电学成析成像系统模型、算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种无损可视化测量手段,电学层析成像技术因其价格低廉、响应快速,在工业和医学领域具有重要的应用价值。目前,电学层析成像大多表现为单模态成像,且成像过程依赖于有限元的数值求解。为深入分析电学层析成像的测量机理,本论文对传感器的数学模型及相应的双模态图像重建算法进行了系统研究。
     首先,为实现传感器的标定及进行快速图像重建,讨论了接触式传感器模型,该类传感器属于“计算式”,其电学参数可用几何参数解析表达,且可进行双模态测量。对于电容模态,测量值与理论值的相对偏差小于1.64%;对于电导模态,测量值与理论值的相对偏差小于2.68%。样机上图像重建结果,证实了基于模型的重建算法的有效性。重建过程无需采用有限元求解,降低了图像重建的计算复杂度。根据黎曼定理,基于模型的算法可以推广到任意由Jordan曲线包围的区域。
     其次,构建了两种非接触式传感器,其中,导电环式传感器适用于导电介质为连续相的电阻层析成像,配置于导电环上的电极尺寸可以很小,有利于提高电压测量的分辨率,增加电极数目以提高信息获取能力。构建的绝缘环式传感器,在交流电压激励下,可进行双模态电学层析成像,属于非接触式传感器,有望应用于非接触式医学监测领域。在此基础上,设计了两种螺旋式相含率传感器,主要利用了‘软场'效应的全局性质以及螺旋式电极的空间滤波效应。仿真和实验结果表明,螺旋式结构有助于构建较为均匀的灵敏场分布,测量数据和相含率具有较高的线性度。
     然后,研究了二端子法测量方式的数学模型及图像重建,获得了对人体/管道分布的重建图像,结果证实了其可行性。由于二端子法测量简化了硬件系统,压缩了测量数据的动态变化范围,对于电学成像系统的小型化设计,较为有利。但同时指出激励和测量模式的改变,仅有利于测量,并不会增加获取的信息量。
     最后,讨论了图像重建的线性化方法,提出了一种基于模型的鲁棒算法,对人体肺部活动的数据进行了图像重建。结果表明,基于模型的算法可以通过共形变换灵活推广,且可实现肺部活动的可视化监测。
     本工作提出的基于模型的方法,不仅可用于二维的可视化测量,亦可推广到三维情形,可以简化计算,提高成像效率。
As a kind of nondestructive and visible measurement techniques, electrical tomography has found many important applications in both industrial and medical areas, for its low cost and fast response. However, most of the electrical tomography systems are of single modality and using the finite element method in the process of image reconstruction. In order to analyze the measurement mechanism of electrical tomography in depth, the mathematical models of the sensors and associated dual modality image reconstruction algorithms have been investigated systematically in this dissertation.
     Firstly, mathematical models of calculable sensors are established, in order to calibrate the sensors and perform fast image reconstruction based on the model. The sensors consist of contact-type electrodes and have standard values determined only by the geometric parameters. Dual modality measurement has been performed on a prototype, and the relative errors between measured and theoretical values are less than 1.64% and 2.68% for capacitive mode and conductive mode, respectively. Images have been reconstructed on the prototype using the model based algorithms. The computation complexity of the image reconstruction has been reduced as the finite element method is not used in the image reconstruction. According to Riemann's theorem, the model based algorithms can be generalized to any region enclosed by a Jordan curve.
     Secondly, two kinds of non-contact type sensors have been constructed, i.e. the senor with a conductive ring and the sensor with an insulative ring. The former is suitable to the flow with a conductive continuous phase. It consists of a conductive ring with electrodes mounted on the ring. The small size electrodes are suitable to improve the distinguishabihty of the voltage measurement and the number of the electrodes. The latter is able to capture the dual modality information with the alternating voltage excitation signal. There exists an insulative ring between the electrode array and the measurement region. As its electrode array have no contact with the measurement region, the sensor has a potential application to non-contact monitoring in the medical area. Based on the models of non-contact sensors, associated spiral type sensor have been designed for void fraction measurement. The global property of the 'soft' field and spatial filtering effect of the spiral type electrodes are utilized to generate a homogeneous sensitivity distribution. Experimental and simulation results validate the linear relationship between the measurements and the void fraction ratios.
     Thirdly, mathematical models for two-terminal measurement have been established for image reconstruction. Reconstructed images of human body and pipe validate the feasibility of the model based algorithm with the two-terminal measurement. The strategy of the two-terminal measurement simplifies the design of hardware system, reduces the dynamic range of the measurement. And it is useful for smart electrical tomography system. However, different excitation modes can only be used to improve the measurement precision and can not obtain more information.
     Finally, the linearization in image reconstruction has been analyzed and a robust algorithm based on the model has been proposed for image reconstruction of the human respiration. Results show that the model based algorithms can be generalized using the conformal transformation and can be used for visible monitoring of the human lung activities.
     The model based methods proposed in this dissertation is not only suitable to visible measurement in two dimensions, but also can be used to simplify the image reconstruction in three dimensions.
引文
[1]Yang W Q.Editorial.Measurement Science and Technology,12,2001.
    [2]Dyakowski T,Jeanmeure L F C,and Jaworski Artur J.Applications of electrical tomography for gas-solids and liquid-solids flows—a review.Powder Technology,112:174-192,2000.
    [3]Wang M.Impedance mapping of particulate multiphase flows.Flow Measurement and Instrumentation,16:183-189,2005.
    [4]Ismail I,Gamio J C,Bukhari S F A,and Yang W Q.Tomography for multi-phase flow measurement in the oil industry.Flow Measurement and Instrumentation,16:145-155,2005.
    [5]Ruuskanen A R,Seppanen A,Duncanb S,Somersalo E,and Kaipio J.Using process tomography as a sensor for optimal control.Applied Numerical Mathematics,56:37-54,2006.
