高速大流量电液配流系统设计理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液配流系统由于具有体积小、功率密度大、结构简单灵活、工作稳定可靠等特点,因此广泛应用在化工流体机械、发动机气门、数字配流泵/马达、液压冲击机械等需要流体输送控制的工业领域。流体输送机械作为工业生产流程的“心脏”,其配流系统的性能很大程度上影响着主机和工艺的稳定性和能耗,同时,随着工业自动化水平的提高,对流体机械的工作效率、噪声及工作寿命的要求也越来越高,开展电液配流系统设计研究是十分重要和迫切的,如何设计高性能、高效率的配流系统从而提升主机的性能也成为了行内研究的热点课题。目前,国内的相关研究开展较晚,成熟的电液配流系统大多从国外进口,价格十分昂贵,而基础的零部件及相关机加工技术对我国实行技术封锁,进行二次产品开发较为困难。因此,开展电液配流系统的设计理论研究,研发具有自主知识产权的电液配流产品,将有助于大幅提升我国在相关领域的技术水平,更好地满足国内日益增长的市场需求。
     本文的研究对象为高速大流量电液配流系统,通过结构设计、数学计算、建模仿真和试验验证相结合的方法,深入详细研究了电液配流系统的关键技术。通过建立电液执行器数学模型,分析了影响电液执行器动作延迟特性的因素,提出高响应电液执行器的设计原则。基于提高电液执行器驱动流量的基本思路,提出双高速开关阀并联式和先导式的新型执行器结构,并通过参数优化研究,将先导式电液执行器的开启和关闭延迟时间控制在20ms以内。通过对电液配流过程负载运动特性的分析,提出一种双向高速液压缓冲的新型结构,理论计算及试验表明在该液压缓冲作用下的负载冲击速度大大降低,配流系统的工作可靠性得到大幅提高。为实现电液配流系统研究的工业化应用,将新型电液配流系统应用在往复式压缩机气量无级调节装置中,研究了动态气体力作用过程下的电液配流系统动态特性,开发了压缩机电液配流系统样机,现场应用表明电液配流压缩机成功实现了排气量的无级调节,气量调节过程平稳无冲击,压缩机排气压力波动小于0.2bar。
     现将各章内容分述如下:
     第一章,简单介绍了配流系统的应用领域、工程背景及研究价值;详细阐述了高速大流量电液配流系统在往复式压缩机气量无级调节技术中的应用背景及技术现状,对比总结了常见的电液配流系统技术方案并重点指出了高速开关配流方案的特点;分析了高速电液执行器、高速开关阀、高速液压缓冲等高速大流量电液配流关键技术的研究进展,本章最后总结了课题的研究意义及主要研究内容。
     第二章,根据电液配流系统应用工况提出高速电液执行器的性能指标,介绍了电液执行器的常见结构及工作原理,基于高速开关阀控液压缸的物理模型搭建了电液执行器的基本数学模型,仿真分析了主要设计参数对电液执行器动作延迟特性的影响。基于理论分析结果提出两种不同结构的新型高速电液执行器,分别建立双高速开关阀并联式和先导式电液执行器的理论分析模型,对比研究两种不同类型电液执行器的动态特性。最后,基于电液执行器结构参数的分析结果,提出高速电液执行器的优化设计理论。
     第三章,分析高速电液配流系统的工作特性,并提出液压缓冲的性能参数要求。根据高速、短行程的负载特性提出高速液压缓冲的结构方案,详细阐述了其工作原理,并通过数学计算确定了高速液压缓冲的主要结构参数。通过建立双向缓冲的数学模型,深入开展了气阀开启和关闭过程中的动态缓冲特性研究。本章最后总结了双向液压缓冲的优化设计方法。
     第四章,阐述了高速大流量电液配流系统的工作原理,介绍了高速大流量电液配流系统的结构组成,其次根据系统物理模型,推导考虑动态力作用下的电液配流系统气阀运动规律数学模型,并在AMESim与Matlab平台下搭建了电液配流系统联合仿真模型,基于仿真模型对电液配流系统的参数可控性、阀片运动规律与系统动态特性进行仿真研究,评估关键参数对系统动态性能的影响,从而为电液配流系统的优化设计提供理论依据。最后,搭建动态性能测试系统对电液配流系统性能参数进行测试,验证仿真模型的正确性并为进一步完善电液配流系统设计理论提供实验数据支持。
     第五章,介绍了高速大流量电液配流系统在往复式压缩机气量无级调节技术中的应用情况,阐述了往复式压缩机气量无级调节装置的组成,指明了气量调节压缩机的性能参数,结合压缩机气量无级调节的技术要求,设计了一套高速大流量电液配流系统的工业样机,搭建了由上位机、下位机、止点传感器、通讯模块等组成的控制系统。在中国石化天津炼油厂加氢裂化氢气压缩机上开展了工业试验研究,试验结果表明气量调节装置的节能效果十分显著。
     第六章,对本文开展的主要研究工作和成果进行总结,并进一步展望今后的研究工作和研究方向。
With characteristics of small volume, high power density, simple structure and high reliability, electro-hydraulic distribution system (EHFS) has been extensively applied in chemical fluid machinery, engine valve, digital distribution pump/motor, hydraulic impact machine, etc. With fluid transmission machinery working as the heart of industrial production process, the performance of flow distribution system, to a great extent, affects the stability and energy consumption of the main engines and the industrial processing. Besides, with the development of industrial automatization, the efficiency, lower noise and longer operating life of fluid machinery are endued with higher and higher requirement. The research on flow distribution system has appeared to be extremely urgent and important. How to pass the design of flow distribution system with high performance and efficiency to improve the capability of main engines has become a new highlight in the industry. So far, relevant domestic study on EHFS has been carried out later and most of the mature products in China are imported with high price. It's difficult to do secondary development for the basic components and technology blockage. So it'll be conductive to the improvement of relevant technical level in China and better meet market demand by carrying out research on the design of EHFS and developing independent intellectual property products.
