levels. Aquaculture,178:333-348
    Morais, Sofia; Bell, J. Gordon; Robertson, Derek A., et al,2001. Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.):effects on growth, feed utilisation, muscle composition and liver histology. Aquaculture,203:101-119
    Morais, Sofia, Koven, William, et al,2005. Dietary protein/lipid ratio affects growth and amino acid and fatty acid absorption and metabolism in Senegalese sole (Solea senegalensis Kaup 1858) larvae. Aquaculture,246:347-357
    Nankervis, L., matthews, S.J., Appleford, P.,2000. Effect of non-protein energy source on growth, nutrient retention and circulating insulin-like growth factor I and triiodothy ronine levels in juvenile barramundi, Lates calcarifer. Aquaculture,191:323-335
    Nematipour, G.M., Brown, M.L., et al,1992. Effects of dietary energy:Protein ratio on growth characteristics and body composition of hybird striped bass (Morone chrysops × M. Saxatilis).Aquaculture,107:359-368
    NRC, (National Research Council),1993. Nutrient requirements of Warm water Fishes and Shellfishes. National Academy Press, Washington, DC,102pp
    Ogino, C., Chiou, J.Y., et al,1976. Protein nutrition in fish-VI. Effects of dietary energy sources on the utilization of protein by rainbow trout and carp. Bull. Jpn. Soc. Sci. Fish,42: 213-218.
    Page, J.W., Andrews, J.W,1973. Interations of dietary levels of protein levels and energy on channel catfish (Ictalurus punctatus). J. Nutr,103:1339-1346
    Peter J.B., Thomas H.,1997. Effect of dietary protein and energy level on growth and body composition of South African abalong, Haliotis midae. Aquaculture,156:195-210
    Prather, E.E., Lovell, R.T.,1973. Response of intensively fed channel catfish to diets containing various protein-energy ratios, Proc. Annu. Conf. S. E. Assoc. Game fish Comm.27: 455-459
    Reinitz, G.L, Orme, L.E., Lemm, C.A., et al,1978. Influence of Varying lipid concentration with two protein concentrations in diets for rainbow trout (Salmo gairdneri). Trans. Am. Fish. Soc,107:751-754
    Reis, L.M., Reutebuch, E.M., et al,1989. Protein to energy ratios in production diets and growth, feed conversion and body composition of channel catfish, Ictalurus punctatus. Aquaculture, 77:21-27
    Ruey, L.C., Mao, S.S., et al,2001. Optimal dietary protein and lipid levels for juvenile cobia {Rachycentron canadum).Aquaculture,193:81-89
    Salhi, M., Bessonart, M., Chediak, G, et al,2004. Growth, feed utilization and body composition of black catfish, Rhamdia quelen, fry fed diets containing different protein and energy levels. Aquaculture,231:435-444