    [6]Stanley S J.Tomographic imaging during reactive precipitation in a stirred vessel:Mixing with chemical reaction.Chemical Engineering Science,61:7850-7863,2006.
    [7]Yang G Q,Du B,and Fan L S.Bubble formation and dynamics in gas/liquid/solid fluidization—a review.Chemical Engineering Science,62:2-27,2007.
    [8]陈学俊.多相流热物理学的进展.世界科技研究与发展,20(5):71-72,1998.
    [9]York T.Status of electrical tomography in industrial applications.Journal of Electronic Imaging,10(3):608-619,2001.
    [10]Chen J,Hou D,Zhang T,and Zhou Z.Near infrared laser computed tomography testsystem design and application.Flow Measurement and Instrumentation,16(5):321-325,2005.
    [11]Utomo M B,Warsito W,Sakai T,and Uchida S.Analysis of distributions of gas and TiO2 particles in slurry bubble column using ultrasonic computed tomography.Chemical Engineering Science,56:6073-9,2001.
    [12]Vatanakul M,Zheng Y,and Couturier M.Application of ultrasonic technique in multiphase flows.Industrial and Engineering Chemistry Research,43:5681-91,2004.
    [13]Zheng Y and Zhang Q.Simultaneous measurements of gas and solid holdups in multiphase systems using ultrasonic technique.Chemical Engineering Science,59:3505-14,2004.
    [14]Harvel G D,Hori K,Kawanishi K,and Chang J S.Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques.Flow Measurement and Instrumentation,10(4):259-66,1999.
    [15]Marchot P,Toye D,Pelsser A M,Crine M,Homme G L',and Olujic Z.Liquid distribution images on structured packing by X-ray computed tomography.AIChE Journal,47(6):1471-6,2001.
    [16]Schmit C E and Eldridge R B.Investigation of X-ray imaging of vapor-liquid contactors:1-studies involving stationary objects and a simple flow system.Chemical Engineering Science,59:1255-66,2004.
    [17]Schmit C E,Perkins J,and Eldridge R B.Investigation of X-ray imaging of vapor-liquid contactors:2-experiments and simulations of flows in an air-water contactor.Chemical Engineering Science,59:1267-83,2004.
    [18]Hubers J L,Striegel A C,Heindel T J,Gray J N,and Jensen T C.X-ray computed tomography in large bubble columns.Chemical Engineering Science,60(22):6124-33,2005.
    [19]Kumar S B,Moslemian D,and Dudukovic M P.A γ-ray tomographic scanner for imaging voidage distribution in two-phase flow systems.Flow Measurement and Instrumentation,6(1):61-73,1995.
    [20]Jin H,Yang S,He G,Guo G,and Tong Z.An experimental study of holdups in large-scale p-xylene oxidation reactors using the γ-ray attenuation approach.Chemical Engineering Science,60:5955 61,2005.
    [21]Dyakowski T.Process tomography applied to multi-phase flow measurement.Measurement Science and Technology,7:343-353,1996.
    [22]Waterfall R C,He R,and Beck C M.Visualizing combustion using electrical impedance tomography.Chemicnl Engineering Science,52(13):2129-2138,1997.
    [23]Hawkins A R,Liu H,Oliphant T E,and Schultz S M.Noncontact scanning impedance imaging in an aqueous solution.Applied Physics Letters,85(6):1080-1082,2004.
    [24]Tossavainen O,Vauhkonen M,Kolehmainen V,and Kim K.Tracking of moving interfaces in sedimentation processes using electrical impedance tomography.Chemical Engineering Science,61:771-7729,2006.
    [25]Lehmann C and Schilcher K.Approximate 3-dimensional electrical impedance imaging.Physics Letters A,292:188-194,2001.
    [26]王妍,任超世.3D-EIT图像重建的研究进展.国外医学:生物医学工程分册,26(6):265-268,2003.
    [27]薛健,张兆田,熊晓芸,李慧,田捷.工业过程断层图像的三维动态可视化.中国体视学与图像分析,10(3):183-188,2005.
    [28]Warsito W and Fan L S.Imaging the bubble behavior using the 3-D electric capacitance tomography.Chemical Engineering Science,22:6073-6084,2005.
    [29]Wajman R,Banasiak R,Mazurkiewicz L,Dyakowski T,and Sankowski D.Spatial imaging with 3D capacitance measurements.Measurement Science and Technology,17:2113-2118,2006.
    [30]Warsito W,Marashdeh Q,and Fan L S.Electrical capacitance volume tomography.Sensots Journal,IEEE,7(4):525-535,2007.
    [31]Wolf G K and Arnold J H.Electrical impedance tomography:ready for prime time?Journal of Intensive Care Medicine,32:1290-1292,2006.
    [32]Buss B G,Evans D N,Liu H Z,Shang T,Oliphant T E,Schultz S M,and Hawkins A R.Quantifying resistivity using scanning impedance imaging.Sensors and Actuators A:Physical,137:338-344,2007.
    [33]Molinari Marc.High fidelity imaging in electrical impedance tomography.PhD thesis,University of Southampton,Southampton,UK,2003.
    [34]Henderson R P and Webster J G.An impedance camera for spatially specific measurements of the thorax.Biomedical Engineering,IEEE Transactions on,25(3):250-254,1978.
    [35]Calderón A P.On an inverse boundary value problem.In Seminar on Numerical Analysis and its Applications to Continuum Physics,pages 65-73,Rio de Janeiro,Editors W.H.Meyer and M.A.Raupp,Sociedade Brasileira de Matematica,1980.
    [36]Astala K and P(a丨¨)iv(a丨¨)rinta L.Calderón's inverse conductivity problem in the plane.Annals of Mathematics,265-299:S175-S183,2006.
    [37]Seagar A D.Probing with low frequency electric currents.PhD thesis,Univ.of Canterbury,Christchurch,NZ,1983.
    [38]Hubers J L,Striegel A C,Heindel T J,Gray J N,and Jensen T C.Distinguishability of conductivities by electric current computed tomography.Medical Imaging,IEEE Transactions on,5(2):91-95,2005.