     Based on the structural design, mathematical calculation, digital simulation and experimental study, this paper particularly discusses the flow distribution system with large flow rate and high speed. The influencing factors of action delay are analyzed by establishing the modeling of electro-hydraulic actuator. The design approach of electro-hydraulic actuator with high response is presented. New actuator structures including the dual high speed on/off valves parallel type and the pilot type are adopted based on the principle of flow rate improvement. The pilot electro-hydraulic actuator has a typical on/off time of20ms by parameters optimization research. A new hydraulic buffer with bidirectional, high speed movement is presented by analysis of load characteristics in the flow distribution process. Calculation and field tests show that, the load impact velocity is largely reduced with operation of this hydraulic buffer, so that the reliability of flow distribution system is greatly improved. In order to realize the industrial applications of EHFS, the new system is installed in the stepless capacity control equipment of reciprocating compressor, and the dynamic characteristics of EHFS with operation of dynamic gas forces is discussed. Experimental results show that the capacity control process is stable without impact and the discharge pressure fluctuation is less than0.2bar.
     The main content of each chapter is summarized as following:
     In chapter1, the application fields, engineering background and research value of flow distribution system are expounded. The special application background and the technology status of EHFS with large flow rate and high speed in stepless capacity control of reciprocating compressors are described in detail. Through the comparison of common flow distribution technology schemes, the technique features of high speed on/off flow distribution are highlighted. Relative technologies such as high speed electro-hydraulic actuator, high speed on/off valve and high speed hydraulic buffer are analyzed. The research significance and main study content are proposed in the final section of this chapter.
     In chapter2, the performance indicators of high speed electro-hydraulic actuator are presented based on the application condition of EHFS. The common structure and working principle of electro-hydraulic actuator are introduced. The basic mathematical model is established based on the physical model of high speed on/off valve control hydraulic cylinder. The influences of main design factors on the actuator action delay are illustrated. Two new high speed actuators with different structures are proposed based on the theoretical analysis. Simulation models of electro-hydraulic actuators, dual high speed on/off valve parallel type and pilot type are established to do comparative research on their dynamic characteristics. Finally, optimization design theory of high speed actuators is proposed through analysis of structure factors.
     In chapter3, by analyzing performance characteristics of high speed EHFS, the necessity of adopting hydraulic buffer is described and the performance requirements of hydraulic buffer are proposed. Based on the load features with high speed and short stroke, the structure concept of high speed hydraulic buffer is presented. Then its working principle is elaborated. And the main structural characteristics are determined by mathematical calculation. By establishing the simulation model of the bidirectional buffer, research on dynamic buffering characteristics of opening and closing process is deeply developed. The optimization design theory is summarized in the last section of this chapter.