    Santinha, P.J.M., Gomes, E.F.S., et al,1996. Effects of protein level of the diet on digestibility and growth of gelthead sea bream, Sparus auratus L. Aquaculture,2:81-87
    Shiau, S.Y., Lan, C.W.,1996. Optimal dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture,145:259-266
    Shiau, S.Y., Huang, S.L.,1990. Influence of varying energy levels with two protein concentrations in diets for hybrid tiliapia (Oreochromis niloticus X O. aureus) reared in seawater. Aquaculture,91:143-152
    Siddiqui, A.Q., Howlader, M.S., et al,1988. Effects of dietary protein levels on growth, feed conversion and protein utilization in fry and young Nile tilapia, Oreochromis nilotica. Aquaculture,70:63-73
    Takeda, M., Shimeno, S., Hosokawa, et al,1975. The effect of dietary calorie-to-protein ratio on the growth, feed conversion and body composition of young yellowtail. Bull. Jpn. Soc. Sci. Fish.,41:443-447
    Takji, K., Shimeno S.,1985. Changes in digestive enzyme activities in eel after feeding.,Bull Jap Fish Soc Sci,51:2027-2031
    Tibbetts S M, Lall SP, Anderson D M. Dietary protein requirement of juvenile American eel (Anguilla rostrata) fed practical diets [J]. Aquaculture,2000,186:145-155
    Uys, W., Hccht, T.,1987. Changes in digestive enzyme activities of catfish, Clarias gariepinus. Aquaculture,63:243-250
    Walford, J., Lam T.J.,1993. Development of digestive tract and proteolytic enzyme activity in seabass (Lares calcarifer) larvae and juvenile. Aquaculture,109:187-205
    Wang, Q., Liu, Q., Li, J.,2004. Tissue distribution and elimination of oxytetracycline in perch Lateolabras janopicus and black sea bream (Sparus macrocephalus) following oral administration. Aquaculture,237:31-40
    Webster, Carl D., Tiu, Laura G., Tidwell, James H., et al,1995. Effect of dietary protein and lipid levels on growth and body composition of sunshine bass (Morone chrysops x Morone saxatilis) reared in cages. Aquaculture,131:291-301
    Winfree, R.A., Stickney, R.R.,1981. Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea. J.Nutr,111:1001-1012
    Xiqin, H., Lizhu, Y., Yunxia, et al,1994. Studies on the utilization of carbohydrate-rich ingredient and optimal protein to energy ratio in Chinese bream, Megalobrama amblycephala Yih. Manila, Philippines:Asian Fish Soc Spec Publ 9. Asian Fisheries Society, 31-42
    Zeitter, M., Kirchgessner, M., et al,1984. Effects of different protein and energy supplies on carcass composition of carp, Cyprinus carpio (L). Aquaculture,36:37-48
    Ballestrazzi R, Lanari D, D'Agaro E, et al,1994. The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrachus labrax). Aquaculture,127,197-206