    [39]Gisser D G,Isaacson D,and Newell J C.Current topics in impedance imaging.Clinical Physics and Physiological Measurement Bibliography,8(Suppl.A):39-46,1987.
    [40]Seagar A.Theoretical limits to sensitivity and resolution in impedance imaging.Clinical Physics and Physiological Measurement Bibliography,8:13-31,1987.
    [41]Isaacson D and Cheney M.Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms.SIAM Journal on Applied Mathematics,15:1705-1731,1991.
    [42]Hua P,Woo E,Webster J,and Tompkins W.Iterative reconstruction methods using regularization and optimalcurrent patterns in electrical impedance tomography.Medical Imaging,IEEE Transactions on,10(4):621-628,1991.
    [43]Cheney M and Isaacson D.Distinguishability in impedance imaging.Biomedical Engineering,IEEE Transactions on,39(8):852-860,1992.
    [44]Schuessler T and Bates J.Current patterns and electrode types for single-source electrical impedance tomography of the thorax.Annals of Biomedical Engineering,26:253-259,1998.
    [45]Lionheart W,Kaipio J,and McLeod C.Generalized optimal current patterns and electrical safety in EIT.Physiological Measurement,22:85-90,2001.
    [46]Wang H X,Wang C,and Yin W.Optimum design of the structure of the electrode for a medical eit system.Measurement Science and Technology,12:1020-1023,2001.
    [47]Demidenko E,Hartov A,Soni N,and Paulsen K.On optimal current patterns for electrical impedance tomography.International Journal of Multiphase Flow,52(2):238-248,2005.
    [48]Wang Y,Sha H,and Ren C.Optimum design of electrode structure and parameters in electrical impedance tomography.Physiological Measurement,27:291-306,2006.
    [49]Barber D C,Brown B H,and Freeston I L.Imaging spatial distributions of resistivity using applied potential tomography.IEE Electronics Letters,19:933-5,1983.
    [50]Barber D C and Brown B H.Applied potential tomography.Journal of Physics E:Scientific Instruments,17:723-33,1984.
    [51]Santosa F and Vogelius M.A backprojection algorithm for electrical impedance imaging.SIAM Journal on Applied Mathematics,50:216-243,1990.
    [52]Geselowitz D B.An application of electrocardiographic lead theory to impedance plethysmography.Biomedical Engineering,IEEE Transactions on,18:38-41,1971.
    [53]Lehr J.A vector derivation useful in impedance plethysmographic field calculations.Biomedical Engineering,IEEE Transactions on,19:156-157,1972.
    [54]Murai T and Kagawa Y.Electrical impedance computed tomography based on a finite element model.Biomedical Engineering,IEEE Transactions on,32:177-184,1985.
    [55]Soleimani M and Lionheart W R B.Nonlinear image reconstruction for electrical capacitance tomography using experimental data.Measurement Science and Technology,16:1987-1996,2005.
    [56]Sylvester J and Uhlmann G.A global uniqueness theorem for an inverse boundary value problem.Annals of Mathematics,125(1):153-169,1987.
    [57]Nachman A I.Reconstructions from boundary measurements.Annals of Mathematics,128:531-76,1988.
    [58]Nachman A I.Global uniqueness for a two-dimensional inverse boundary value problem.Annals of Mathematics,143:71-96,1996.
    [59]Brown R and Uhlmann G.Uniqueness in the inverse conductivity problem fbr nonsmooth conductivi1ies in two dimensions.Communications in Partial Differential Equations,22:1009-1027,1997.
    [60]Siltanen S,Mueller J,and Isaacson D.An implementation of the reconstruction algorithm of A.Nachman for the 2-D inverse conductivity problem.Inverse Problems,16:681-699,2000.
    [61]Siltanen S,Mueller J,and Isaacson D.Erratum:An implementation of the reconstruction algorithm of A.Nachman for the 2-D inverse conductivity problem.Inverse Problems,17:1561-63,2001.
    [62]Siltanen S,Mueller J,and Isaacson D.Reconstruction of high contrast 2-D conductivities by the algorithm of A.Nachman.Contemporary Mathematics,278:241-254,2001.
    [63]Mueller J L,Siltanen S,and Isaacson D.A direct reconstruction algorithm for electrical impedance tomography.Medical Imaging,IEEE Transactions on,21(6):555 559,2002.
    [64]Knudsen K.A new direct method for reconstructing isotropic conductivities in the plane.Physiological Measurement,24:391-401,2003.
    [65]Mueller J and Siltanen S.Direct reconstructions of conductivities from boundary measurements.SIAM Journal on Scientific Computing,24(4):1232-1266,2003.
    [66]Knudsen K,Mueller J,and Siltanen S.Numerical solution method for the dbar-equation in the plane.Journal of Computational Physics,198(2):500-517,2004.
    [67]Isaacson D,Mueller J,Newell J,and Siltanen S.Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography.Medical Imaging,IEEE Transactions on,23(7):821-828,2004.
    [68]Isaacson D,Mueller J,Newell J,and Siltanen S.Imaging cardiac activity by the D-bar method for electrical impedance tomography.Physiological Measurement,27:S43-S50,2006.
    [69]Cornean H,,Knudsen K,and Siltanen S.Towards a d-bar reconstruction method for three-dimensional EIT.Journal of Inverse and Ill-Posed Problems,14(2):111-134,2006.
    [70]Knudsen K,Lassas M,Mueller J,and Siltanen S.D-bar method for electrical impedance tomography with discontinuous conductivities.SIAM Journal of Applied Mathematics,67(3):893-913,2007.
    [71]Murphy E,Mueller J,and Newell J.Reconstructions of conductive and insulating targets using the d-bar method on an elliptical domain.Biomedical Engineering,IEEE Transactions on,28:S101-S114,2007.