     In chapter4, the working principle of EHFS with large flow rate and high speed is expounded. The structure and elements of EHFS are introduced. Based on the physical modeling of EHFS, the mathematical model of valve motion is established with consideration of dynamic gas force. Then co-simulation model is established in AMESim and Matlab. The controllability, valve motion and dynamic characteristics of EHFS are discussed by simulation study. Theory basis for optimization design of EHFS is provided by analyzing the influence of key factors. Finally, a test rig for dynamic characteristics is built to validate simulation model and provide data support for improvement of EHFS design theory.
     In chapter5, the application of EHFS with large flow rate and high speed in stepless capacity control of reciprocating compressors is introduced. The structure of stepless capacity control equipment is described, and the performance characteristics of capacity control compressor are listed. A prototype of EHFS with large flow rate and high speed is designed combined with technical requirements of stepless capacity control technology. Control system consisting of upper computer, lower computer, TDC sensor and communication module is built. Experimental research is carried out on the hydrocracking compressor in Sinopec Tianjin refinery and the results show a remarkable energy saving effect.
     In chapter6, all achievements of the dissertation are summarized and the further research work is put forward.
引文
[1]刘忠,杨襄璧,杨国平.液压冲击机械的配流系统方案研究[J].液压与气动,2001(6):13-14.
    [2]刘忠,廖亦凡,黄秀祥,等.液压冲击机械的无级调节理论及装置研究[J].中国公路学报,2006,19(2):121-126.
    [3]罗生梅,张宏林,斯建刚,等.液压冲击器配流阀设计方案的研究[J].新技术新工艺,2009(3):68-71.
    [4]吴万荣,孟莹,杨矗,等.基于AMESim的新型数字控制液压冲击器的仿真[J].机械制造与研究,2008,37(3):105-107.
    [5]唐崇茂.高速开关阀控制的插装阀及其在冲床油路系统中的应用研究[D].长沙:中南大学,2009.
    [6]吴万荣,唐崇茂,刘永磊,等.插装阀及其在电液控制油路中的应用[J].现代制造工程,2009(1):70-73.
    [7]L M Das, Rohit Gulati, P K Gupta. Performance evaluation of a hydrogen-fuelled spark ignition engine using electronically controlled solenoid-actuated injection system[J]. International Journal of Hydrogen Energy,2000(25):569-579.
    [8]王军,贾粮棉,张建超.柴油机电液调速系统的控制研究[J].汽车技术,2004(5):25-27.
    [9]Minggao Yang, S C.Sorenson. Direct digital control of the diesel fuel injection process[J]. International Congress and Exposition,1992, SAE.
    [10]赵远扬,李连生,束鹏程.压缩机的技术现状及其发展趋势[J].通用机械,2005(9):36-37.
    [1l]李缦,邱明杰,曾江.2006年压缩机产品用户调查分析报告[J].通用机械,2006(11):12-15.
    [12]吴丰.大型往复压缩机技术进展与市场分析[c].第二届国际压缩机、风机高峰论坛.北京:中国通用机械工业协会,2006:83-86.
    [13]前进中的压缩机行业-中国通用机械工业协会压缩机分会秘书处[J].通用机械,2005(1):28-29.
    [14]赵国山,仇性启,宋世伟.活塞式压缩机节能研究概述[J].通用机械,2006(11):72-76.
    [15]高其烈.直面WTO格局的压缩机行业[J].压缩机技术,2004(4):42-48.
    [16]郑家骏.活塞式压缩机运行的节电理论与实践[J].节能,1999(3):17-19.
    [17]王庆丰,李国安,郭振.关于往复压缩机节能途径的探讨[J].节能技术,2005,23(6):562-564.
    [18]金巍.空压机排气量与所需电机功率速算法[J].压缩机技术,2002(1):41-42.
    [19]Kenneth H.White. Infinitely variable capacity control [C]. Proceedings of the 1972 Purdue Compressor Technology Conference,1972:47-51.
    [20]F Bauer, K G Molnar. Infinite-step system provides close engine loading control[J]. The Oil and Gas Journal,1964(8).
    [21]Bauer F, Molnar K G. Methods of stepless and loss-free capacity control for reciprocating type air compressors[J]. Fluid Power International,1968(1).
    [22]D Squarer. Digital Compressor Simulation of a reciprocating compressor-a simplified analysis[D]. Proceedings of the Purde Compressor Technology Conference,1974:502-504.