    北御门,1964.饵料蛋白质消化率,日本水产学会志,30(1),46-49
    蔡克瑕,王重刚,陈品健,等,2000.花尾胡椒鲷仔稚鱼期消化酶活性的变化,台湾海峡,19(2),201-204
    陈建明,叶金云,王友慧,等,2005.翘嘴红鲌幼鱼对蛋白质的需要量,水产学报,29(1),83-86
    陈四清,季文娟,潘生弟,1985.黑鲷幼鱼对Zn、Cu的营养需要,中国水产科学,5(2),52-56
    陈四清,季文娟,吕用琦等,1999.肌醇对黑鲷幼鱼营养作用的研究,海洋科学,5,13-15
    陈寅儿,金珊,王国良,2005.鲈鱼溶藻弧菌病的血液生理生化指标研究,台湾海峡,24(1),104-108
    戴祥庆,1988.青鱼饲料最适能量蛋白比的研究,水产学报,12(1),35-41
    邓利,张为民,林浩然等,2001.黑鲷生长激素及其受体的季节变化,水产学报,25(3),203-208
    邓利,张为民,郑汉其,等,2003a.定量测定黑鲷生长激素受体mRNA的液相杂交/RNase保护法,中国实验动物学报,11(1),7-11
    邓利,张为民,林浩然,2003b.盐度变化对黑鲷生长激素及其受体的影响,热带海洋学报,22(6),9-14
    邓利,林浩然,2003c.腹腔注射LHRH-A对黑鲷生长激素及其受体的影响,深圳大学学报(理工版),20(2),60-65
    邓利,张为民,林浩然,2003d.饥饿对黑鲷血清生长激素、甲状腺激素以及白肌和肝脏脂肪、蛋白质含量的影响,动物学研究,24(2),94-98
    荻原正道,1967.养鳗用配合饲料,日本会年会讲演要旨,23
    董云伟,牛翠娟,杜丽,2001.饲料蛋白水平对罗氏沼虾生长和消化酶活性的影响,北京师范大学学报(自然科学版),37(1),96-99
    杜震宇,刘永坚,田丽霞,等,2004.草鱼摄食高脂饲料后血脂变化的初步研究,中山大学学报(自然科学版),43(增刊),77-79
    高淳仁,李岩,徐学良,1993.黑鲷幼鱼对饵料蛋白质、脂肪、糖类需求量的研究,齐鲁渔业,6,35-37
    韩庆,罗玉双,等,2002.不同饲料蛋白源对黄颡鱼生长的影响,上海水产大学学报,11(3),259-263
    韩庆,夏维福,等,2002.不同营养水平对黄颡鱼春片鱼种生长的影响,饲料工业,23(7),43-44
    何丰,丁雪燕,何中央,2004.深水网箱养殖黑鲷配合饲料的初步研究,科学养鱼,6,59-62
    胡国成,李思发,何学军,等,2006.不同饲料蛋白水平对吉富品系尼罗罗非鱼幼鱼生长和鱼体组成的影响,水产养殖,27(6),24-27
    胡王龙,2005.饲料磷对黑鲷幼鱼生长、体组成和体组织生化指标的影响,浙江大学硕士学位论文
    黄峰,严安生,张桂蓉,等,2003:不同蛋白含量饲料对南方鲇胃蛋白酶和淀粉酶活性的影响,水生生物学报,27(5),451-456
    季文娟,1999.饲料中不同脂肪源对黑鲷幼鱼生长和鱼体脂肪酸组成的影响,海洋水产研究,20(1),69-74
    季文娟,2000.黑鲷幼鱼饲料蛋白源氨基酸平衡的研究,中国水产科学,7(3),37-40
    蒋克勇,李勇,李军,等,2005.大菱鲆幼鱼蛋白质的生态营养需要量研究,海洋科学,29(9),65-70
    江洪波,陈立侨,王群,2005.饲料蛋白质对中华绒螯蟹仔蟹消化酶活性及胰蛋白酶mRNA丰度的影响,水产学报,29(2),216-221
    江锦花,2005.重金属在黑鲷5种组织器官中的积累、分布及环境效应,中国水产,7,69-71
    李爱杰,1996.水产动物营养与饲料学,北京:中国农业出版社
    李纯,李军,薛钦昭,2001.黑鲷精子的超低温保存研究,海洋科学,25(11),1-4
    李光辉,邹社校,2006.蛋白水平对黄颡鱼体成分及饲料利用的影响,养殖与饲料,9,12-13
    李荷芬,王辉亮,梁得海,等,1996.黑鲷对Ca,P,K,Mg和Mn的营养需求,海洋科学集刊,37,136-141
    李瑾,何瑞国,等,2002.不同饲料对幼鳝消化系统内脂肪酶活性的影响,.科学养鱼,12,53-54
    李瑾,何瑞国,等,2002.中华鲟消化系统内消化酶活性分布,中国饲料,21,18-20
    李金秋,林建斌,朱庆国,等,2005.不同能量蛋白比饲料对牙鲆体内消化酶活性的影响,集美大学学报(自然科学版),10(4),296-299
    李军,徐世宏,薛玉平,1998-日粮水平对黑鲷幼鱼氮收支的影响,海洋与湖沼,29(4),368-373
    梁德海,徐雯,刘发义,1999.人工配合饲料饲育黑鲷的试验研究,海洋科学,2,9-10
    林仕梅,罗莉,叶元土,等,2000.蛋白能量比对中华绒螯蟹蛋白酶活力和饲料消化率的影响,中国水产科学,7(3),33-36
    林仕梅,薛敏,等,2001.中华绒螯蟹营养Ⅱ蛋白质能量比对中华绒螯蟹蛋白酶活力和饲料消化率的影响,浙江海洋学院学报:自然科学版,20(B09),62-65
    楼宝,毛国民,骆季安,等,2006.饲喂频率对黑鲷生长及体生化成分的影响,海洋水产研究,27(6),19-24
    刘镜恪,王可玲,王新成,等,1995.黑鲷饲料中最适蛋白质含量及动、植物蛋白比的研究,海洋与湖沼,26(4),445-448
    刘镜恪,1996.黑鲷的营养需要及配合饲料研究,海洋湖沼通报,3,49-53
    刘镜恪,雷霁霖,1997.活饵料中Vc对黑鲷仔稚鱼生长影响的初步研究,中国水产科学,4(4),90-92
    刘镜恪,雷霁霖,1998.活饵料中n-3高度不饱和脂肪酸对黑鲷仔稚鱼生长和存活的影响,海洋水产研究,19(2),14-18
    刘清海,冯静,李健,等,2000.微生物多肽对黑鲷免疫和生长的促进作用,海洋科学,24(5),11-13