    [72]Yorkey T,Webster J,and Tompkins W.Comparing reconstruction algorithms fbr electrical impedance tomography.Biomedical Engineering,IEEE Transactions on,BME-34:843852,1987.
    [73]Alessandrini G.Stable determination of conductivity by boundary measurements.Applicable Analysis,27:153-72,1988.
    [74]Mandache N.Exponential instability in an inverse problem for the schr(o丨¨)dinger equation.Inverse Problems,17:1435-44,2001.
    [75]Heck H and Wang J.Stability estimates for the inverse boundary value problem by partial cauchy data.Engineering Analysis with Boundary Elements,22:178-1796,2006.
    [76]Heck H and Wang J.Optimal stability estimate of the inverse boundary value problem by partial measurements,http://arxiv.org.
    [77]Clarke C and Janday B.The solution of the biomagnetic inverse problem by maximum statistical entropy.Inverse Problems,5:483-500,1989.
    [78]Vehtari A and Lampinen J.Bayesian neural networks for industrial applications.In Soft Computing Methods in Industrial Applications,SMCia/99.Proceedings of the 1999 IEEE Midnight-Sun Workshop on,pages 63-68,Kuusamo,1999.
    [79]Ali F,Nakao Z,and Chen Y W.Three new soft computing approaches to two-dimensional ct image reconstruction:a comparative study.In Knowledge-Based Intelligent Electronic Systems,1998.Proceedings KES '98.1998 Second International Conference on,volume 3,pages 210-219,Adelaide,SA,Apr.1998.
    [80]Cheng K S and Chen B H.Simulated annealing and genetic algorithms based methods for impedance image reconstruction.In Bioelectromagnetism,2nd Proc.Int.Conf,volume 2,pages 97-98,Melbourne,Vic,Feb.1998.
    [81]Ortiz-Aleman C and Martin R.Inversion of electrical capacitance tomography data by simulated annealing:Application to real two-phase gas.oil flow imaging.Flow Measurement and Instrumentation,16:157-162,2005.
    [82]Bichkar R S and Ray A K.Tomographic reconstruction of circular and elliptical objects using genetic algorithm.Signal Processing Letters,IEEE,5(10):248-251,1998.
    [83]Cheng K S,Chen B H,and Tong H S.Electrical impedance image reconstruction using the genetic algorithm.In Engineering in Medicine and Biology Society,Bridging Disciplines for Biomedicine.18th Proc.IEEE,volume 2,pages 768-769,Amsterdam,Nov.1996.
    [84]Kim K Y,Kang S I,Kim M C,Kim S,Lee Y J,and Vauhkonen M.Dynamic image reconstruction in electrical impedance tomography with known internal structures.Magnetics,IEEE Transactions on,38(2):1301-1304,2002.
    [85]Olmi R,Bini M,and Priori S.A genetic algorithm approach to image reconstruction in electrical impedance tomography.Evolution Computing,IEEE Transactions on,4(1):8388,2000.
    [86]Venere M,Liao H,and Clausse A.A genetic algorithm for adaptive tomography of elliptical objects.Signal Processing Letters,IEEE,7(7):176-178,2000.
    [87]Watzenig D,Brandner M,and Steiner G.A particle filter approach for tomographic imaging based on different state-space representations.Measurement Science and Technology,18:30-40,2007.
    [88]Somersalo E,Cheney M,Isaacson D,and Isaacson E.Layer stripping:A direct numerical method for impedance imaging.Inverse Problems,7:899-926,1991.
    [89]Holder D.Electrical Impedance Tomography:Methods,History And Applications.CRC press,2005.
    [90]Woo E J,Hua P,Webster J G,and Tompkins W J.A robust image reconstruction algorithm and its parallelimplementation in electrical impedance tomography.Medical Imaging,IEEE Transactions on,12(2):137-146,1993.
    [91]Artola J and Dell J.Broyden quasi-newton method applied to electrical impedancetomography.Electronics Letters,30(1):27-28,1994.
    [92]Morucci J P,Granie M,Lei M,Chabert M,and Marsili P M.3d reconstruction in electrical impedance imaging using a direct sensitivity matrix approach.Physiological Measurement,16(3A):A123-128,1995.
    [93]van den Berg P M and Kleinman R E.A total variation enhanced modified gradient algorithm for profile reconstruction.Inverse Problems,11:L5-L10,1995.
    [94]Johansen G A,Frφstein T,Hjertakery B T,Olsen φ,and etc.The development of a dual mode tomograph for three-component flow imaging.The Chemical Engineering Journal,56:175-182,1995.
    [95]Hjertaker B T.Static characterization of a dual sensor flow imaging system.Flow Measurement and Instrumentation,9(3):183-191,1998.
    [96]Hjertaker B T,Tjugum S A,Hammer E A,and Johansen G A.Multimodality tomography for multiphase hydrocarbon flow measurements.Sensors Journal,IEEE,5(2):153-160,2005.
    [97]Metherall P,Barber D C,Smallwood R H,and Brown B H.Three dimensional electrical impedance tomography.Nature,380:509-512,1996.
    [98]Griffiths H,Tucker M G,Sage J,and Herrenden-Harker W G.An electrical impedance tomography microscope.Physiological Measurement,17:A15-A24,1996.
    [99]York T,Sun L,Gregory C,and Hatfield J.Silicon-based miniature sensor for electrical tomography.Sensors and Actuators A:Physical,110(1-3):213-218,2004.
    [100]York T,Phua T,Reichelt L,Pawlowski A,and Kneer R.A miniature electrical capacitance tomograph.Measurement Science and Technology,17:2119-2129,2006.
    [101]Cohen-Bacrie C,Goussard Y,and Guardo R.Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint.Medical Imaging,IEEE Transactions on,16(5):562-571,1997.
    [102]Chen Z Q and Paoloni F J.An integral equation approach to electrical impedance tomography.Medical hnaging,IEEE Transactions on,11:570-576,1992.