    [23]Josef Brablik. Gas pulsation as factor affecting operation of automatic valves in reciprocating[J]. Compressors Research Engineer, CKD Praha, Compressor Division Prague,Czechoslovakia,1978(6):10-20.
    [24]John F T Maclanre. Behavior of suction and discharge valves in reciprocating gas compressor systems[J]. AIP Conference Proceedings,1974:9-17.
    [25]Payne J G, Photoelastic stress analysis and dynamic simulation of compressor ring valves[D]. Purdue University, August, 1967.
    [26]金江明,洪伟荣,梁萌,等.往复压缩机气量调节方法的研究进展[J].压缩机技术,2007(4):28-32.
    [27]吴荣仁,牛卫飞.活塞式压缩机顶开吸气阀调节排气量的分析[J].流体机械,2003,31(7):12-15.
    [28]孙学亮,洪伟荣,吴荣仁.部分行程压开吸气阀调节的理论研究[J].流体机械,2006,34(11):19-22.
    [29]吴荣仁.活塞式压缩机可调回流气阀[J].机械工程师,2000(5):20-21.
    [30]吴荣仁,刘生礼,陆君毅.压缩机进气阀部分行程顶开时缸内气体压力的计算[J].低温工程,2000(5):37-40.
    [31]宋健.洪伟荣,吴荣仁.活塞式压缩机排气量的全量程无级调节[J].机械工程师,2006(9):85-87.
    [32]牛卫飞.活塞式压缩机气量无级调节系统的设计与研究[D].杭州:浙江大学化工过程机械专业,2003.
    [33]张蕊.阀配流式活塞式压缩机变排量控制系统的研究[D].杭州:浙江大学机械电子工程专业,2006.
    [34]郁永章.活塞式压缩机[M].北京:机械工业出版社,1982.
    [35]任智,王存智.往复式压缩机流量调节方式浅析[J].石油化工设备技术,2003,24(4):21-23.
    [36]祝雪妹.邵威,朱旭.等.压缩机的节能控制策略[J].南京师范大学学报(工程技术版),2009,9(2):1-4.
    [37]段春玲.变频调速在火炬气回收压缩机上的应用[J].压缩机技术,2001(1):22-24.
    [38]C Aprea, R Mastrullo, C Renno. Fuzzy control of the compressor speed in a refrigeration plant[J]. International Journal of Refrigeration,2004(27):639-648.
    [39]李文华,张宗珍.活塞式空压机低频调速时的气阀运行特性分析[J].制冷与空调.2007(2):52-54.
    [40]THOMASSEN COMPANY. Hydraulically operated variable clearance pocket.
    [41]Earl R Sauder. Compressor output control apparatus:US,3653783[P].1972-04-04.
    [42]DANNY M Deffenbaugh, ANTHONY J SMALLEY, Klaus Brun, et al. Advanced reciprocating compression technology[R]. San Antonio:Southwest Research Institute Report,2005.
    [43]W J Tuymer. Stepless variable capacity control[C]. International Compressor Engineering Conference,1974.
    [44]Gu ZhaoLin. Hou XiongPo, Wang Zanshe, et al. Methods for large reciprocating compressor capacity control:A review based on pulse signal concept[J]. Chinese Science Bulletin,2011,56(19):1967-1974.
    [45]顾兆林,侯雄坡,李云,等.一种往复活塞压缩机排气量无级调节方法.CN 101173658B[P],2008-05-07.
    [46]施永琦.贺尔碧格压缩机产品和技术[J].压缩机技术,2003(4):48.
    [47]唐汇云,任智HydroCOM调节系统在新氢压缩机上的应用[J].石油化工设备技术,2006,27(1):36-40.
    [48]刘建忠,程晓燕,赵保兴HydroCOM系统在往复压缩机上的应用[J].节能技术,2006,24(3):245-247.
    [49]梁涌.往复压缩机气量无级调节系统的原理及应用[J].压缩机技术,2007(3):13-17.
    [50]张晓东.往复式压缩机无级气量调节系统的应用[J].石油化工设备技术,2007,28(5):37-40.
    [51]高霞.无极量调节在压缩机中的应用[J].石油化工自动化,2008,44(5):86-88.
    [52]田刚HydroCOM气量调节系统在往复武氢压机上的应用[J].广州化工,2009,37(2):190-192.