    刘绪生,梁冰,张树义,2004.黑鲷DMRT1基因cDNA的克隆、组织表达谱及在性别逆转前后性腺中的表达,动物学研究,25(2),158-161
    刘永坚,刘栋辉,田丽霞,等,2002.饲料蛋白质和能量水平对红姑鱼生长和鱼体组成的影响,水产学报,26(3),242-246
    马爱军,马英杰,姚善诚,2000.黑鲷消化系统的胚后发育研究,海洋与湖沼,31(3),282-287
    马燕梅,梅景良,林树根,等,2004.黑鲷消化酶活性的初步研究,福建农林大学学报(自然科学版),33(2),219-222
    梅景良,马燕梅,王宏,等,2004.pH值对黑鲷胃肠道及肝胰脏主要消化酶活力的影响,云南农业大学学报,19(5),592-595,610
    梅景良,马燕梅,张红星,等,2005.夏、冬两季黑鲷消化酶活力的比较,中国海洋大学学报,35(6),1001-1004
    彭士明,陈立侨,叶金云,等,2005.饲料蛋白能量比对黑鲷幼鱼生长和体成分的影响,中国水产科学,12(4),465-470
    钱雪桥,崔奕波,解绶启,等,2002.养殖鱼类饲料蛋白需要量的研究进展,水生生物学报,26(4),410-416
    单保党,何大仁,1995.黑鲷化学感觉发育和摄食关系,厦门大学学报(自然科学版),34(5),835-839
    邵庆均,苏小凤,许梓荣,等,2004.饲料蛋白水平对宝石鲈生长和体组成影响研究,水生生物学报,28(4),367-373
    沈文英,寿建昕,等,2002.银鲫消化酶的研究,上海水产大学学报,11(3),193-198
    沈晓民,刘永发,唐瑞瑛,等,1995.异育银鲫的蛋白消化率研究,水产学报,19(1),52-57
    施兆鸿,黄旭雄,1995.海水中Ca2+,Mg2+,K+含量对黑鲷胚胎及早期仔鱼发育的影响,海洋科学,5,33-38
    施兆鸿,周一红,1996.鱼生长素对黑鲷稚鱼生长的影响,现代渔业信息,11(11),13-16
    宋理平,张家国,师吉华,等,2006.不同蛋白质水平对淡水黑鲷幼鱼生长性能的影响,中国饲料,7,29-32
    宋学宏,凌去非,蔡春芳,等,2004.丁鱥的营养素需要量及饲料最适能量蛋白比,饲料工业,25(9),53-56
    苏小凤,饲料蛋白水平对宝石鲈生长和消化酶活性的影响,浙江大学硕士学位论文
    孙耀,张波,陈超,等,1999.黑鲷的生长和生态转换效率及其主要影响因素,海洋水产研究,20(2),7-11
    孙耀,2001.温度对黑鲷(Sparus macrocephalus)能量收支的影响,生态学报,21(2),186-190
    孙耀,邓冰,张波,等,2002.日粮水平和饵料种类对黑鲷能量收支的影响,海洋水产研究,23(1),5-10
    王重刚,陈品源,顾勇,等,1998.不同饵料对真鲷稚鱼消化酶活性的影响,海洋学报,20(1),103-106
    王春芳,解绶启,2004.稚幼鱼的营养与饲料研究进展,水生生物学报,28(5),557-562
    王辉亮,李荷芬,梁得海,等,1996.黑鲷对Fe,Zn,Cu,Co和I的营养需求,海洋科学集刊,37,143-149
    王鸣,2006.不同蛋白源饲料在黑鲷日粮中的应用研究,浙江大学硕士学位论文
    王兴礼,2003.黄颡鱼配合饲料,内陆水产,28(9),35-37
    王秀英,2004.饵料维生素C对黑鲷仔鱼生长和体组织生化指标的影响,浙江大学硕士学 位论文
    伍莉,陈鹏飞,等,2002.黄鳝肠道和肝胰脏主要消化酶活力的研究,湖北农学院学报,22(1),36-39
    吴江,张泽芸,1994.大口鲇鱼种对蛋白质需要量的研究,西南农业学报,7(3),97-101
    吴婷婷,朱晓鸣,1994.鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究,中国水产科学,1(2),10-17
    邢克智,蔡中华,荣长宽,1997.斑点叉尾鮰的蛋白质需要量,中国饲料,20,31-32
    许国焕,丁庆秋,王燕,2001.饲料中不同蛋白能量比对大口鲶生长及体组成的影响,浙江海洋学院学报(自然科学版),20(增刊),94-97
    徐镜波,张淑月,1999.鲤鱼血清谷丙转氨酶活性和活性抑制的测定,松辽学刊:自然科学版,4,4-8
    杨玻琍,陈明达,1994.重金属对真鲷幼鱼和黑鲷幼鱼的毒性效应,厦门大学学报(自然科学版),zl,28-32
    杨秀平,张金洲,曾可为,等,2003.不同饲喂条件下鳜蛋白酶活性的变化,水利渔业,23(5),11-14
    杨州,杨家新,2003.暗纹东方触幼鱼对蛋白质的最适需要量,水产学报,27(5),450-455
    雍文岳,1994.尼罗罗非鱼营养需要量,淡水渔业,24(5),22-24
    张波,孙耀,唐启升,2000.黑鲷的胃排空率,应用生态学报,11(2),287-28
    张纹,苏永全,王军,等,2001.5种常见养殖鱼类肌肉营养成分分析,海洋通报,20(4),26-31
    周秋白,吴华东,吴凤翔,等,2003.黄颡鱼蛋白质需求量的研究,江西农业大学学报,25(5),763-765
    周兴华,叶元土,等,2003.中华倒刺鲃、黄颡鱼和华鲮消化酶活性的比较研究,安徽农业大学学报,30(1),78-81
    朱德芬,1996.黑鲷人工养殖技术讲座(第一讲黑鲷生物学特性及增养殖概况),水产养殖,1,30-32
    朱俭,曹凯鸣,周润琦,等,1981.生物化学实验,上海科学技术出版社,190-193
    卓立应,2006.饲料蛋白能量比对黑鲷幼鱼生长和体组成的影响,浙江大学硕士学位论文
    邹社校,1999.黄颡鱼幼鱼蛋白质需要量的研究,湖北农学院学报,19(2),143-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700