    [103]Seagar A D and Bates R H T.Full-wave computed tomography.Pt 4:Low-frequency electric current CT.Clinical Physics and Physiological Measurement Bibliography,132:455466,1985.
    [104]Yang W Q,Spink D M,York T,and McCann H.An image-reconstruction algorithm based on landweber's iteration method for electrical capacitance tomography.Measurement Science and Technology,10:1065 69,1999.
    [105]Liu S,Fu L,and Yang W Q.Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography.Measurement Science and Technology,10(7):L37L39,1999.
    [106]Yang W Q and Peng L H.Image reconstruction algorithms ibr electrical capacitance tomography.Measurvment Science and Technology,14:R1 R13,2003.
    [107]Wang H X,Wang C,and Yin W.A pre-iteration method fbr the inverse problem in electrical impedance tomography.Instrumentation and Measurement,IEEE Transactions on,53(4):1093-1096,2004.
    [108]Xiong X Y,Zhang Z T,and Yang W Q.A stable image reconstruction algorithm for ect.Journal of Zhejiang University Science,6(12):1401-1404,2005.
    [109]Jang J D,Lee S H,and Kim K Yand Choi B Y.Modified iterative landweber method in electrical capacitance tomography.Measurement Science and Technology,17:1909-1917,2006.
    [110]曹章.基于EIT系统的模型、算法研究及低通滤波器优化设计.硕士学位论文,天津,天津大学,2004年12月.
    [111]Warsito W and Fan L S.Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography.Measurement Science and Technology,12:2198-2210,2001.
    [112]Borcea L,Berryman J G,and Papanicolaou G.High contrast impedance tomography.Inverse Problems,12:835-858,1996.
    [113]Dobson D C.Convergence of a reconstruction method for the inverse conductivity problem.SIAM Journal on Applied Mathematics,52(2):442-458,1992.
    [114]Dobson D C and Santosa F.An image-enhancement technique for electrical impedance tomography.Inverse Problems,10:317-334,1994.
    [115]Kallman J S and Berryman J G.Weighted least-squares criteria for electrical impedance tomography.Medical Imaging,IEEE Transactions on,11:284-292,1992.
    [116]姚妙新,陈芳启 编.非线性理论数学基础.天津:天津大学出版社,2005.
    [117]Vauhkonen M and Karjalainen P A.A kalman filter approach to track fast impedance changes in electrical impedance tomography.Biomedical Engineering,IEEE Transactions on,45(4):486-493,1998.
    [118]Kim K Y,Kim S,Kim M C,Lee Y J,and Vauhkonen M.Image reconstruction in timevarying electrical impedance tomography based on the extended kalman filter.Measurement Science and Technology,12:1032-1039,2001.
    [119]Sepp(a丨¨)nen A,Vauhkonen M,Vauhkonen P,Somersalo E,and Kaipio J.State estimation with fluid dynamical evolution models in process tomography an application to impedance tomography.SIAM Journal on Scientific Computing,17:467 483,2001.
    [120]Trigo F C,Gonzalez-Lima R,and Amato M B P.Electrical impedance tomography using the extended kalman filter.Biomedical Engineering,IEEE Transactions on,51(1):72 81,2004.
    [121]Hanna Katriina Pikkarainen.State estimation approach to nonstationary inverse problems:discretization error and filtering problem.Inverse Problems,22:365 379,2006.
    [122]Kim S,Kim K Y,Kao T J,Newell J C,Isaacson D,and Saulnier G J.Dynamic electrical impedance imaging of a chest phantom using the kalman filter.Physiological Measurement,27:S81-S91,2006.
    [123]Sepp(a丨¨)nen A,Heikkinen L,Savolainen T,and Voutilainen A.An experimental evaluation of state estimation with fluid dynamical models in process tomography.Chemical Engineering Journal,127(1-3):23-30,2007.
    [124]Kim S,Ijaz U,Khambampati A,Kim K,Kim M,and Chung S.Moving interracial boundary estimation in stratified flow of two immiscible liquids using electrical resistance tomography.Measurement Science and Technology,18:125-1269,2007.
    [125]Cheney M,Isaacson D,and Newell J.Electrical impedance tomography.SIAM Review,41(1):85-101,1999.
    [126]Vauhkonen M,Lionheart W R B,Heikkinen L M,Vauhkonen P J,and Kaipio J P.A Matlab package for the EIDORS project to reconstruct two-dimensional EIT images.Physiological Measurement,22:107-11,2001.
    [127]Polydorides N,Lionheart W R B,and McCann H.A backprojection algorithm for electrical impedance imaging.Medical Imaging,IEEE Transactions on,21:596-603,2002.
    [128]Br(u丨¨)hl M and Hanke M.Numerical implementation of two noniterative methods for locating inclusions by impedance tomography.Measurement Science and Technology,16:1029-1042,2000.
    [129]Br(u丨¨)hl M,Hanke M,and Vogelius M S.A direct impedance tomography algorithm for locating small inhomogeneities.Numerische Mathematik,93:635-654,2003.
    [130]Deng X,Dong F,Xu L J,Liu X P,and Xu L A.The design of a dual-plane ERT system for cross correlation measurement of bubbly gas/liquid pipe flow.Measurement Science and Technology,12:1024-1031,2001.
    [131]Dong F,Xu Y B,Xu L J,Hua L,and Qiao X T.Application of dual-plane ERT system and cross-correlation technique to measure gas-liquid flows in vertical upward pipe.Flow Measurement and Instrumentation,16(2-3):191-197,2005.
    [132]Wang M,Lucas G,Dai Y,Panayotopoulos N,and Williams R A.Visualisation of bubbly velocity distribution in a swirling flow using electrical resistance tomography.Particle(?)Particle Systems Characterization,23:321-329,2006.
    [133]Hoyle B S,Jia X,Podd F J W,and etc.Design and application of a multi-modal process tomography system.Measurement Science and Technology,12:1157-1165,2001.