    [53]肖娜娜Hydrocom系统在加氢精制装置新氢压缩机中的应用[J].科技资讯,2007(21):2.
    [54]张伟东,姜晓盟,董昌宏,等HydroCOM无级调节系统在渣油加氢装置新氢压缩机中的应用[J].石油和化工设备,2009,12(1):27-29.
    [55]何文丰,沈永森.气量无级调节系统在往复压缩机上的应用[J].化工设备与管道,2008,45(5):36-39.
    [56]周振堂,吴涛HydroCOM系统无级调节压缩机气量的分析[J].压缩机技术,2009(1):16-17.
    [57]高凤巧Hydrocom系统在加氢裂化装置DCS中的应用[J].石油化工设备,2009,38(B08):64-66.
    [58]P Steinruck, F Ottitsch, A Oberhuber. Better reciprocating compressor capacity control[J]. Hydrocarbon Processing,1997, 76(2):79-83.
    [59]N Niksefat, N Sepehri. Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory[J]. Control Engineering Practice,2000(8):1335-1345.
    [60]WANG Xudong, Vassilis L Syrmos. Fault detection, identification and estimation in the electro-hydraulic actuator system using EKF-based multiple-model estimation[C].2008 Mediterranean Conference on Control and Automation.France: Inst.of Elec.and Elec.Eng.Computer Society,2008:1693-1698.
    [61]P Nakkarat, S Kuntanapreeda. Observer-based backstepping force control of an electrohydraulic actuator[J]. Control Engineering Practice,2009(17):895-902.
    [62]Banavar Ravi N, Aggarwal Vineet. A loop transfer recovery approach to the control of an electro-hydraulic actuator[J]. Control Engineering Practice,1998(6):837-845.
    [63]Kyoungkwan Ahn, Shinichi Yokota. Intelligent switching control of pneumatic actuator using on/off solenoid valves[J]. Mechatronics,2005(15):683-702.
    [64]M Taghizadeh, A Ghaffari, F Najafi. Modeling and identification of a solenoid valve for PWM control applications[J]. Comptes Rendus Mecanique,2009(337):131-140.
    [65]Omer Keles, Yucel Ercan. Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system[J]. Control Engineering Practice,2002(10):645-654.
    [66]Liu Hui, Gu Hongbin, Chen Dawei. Application of high-speed solenoid valve to the semi-active control of landing gear[J]. Chinese Journal of Aeronautics,2008(21):232-240.
    [67]G Tao, H Y Chen, Y Y J, et al. Optimal design of the magnetic field of a high-speed response solenoid valve[J]. Journal of Materials Processing Technology,2002(129):555-558.
    [68]袁斌,陈宁,徐军民.车辆发动机电液执行器响应灵敏性的理论研究[J].机床与液压,2008,36(5):80-82.
    [69]郁秀风,姜丁,程昌圻.电液执行器在车用柴油机电控系统中的应用研究[J].车用发动机,1996(1):54-58.
    [70]杨志刚,苏玉刚,黄建明,等.电液式节气门执行器的多模式智能控制[J].汽车工程,2001,23(1):49-52.
    [71]黄建明,苏玉刚,杨志刚,等.高速开关阀控制的电液式节气门执行器[J].重庆大学学报(自然科学版),2002,25(3):22-25.
    [72]王军,祖炳洁,张建超.基于单片机的电液调速器控制系统设计[J].机械工程师,2006(8):62-64.
    [73]李蕊,魏宏林,肖军.一种新型电液执行器与传统电液伺服执行器的比较[J].机械研究与应用,2003,16(B08):44-45.
    [74]范志强,陈方毅,赵健,等REXA执行器电液控制系统在145MW热电联产汽轮机上的应用[J].热力发电,2006,35(8):45-48.
    [75]张艾萍,叶荣学.智能型阀门电液执行器的动态特性分析[J].电力自动化设备,2005,25(3):38-40.
    [76]张蕊,魏建华,邵威.高速电液执行器的仿真研究[J].机电工程,2006,23(6):28-29.
    [77]VI Babitsky, M Y Chitayev, Adaptive high-speed resonant robot[J], Mechatronics,1996,6(8):897-913.
    [78]N Krimbacher, R Scheidl, A novel concept for a fast switching positioning actuator[C]. Proceedings of the 2nd FPNI-PhD Symposium on Fluid Power, Modena, Italy, July 3-6,2002.