    [134]Steiner G,Watzentig D,Kortschak B,and Branstt(a丨¨)ter B.Analytic solution of complex conductivity in electrical impedance tomography.In Proceedings of the 5th International Conference on Inverse Problem in Engineering:Theory and Practice,pages S11(1-9),Cambridge,UK,July 2005.
    [135]Qiu C,Hoyle B S,and Podd F J W.Engineering and application of a dual-modality process tomography system.Flow Measurement and Instrumentation,18:247-254,2007.
    [136]Marashdeh Q,Warsito W,Fan L,and Teixeira F.A multimodal tomography system based on ECT sensors.Sensors,IEEE Journal,7(3):426-433,2007.
    [137]Cao Z and Wang H X.The study of a 2D model and image reconstruction algorithms based on EIT system.In IMTC2006-Instrumentation and Measurement Technology Conference,pages 2323-2326,Sorrento,Italy,Apr.2006.
    [138]Cao Z and Wang H X.Electrical impedance tomography with square sensor.In The 5th International Symposium on Measurement Techniques for Multiphase Flows,pages 869-874,Macau,China,Dec.2006.
    [139]Cao Z,Wang H X,and Xu L.Electrical impedance tomography with an optimized square sensor.In IMTC2007-Instrumentation and Measurement Technology Conference,pages 1-4,Warsaw,Poland,May 2007.
    [140]Cao Z and Wang H X.The study of a 2D model for dual mode excitation electrical impedance tomography.In 5th World Congress on Industrial Process Tomography,pages 617-623,Bergen,Norway,Sept.2007.
    [141]Cao Z,Wang H X,Yang W Q,and Yan Y.A calculable sensor for electrical impedance tomography.Sensors and Actuators:A.Physical,140(2):156-161,2007.
    [142]Tamburrino A and Rubinacci G.A new non-iterative inversion method for electrical resistance tomography.Inverse Problems,18:1809-1829,2002.
    [143]Brandstatter B.Jacobian calculation for electrical impedance tomography based on the reciprocity principle.Magnetics,IEEE Transactions on,39(3):1309-1312,2003.
    [144]Molinari M,Cox S J,Blott B H,and Daniell G J.Adaptive mesh refinement techniques for electrical impedance tomography.Physiological Measurement,22:91-96,2001.
    [145]Molinari M,Blott B H,Cox S J,and Daniell G J.Optimal imaging with adaptive mesh refinement in electrical impedance tomography.Physiological Measurement,23:121-128,2002.
    [146]Kim M C,Kim S,Lee K J,and Kim K Y.Improvement of the electrical impedance tomographic image for the two-phase system with adaptive element grouping technique.Measurement Science and Technology,15:1391-1401,2004.
    [147]Borcea L.Nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency.Inverse Problems,17(2):329-359,2001.
    [148]Lionheart W.EIT reconstruction algorithms:pitfalls,challenges and recent developments.Physiological Measurement,25:125-142,2004.
    [149]Fang W F.A nonlinear image reconstruction algorithm for electrical capacitance tomography.Measurement Science and Technology,15:2124-2132,2004.
    [150]Chung E T,Chan T F,and Tai X C.Electrical impedance tomography using level set representation and total variational regularization.Journal of Computational Physics,205(1):357-372,2005.
    [151]Wang H X,Tang L,and Cao Z.An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT.Flow Measurement and Instrumentation,18(5-6):262-267,2007.
    [152]Goharian M,Jegatheesan A,and Moran G R.Dogleg trust-region application in electrical impedance tomography.Physiological Measurement,28:555-572,2007.
    [153]Wang M.Inverse solutions for electrical impedance tomography based on conjugate gradients methods.Measurement Science and Technology,13:101-117,2002.
    [154]Lima C R de,Mello L A M,Lima R G,and Silva E C N.Electrical impedance tomography through constrained sequential linear programming:a topology optimization approach.Measurement Science and Technology,18:2847-858,2007.
    [155]W1tzenig D,Brandner M,and Steiner G.Adaptive regularization parameter adjustment for reconstruction problems.Magnetics,IEEE Transaction on,40(2):30-40,2004.
    [156]Oh T I,Woo E J,and Holder D.Multi-frequency EIT system with radially symmetric architecture:KHU Markl.Physiological Measurement,28:S183-96,2007.
    [157]Oh T I,Lee K H,Kim S M,Koo H,Woo E J,and Holder D.Calibration methods for a multi-channel multi-frequency EIT system.Physiological Measurement,28:1175-1188,2007.
    [158]Chondronasios A,Yang W Q,and Nguyen V T.Impedance analyser based tomography system.In Second World Congress on Industrial Process Tomography,pages 573-579,Hannover,Germany,Aug.2001.
    [159]Jackson J D.Classical electrodynamics.John Wiley and Sons,China High Education Press,Beijing,2004.
    [160]Harpen M.Influence of skin depth on NMR coil impedance,part Ⅱ.Physics in Medicine and Biology,33:597-605,1988.
    [161]虞福春,郑春开 编著.电动力学(修订版).北京:北京大学出版社,2003.
    [162]Borcea L.Electrical impedance tomography.Inverse Problems,18:R99-R136,2002.
    [163]Kong J A.Maxwell Equations.Higher Education Press,Beijing,2004.
    [164]Kraus J D and Fleisch D A.Electromagnetics:with applications.Tsinghua University Press,Beijing,2001.
    [165]Hayashi K,Ohura Y,and Onishi K.Direct method of solution for general boundary value problem of the laplace equation.Engineering Analysis with Boundary Elements,26(9):763-771,2002.
    [166]王化祥,张立峰.采用无网格伽辽金法求解电容层析成像正问题.天津大学学报,39(11):13791383.2006.
    [167]Cutrupi V,Ferraioli F,Formisano A,and Martone R.An approach to the electrical resistance tomography based on meshless methods.Magnetics,IEEE Transactions on,43(4):1717-1720,2007.