    [79]P Andreas, K Norbert, S Rudolf. A hydraulic energy efficient fast positioning actuator exploiting a hydraulic spring concept[C]. The Eighth Scandinavian International Conference on Fluid Power, SICFP'03, Tampere, May 7-9,2003.
    [80]Kang Rongjie, Jiao Zongxia,Wang Shaoping, et al. Design and simulation of electro-hydrostatic actuator with a built-in power regulator[J]. Chinese Journal of Aeronautics,2009(22):700-706.
    [81]S Habibi, A Goldenberg. Design of a new high-performance electrohydraulic actuator[J]. IEEE/ASME Transactions,2000, 5(2):158-164.
    [82]Moto T, Yamasa H, Suamatsu Y. PWM-digital control of a hydraulic actuator utilizing two-way solenoid valves[J]. The Journal of Fluid Power,1998(18):80-84.
    [83]何谦,刘忠.高速开关阀的液压同步系统设计[J].制造技术与机床,2009(1):142-143.
    [84]曹文武,陈鹏.高速开关阀控换向阀闭环系统的静态设计[J].液压与气动,2009(5):19-21.
    [85]Carlos Eduardo Jeronymo, Hironao Yamada, Takayoshi Muto. Application of unified predictiv control to on/off control of hydraulic system driven by fast-switching solenoid valves[J]. JSME International Journal (Series C),1996,39(3):515-521.
    [86]Zhang Shengchang, Xu Yangzeng, Shi Guanglin, et al. Study on extra-high speed digital valve[C].5th International Conference on Fluid Power Transmission and Control (ICFP2001), Hangzhou, April 3-5,2001.
    [87]刘卫萍.高速开关阀先导控制的电液位置系统研究[D].湖南师范大学,2008.
    [88]曾文武.基于PWM高速开关阀控制的旋转平台液压系统的研究[J].液压气动与密封,2009(3):40-42.
    [89]高锋,王建强,侯德藻,等.基于高速开关阀的电控汽车辅助制动系统[J].清华大学学报(自然科学版),2004,44(11):1532-1535.
    [90]江永泉,秦大同,杨亚联,等.基于高速开关阀控制的液压制动伺服系统研制[J].重庆大学学报(自然科学版),2005,28(12):19-22.
    [91]Amirante R, Innone A, Catalano L A. Boosted PWM open loop control of hydraulic proportional valves[J]. Energy Conversion and Management,2008,49(8):2225-2236.
    [92]Jianxin Liu, Ping Tan. Fuzzy logic control of integrated hydraulic actuator unit using high speed switch valves[C]. Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing (CINC 2009), 2009(1):370-373.
    [93]邓业民,孔晓武,邱敏秀,等.先导式大流量高速开关阀的优化设计[J].机械设计,2010,27(9):84-87.
    [94]Qlei Wang, Fengyu Yang, Qian Yang, et al. Experimental analysis of new high-speed powerful digital solenoid valves[J]. Energy Conversion and Management,2011(52):2309-2313.
    [95]魏超,吴维,林硕,等.一种高速脉冲阀动态特性[J].机械工程学报,2011,47(6):138-142.
    [96]刘晖,顾宏斌.高速开关阀非线性模型及其仿真研究[J].机械科学与技术,2008,27(7):866-870.
    [97]黄维纲,王旭永,王显正,等.高速电磁开关阀开关特性的机理研究[J].上海交通大学学报,1998,32(12):38-41.
    [98]胡竟湘,李建军,钟定清.高速开关阀及其发展趋势[J].机电产品开发与创新,2009,22(2):60-62.
    [99]向忠,陶国良,谢建蔚,等.气动高速开关阀动态压力特性仿真与试验研究[J].浙江大学学报(工学版),2008,42(5):845-849.
    [100]Jeong Heon-Sul, Kim Hyoung-Eui. Experimental based analysis of the pressure control characteristics of an oil hydraulic three-way on/off solenoid valve controlled by PWM signal[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2002,124(1):196-205.
    [101]林锐.高速开关阀的研究及数字仿真[D].武汉:武汉理工大学,2005.
    [102]施光林,钟廷修.高速电磁开关阀的研究与应用[J].机床与液压,2001(2):7-9,17.
    [103]陈宝江,杨树兴,曹泛.PWM高速开关阀特性分析[J].北京理工大学学报,1993,13(3):355-360.