    [168]Tapp H S,Peyton A J,Kemsley E K,and Wilson R H.Chemical engineering applications of electrical process tomography.Sensors and Actuator's B:Chemical,92:17-24,2003.
    [169]Isaacson.Process and apparatus for distingguishing conductivities by electrical current computed tomography.Patent of USA,US4920490,1990.04.25.
    [170]Gisser etc.Current patterns for impedance tomography.Patent of USA,US5272624,1993.12.21.
    [171]Yang W Q,Spinkz D M,Gamioy J C,and Beck M S.Sensitivity distributions of capacitance tomography sensors with parallel field excitation.Measurement Science and Technology,8:562-569,1997.
    [172]Wang M and Yin W.Electrical impedance tomography.Patent of USA,US2004130338,2004.07.08.
    [173]Wang M,Yin W,and Holliday N.A highly adaptive electrical impedance sensing system fbr flow measurement.Measurement Science and Technology,13:1884-1889,2002.
    [174]Beck etc.Tomographic flow imaging system.Patent of USA,US5130661,1992.07.14.
    [175]王化祥,何永勃,张新廷.ERT/ECT双模态成像系统复合阵列传感器.中国专利,CN1793879,2005.12.22.
    [176]Thompson A M and Lampard D G.A new theorem in electrostatics and its application to calculable standards of capacitance.Nature.,177:888,1956.
    [177]Jackson J D.A curious and useful theorem in two-dimensional electrostatics.American Journal of Physics,67(2):107-115,1999.
    [178]Ostrowski K L,Luke S P,and Williams R A.Application of conjugate harmonics to electrical process tomography.Measurement Science and Technology,7:316-324,1996.
    [179]Cao Z and Wang H X.A study of electromagnetic model and image reconstruction algorithm based on the EIT system.In 4th World Congress on Industrial Process Tomography,pages 486-491,Aizu,Japan,Sept.2005.
    [180]刘觉平.电动力学.北京:高等教育出版社,2004.
    [181]Ma Y X,Wang H,and Xu L A etc.Simulation study of the electrode array used in an ERT system.Chemical Engineering Science,52:2197-2203,1997.
    [182]Ahlfors L V.Complex analysis.China Machine Press,Beijing,China,3rd edition,2004.
    [183]龚舁编著.简明复分析.北京:北京大学出版社,2003.
    [184]闻国椿,殷慰萍 编著.复变函数的应用.北京:首都师范大学出版社,1999.
    [185]高本庆 编著.椭圆函数及其应用.北京:国防工业出版社,1991.
    [186]Zhong W X.On precise integration method.Journal of Computational and Applied Mathematics,163:59-78,2004.
    [187]钟万勰,姚征.椭圆函数的精细积分算法.祝贺郑哲敏先生八十华诞应用力学报告会-应用力学进展论文集,2004.
    [188]陈燊年,陈思明,王建成著.从麦克斯韦方程组建立的新电路理论.北京:科学出版社,1999.
    [189]曹伟杰 编著.保形变换理论及其应用.上海:上海科学技术文献出版社,1988.
    [190]Fauger1s O,Aubert G,and Kornprobst P.Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations(lst edition).Springer,2001.
    [191]Wang M,Dorward A,Vlaev D,and Mann R.Measurements of gas-liquid mixing in a stirred vessel using electrical resistance tomography(ERT).Chemical Engineering Journal,77:93-98,2000.
    [192]Cao Z and Wang H X.Electromagnetic model and image reconstruction algorithms based on EIT system.Transactions of Tianjin University,12(6):420-424,2006.
    [193]Tautenhahn U.On the method of lavrentiev regularization fbr nonlinear ill-posed problems.Inverse Problems,18:191-207,2002.
    [194]Pereverzyev S S,Pinnau R,and Siedow N.Regularized fixed-point iterations fbr nonlinear inverse problems.Inverse Problems,22:1-22,2006.
    [195]McEwan A,Romsauerova A,and Yerworth R etc.Design and calibration of a compact multi-frequency EIT system fbr acute stroke imaging.Physiological Measurement,27(5):S199-S210,2006.
    [196]Asfaw Y and Adler A.Automatic detection of detached and erroneous electrodes in electrical impedance tomography.Physiological Measurement,26:S175-S183,2005.
    [197]Babaeizadeh S,Brooks D H,Isaacson D,and Newell J C.Electrode boundary conditions and experimental validation for bern-based EIT forward and inverse solutions.Medical Imaging,IEEE Transactions on,25(9):1180-1188,2006.
    [198]Romsauerova A,McEwan A,Horesh L,Yerworth R,Bayford R H,and Holder D S.Multifrequency electrical impedance tomography(EIT) of the adult human head:initial findings in brain turnouts,arteriovenous malformations and chronic stroke,development of an analysis method and calibration.Physiological Measurement,27:S14-S161,2006.
    [199]Kao T J,Kim B S,Isaacson D,Newell J C,and Saulnier G J.Reducing boundary effects in static EIT imaging.Physiological Measurement,27:S13-S23,2006.
    [200]Yan Y.Flow rate measurement of bulk solids in pneumatic pipelines-problems and solutions.Bulk Solids Handling,15:447-456,1995.
    [201]Yah Y.Mass flow measurement of bulk solids in pneumatic pipelines.Measurement Science and Technology,7(12):1687-1706,1996.
    [202]Jaworek A and Krupa A.Gas/liquid ratio measurements by rf resonance capacitance sensor.Sensors and Actuators:A Physical,113:133-139,2004.
    [203]Japan atomic energy agency and Sukegawa electric Co Ltd.Impedance type practical electric void fraction meter for measuring water flow trial,measures average void fraction of two phases of flow of water in instant,without being based on water quality,using rod-shaped assembly.Patent of Japan,JP2007033062A,2007.08.02.
    [204]Atomic energy of Canada Ltd.Microwave gas-liquid void fraction meter.Patent of Great Britain,JP2007033062A,1983.12.07.
    [205]Texaco Inc(US).Acoustic gas-liquid flow meter.Patent of USA,US5415048,1995.05.16.
    [206]Tokyo Keisoku KK.Void meter.Patent of Japan,JP9257704,1997.10.03.
    [207]Tokyo Shibaura Electric Co.Radiation void factor meter.Patent of Japan,JP57175247,1982.10.28.
    [208]Westinghouse Canada Ltd.Mono-energetic neutron void meter.Patent of USA,US4282435,1981.08.04.
    [209]Tokyo Shibaura Electric Co.Method for measuring local void ratio distribution.Patent of Japan,JP60015546,1985.01.26.
    [210]Ma Y,Chung N,Pei B,and Lin W.Two simplified methods to determine void fractions for two phase flow.Nuclear Technology,94:124-133,1991.
    [211]Costigan G and Whalley P B.Slug flow regime identification from dynamic void fraction measurement in vertical air-water flows.International Journal of Multiphase Flow,23:263-282,1997.
    [212]Devia F and Fossa M.Design and optimisation of impedance probes for void fraction measurements.Flow Measurement and Instrumentation,14:139-149,2003.
    [213]Zenit R,Koch D L,and Sangani A S.Impedance probe to measure local gas volume fraction and bubble velocity in a bubbly liquid.Review of Scientific Instruments,74(5):2817-2827,2003.
    [214]Canière H,Joen C T',and Willockx A etc.Horizontal two-phase flow characterization for small diameter tubes with a capacitance sensor.Measurement Science and Technology,18:2898-2906,2007.
    [215]Tollefsen J and Hammer E A.Capacitance sensor design for reducing errors in phase concentration measurements.Flow Measurement and Instrumentation,9:25-32,1998.
    [216]金锋,许会,颜华,王师.气/固两相流相浓度传感器.东北大学学报(自然科学版),20(1):2528,1999.
    [217]金锋,张宝芬,王师.电容式气固两相流相浓度传感器的优化设计.清华大学学报(自然科学版),43(3):380-382,2002.
    [218]韩丽,归柯庭,施明恒,徐治皋.电容式气固两相流相浓度传感器的研究.热科学与技术,1(2):152-154,2002.
    [219]Jaworek A,Krupa A,and Trela M.Capacitance sensor fbr void fraction measurement in water/steam flows.Flow Measurement and Instrumentation,15(5-6):317-324,2004.
    [220]曹章,王化祥.气固两相流固相浓度电容式传感器优化设计.仪器仪表学报,28(11):19561959,2007.
    [221]Wang H X and Cao Z.An investigation of nonlinearity of 'soft' field in electrical impedance tomography system--based on statistical methods.In IMTC 2005-Instrumentation and Measurement Technology Conference,pages 713-717,Ottawa,Canada,May 2005.
    [222]肖庭延,于慎根,王彦飞编著.反问题的数值解法.北京:科学出版社,2003.
    [223]顾元宪,刘涛,亢战,赵国忠.热结构瞬态响应的耦合灵敏度分析方法与优化设计.力学学报,36(1):37-42,2004.
    [224]牟昌华,彭黎辉,姚丹亚,张宝芬,萧德云.一种基于电势分布的电容成像敏感分布计算方法.计算物理,23(1):87-92,2006.
    [225]Lucas J,Hole S,and Batis C.Analytical capacitive sensor sensitivity distribution and applications.Measurement Science and Technology,17(9):2467-2478,2006.
    [226]Tikhonov A N.On the stability of inverse problems.Doklady Akademii Nauk SSSR,39(5):195-198,1943.
    [227]樊树芳,马青华,王彦飞.算子及观测数据都非精确情况下一种新的正则参数选择方法.北京师范大学学报(自然科学版),42(1):25-31,2006.
    [228]Loser T,Wajman R,and Mewes D.Electrical capacitance tomography:image reconstruction along electrical field lines.Measurement Science and Technology,12:1083-1091,2001.
    [229]Yah H,Liu L J,Xu H,and Shao F Q.Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization.Measurement Science and Technology,(12):575-581,2001.
    [230]Zhao J C,Fu W L,Li T S,and Wang S.An image reconstruction algorithm based on a revised regularization method for electrical capacitance tomography.Measurement Science and Technology,13:638-640,2002.
    [231]Yang W Q and Byars M.An improved normalization approach for electrical capacitance tomography.In Proc.1st World Congr.on Industrial Process Tomography,pages 215-218,Buxton,UK,April 1999.
    [232]Chaplin G,Pugsley T,van der Lee L,Kantzas A,and Winters C.The dynamic calibration of an electrical capacitance tomography sensor applied to the fluidized bed drying of pharmaceutical granule.Measurement Science and Technology,16:1281-1290,2005.
    [233]Kim Y S,Lee S H,Ijaz U Z,Kim K Y,and Choi B Y.Sensitivity map generation in electrical capacitance tomography using mixed normalization models.Measurement Science and Technology,18:2092-2102,2007.
    [234]魏木生著.广义最小二乘问题的理论和计算.北京:科学出版社,2006.
    [235]Sluis A.Van Der.Condition numbers and equilibration of matrices.Numerische Mathematik,14:14-23,1969.
    [236]Cao Z and Wang H X.Electrical impedance tomography with square sensor.In AIP Conf.Proc,pages 792-797,Macau,China,June 2007.
    [237]Osher S and Fedkiw R.Level set methods and dynamic implicit surfaces.Springer-Verlag,New York,2003.
    [238]Wang Y F,Gu X F,Yu T,and Fan S F.Iterative lavrentiev regularization for symmetric kernel-driven operator equations:with application to digital image restoration problems.Science in China Series F:Information Sciences,48(4):467-483,2005.
    [239]Barrett R,Berry M,Chan T F,and et al.Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods.SIAM,Philadelphia,1994.
    [240]王春艳.电阻抗成像系统在肺部监测中的应用.硕士学位论文,天津,天津大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700