    [104]张廷羽,张国贤.高速开关电磁阀的性能分析及优化研究[J].机床与液压,2006(9):139-142.
    [105]杨襄壁,李光,刘忠.高速开关阀的电液控制系统的研究[J].凿岩机械气动工具,2001(2):43-45.
    [106]俞宗强,刘庆和.高速开关阀电液控制系统的特性研究[J].工程机械,1990(1):40-44.
    [107]孟庆堂,施光林,泮健.一种数字配流与调速式低速大扭矩液压马达[J].机床与液压,2008,36(10):1-3.
    [108]Cui P, Burten R T, Ukrainets P R. Development of a high speed on/off valve[J]. Vehicle Hydraulic Systems and Digital/Electrohydraulic Controls SAE Special Publications,1991(882):21-25.
    [109]Yousheng Yang, Emanuele Guglielmino, Jian S Dai, et al. Modeling of a novel 3-way rotary type electro-hydraulic valve[C]. Proceedings of the 2010 IEEE International Conference on Information and automation, Harbin, China, June, 2010.
    [110]徐梓斌,李胜,阮健.2D高频数字换向阀[J].液压与气动,2008(2):79-81.
    [111]阮健,李胜,裴翔,等.2D阀控电液激振器[J].机械工程学报,2009,45(11):125-132.
    [112]吴荣仁,管宇辉.全量程可调气阀的调节机构和最优调节力的分析[J].流体机械,2005,33(6):22-25.
    [113]Jiangming J, Weirong H, Lingbo T. Improved stepless capacity regulation for reciprocating compressors[J]. Hydrocarbon Processing,2009(8):43-47.
    [114]洪伟荣,吴荣仁,金江明.一种基于时间控制顶开活塞压缩机进气阀的装置.ZL200610155395.8[P].2007-06-27.
    [115]李婷,傅波.压电阀的发展及应用[J].流体传动及控制,2009(6):1-5.
    [116]赵四海,朱红秀,王正良,等.压电晶体型电液开关阀[J].中国矿业大学学报.1997,26(4):99-101.
    [117]李东明,孙宝元,王伟,等.一种压电阀结构设计与实验研究[J].液压与气动,2007(5):75-77.
    [118]蒋昊宜,欧阳小平,杨华勇.新型压电高速开关阀结构设计与仿真[J].流体传动与控制,2008(6):16-19.
    [119]欧阳小平,杨华勇,蒋昊宜,等.新型压电高速开关阀仿真研究[J].科学通报,2008,53(14):1737-1741.
    [120]陆豪,朱成林,曾思,等.新型PZT元件驱动的电液高速开关阀及其大功率快速驱动技术的研究[J].机械工程学报,2002,38(8):118-121.
    [121]Claeyssen F, Lhermet N, LeLetty R. Actuators, transduers and motors based on giant magnetostrictive materials[J]. Journal of Alloys and Compounds,1997(258):61-73.
    [122]夏春林,丁凡,路甬祥.超磁致伸缩材料驱动器实验研究[J].电工技术学报,1999,14(4):14-16.
    [123]石延平,刘成文,张永忠.一种大流量高速开关阀的研究与设计[J].机械工程学报,2004,40(4):195-198.
    [124]石延平,张永忠.一种新型液压高速开关阀的设计与研究[J].机械科学与技术,2004,23(1):71-73.
    [125]Chen Baojiang, Cao Fan. A study on the static characters of typical composite high speed on-off valves[J]. Journal of Beijing Institute of Technology,1994,3(1):75-81.
    [126]陈宝江.大流量快响应液压高速开关阀的研究[c].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议.北京:中国机械工程学会流体传动与控制分会,2008.
    [127]Lee Ill-Yeong. Switching response improvement of a high speed on/off solenoid valve by using a 3 power source type valve driving circuit[C]. Proceedings of the IEEE International Conference on Industrial Technology,2006:1823-1828.
    [128]高朝辉.中压共轨柴油系统用高速大流量电磁阀性能研究[J].内燃机工程,2003,23(1):22-24.
    [129]汪志刚,张敬国,陈勤学.电控柴油机用高速电磁阀的仿真研究[J].机电设备,2003(4):22-26.
    [130]张敬国,陈兵,汪志刚,等.电控柴油机用大流量高速电磁阀性能试验研究[J].内燃机学报,2003,21(3):193-197.
    [131]卢启龙,欧阳明高,杜传进.电控柴油喷射系统用高速强力电磁阀的性能研究[J].内燃机工程,1997,18(3):18-23,45.
    [132]卢启龙,杜传进,赵庚伟,等.电控柴油喷射系统用高速强力电磁阀的工作特性研究[J].车用发动机,1996(4):27-30.
    [133]徐兵,周盛,杨华勇.高速大流量缝隙滑阀:中国,ZL03115991.5[P].2003-03-24.
    [134]赵阳,徐兵,周盛.高速开关阀液动力补偿研究[J].工程机械,2008,39(8):46-50.
    [135]张小军,朱国伟,崔可润.高速大流量二位三通开关式电磁阀[J].阀门,2001(2):6-8.
    [136]张小军,凌宁,朱国伟,等.新型高速开关阀的设计与研究[J].机床与液压,2001(6):88-89.
    [137]张德虎,朱建公.芯套双动高速开关阀的设计与液动力分析[J].西南科技大学学报,2006,21(3):65-70.
    [138]Ye Qifang, Chen Jianping. Dynamic analysis of a pilot-operated two-stage solenoid valve used in pneumatic system[J]. Simulation Modelling Practice and Theory,2009(17):794-816.
    [139]周福章,李力千,刘志玮,等.高速开关阀的设计与研究[J].机械工程学报,1998,34(5):101-105.
    [140]汤展跃,刘少军,黄中华,等.以高速开关阀为先导阀的锥阀性能研究[J].机床与液压,2007,35(6):107-109.
    [141]刘志珍,张忠祥,候延进.电-气比例阀高压驱动与低压PWM的双压控制模式[J].农业机械学报,2008,39(7):159-163.
    [142]苗建中,郑云川.螺纹插装式高速开关阀[J].液压与气动,1993(6):29-30.
    [143]Amin ALMASI. Advanced technologies in reciprocating compressor with respect to performance and reliability[C].5th International Advanced Technologies Symposium(IATS'09), May 13-15,2009,.Karabuk:Karabuk University,2009.
    [144]Almasi A. Reciprocating compressor optimum design and manufacturing with respect to performance, reliability and cost[J]. World Academy of Science, Engineering and Technology,2009(52):48-53.
    [145]Heinz P Bloch. A practical guide to compressor technology, Second Edition[M], John Wiley and Sons,2006.
    [146]王明礼,熊红艳,周汉林,等.往复活塞式压缩机的负荷反向与连杆润滑[J].中国设备工程,2006(3):52-53.
    [147]李德堂,张士华,史永晋.海上液压升降平台的缓冲与平衡[J].机床与液压,2005(6):109,82.
    [148]周志强.减少液控换向阀换向冲击的方法[J].重型机械,2005(5):55-56.
    [149]谢英俊,高速液压上抛系统的关键技术研究[D].杭州:浙江大学机械电子工程专业,2000.
    [150]邵群.高速液压缸缓冲装置及其动态特性的研究[J].煤炭科学技术,2004,32(11):63-65.
    [151]刘波,吴蒿,丁凡,等.高速液压缸平板节流缓冲过程的研究[J].机床与液压,2004(9):40-41.
    [152]吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [153]Alleyne A. Nolinear force control of an electro-hydraulic actuator[C]. Proceddings of the Japan/USA Symposium on Flexible Automation,1996(1):193-200.
    [154]吴建强[译].往复式压缩机气阀、活塞和活塞杆密封技术的可靠性改进[J].压缩机,2009(3).74-83.
    [155]贾焕云,叶廷玺.阀片冲击疲劳破坏[J].流体机械,1981(2):1-3.
    [156]金江明.活塞式压缩机排气量无级调节系统关键技术的研究[D].杭州:浙江大学,2010.
    [157]唐斌,李连生,王乐.往复式压缩机气量无级调节过程中进气阀的动态研究[J].机械工程学报,2011,47(4):136-141.
    [158]吴业正.往复式压缩机数学模型及应用[M].西安:西安交通大学出版社,1989.
    [159]林梅,吴业正.压缩机自动阀[M].西安:西安交通大学出版社,1991.
    [160]王灵德,计洪旭,袁伟,等.国产气量无级调节系统在新氢压缩机装置中的应用[J].压缩机技术,2011(3):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700