毛竹实生苗水培体系建立的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以毛竹实生苗为材料,以生物量、叶面积、根冠比、叶绿素荧光特性及光谱反射特征为指标,筛选适宜毛竹实生苗生长的条件,探讨营养液中不同氮、磷、钾的浓度对毛竹实生苗的影响,建立毛竹水培技术体系,为毛竹相关研究提供基础平台。主要研究结果如下:
     1. Hoagland,MS,Yoshida营养液筛选试验表明,对照增加生物量与Yoshida处理没有显著差异,但显著大于Hoagland和MS处理。3个处理中Yoshida处理叶面积和根冠比最大,MS和Hoagland依次降低。Yoshida处理的叶绿素荧光参数和光谱特征都优于其他处理。综合比较得出,Yoshida营养液配方较适宜毛竹实生苗的生长。
     2. 1/4 Yoshida,1/2 Yoshida,Yoshida,3/2 Yoshida筛选试验表明,随着离子强度的增加,生物量、叶面积、根冠比表现为先增加后降低的趋势,1/2 Yoshida处理达到峰值。1/2 Yoshida处理叶绿素荧光参数和光谱特征都优于其他处理,其中Fm、Fv、Fv/Fm、Fv/Fo极显著大于其他3个处理。综合比较得出,1/2 Yoshida处理较优。
     3.不同pH梯度筛选试验表明,pH5.0处理增加的生物量最大,显著大于pH4.0、pH4.5、pH5.5和pH6.0处理;叶面积极显著大于其他4个处理。而根冠比差异不明显。pH5.0处理叶绿素荧光参数和光谱特征都优于其他处理,其中Fm、Fv、Fv/Fm、Fv/Fo极显著大于其他的4个处理。综合比较得出,pH5.0为适宜的pH值。
     4.不同更新营养液时间间隔和不同通气时间筛选试验表明,7d更新一次营养液各指标优于3d、10d、15d处理。24h通气处理各指标优于通气8h和通气16h处理。综合比较得出,更新营养液时间7d,24h通气为较优更新营养液时间间隔和通气时间。
     5.氮、磷、钾单因素试验。氮素浓度筛选试验表明,氮素浓度3mM处理各指标优于1mM、2mM、4mM、5mM处理;磷素浓度筛选试验表明,磷素浓度1mM处理优于0.5mM、1.5mM、2mM处理;钾素浓度筛选试验表明,钾素浓度1.5mM处理优于0.5mM、1mM、2mM、2.5mM处理。
     6.氮、磷、钾三因素三水平试验L9(3~3)表明,氮素4mM,磷素0.5mM和钾素1mM为较适宜毛竹实生苗生长的浓度配比。
Solution culture experiments were carried out on moso bamboo seedlings to establish a solution culture protocol. By compared of increased biomass, leaf-area, root/shoot, chlorophyll fluorescence characteristics and reflectance spectra characteristics, we selected optimal conditions, studied the effect of different N, P, K concentration in solution .The main findings are as follows:
     1. Experiment of selecting different formula of nutrient liquid treatments indected that the icreased biomass of CK similar to Yoshida treatment but significantly higher than Hoagland and MS treatments. The leaf-area, root/shoot, Chlorophyll fluorescence parameters and reflectance spectra characteristics of Yoshida treatment were superior to Hoagland and MS treatments. So, Yoshida formula of nutrient is more suitable for growth of moso bamboo seedlings.
     2. Experiment of selecting 1/4 Yoshida, 1/2 Yoshida, Yoshida, 3/2 Yoshida indected that with the increase of ionic strength the increased biomass, leaf-area and root/shoot performanced increased first and then decreased.1/2 Yoshida handling the peak. Chlorophyll fluorescence parameters and reflectance spectra characteristics of 1/2 Yoshida treatment were superior to other treatments, moreover Fm, Fv, Fv/Fm, Fv/Fo were very significantly. So, 1/2 Yoshida is better.
     3. Experiment of solution pH indected that the increased biomass of pH5.0 treatment significantly higher than pH4.0, pH4.5, pH5.5 and pH6.0 treatments.while leaf-area is very significantly higher. But root/shoot has no difference between treatments. Chlorophyll fluorescence parameters and reflectance spectra characteristics of 1/2 Yoshida treatment were superior to other treatments, meanwhile Fm, Fv, Fv/Fm, Fv/Fo were very significantly. So, the nutrient solution of pH5.0 is most suitable for growth of moso bamboo seedlings.
     4. Experiment of selecting interval of renew nutrition solution and optimal aeration time. By considering for the indexes of increased biomass, leaf-area, root/shoot, Chlorophyll fluorescence parameters and reflectance spectra characteristics, the renew nutrition solution per week was superior to 3d, 10d, 15d treatments.and aeration time 24h per day was superior to 8h and 16h treatments. So the interval of renew nutrition solution per week and aeration time 24h per day are most suitable for growth of moso bamboo seedlings.
     5. N, P, K univariate experiments. Experiment of selecting nitrogen concentration indicted that the indexes of 3mM treatment were superior to 1mM, 2mM, 4mM and 5mM treatments. Experiment of selecting phosphorus concentration indicted that the indexes of 1mM were superior to 0.5mM, 1.5mM and 2mM treatments. Experiment of selecting potassium concentration indicted that the indexes of 1.5mM superior to 0.5mM、1mM、2mM and 2.5mM treatments.
     6. N, P, K Orthogonal Test (L9(3~3)) shows that the optimum N, P, K levels were as follows:4mM nitrogen, 0.5mM phosphorus, and 1mM potassium were the best for the seedling growth.
引文
[1]陈辉,洪伟,兰斌,何东进.闽北毛竹林的生物量与生产力的研究[J].林业科学,1998,34(专1):60-64.
    [2]金爱武,傅秋华,方伟,邱永华,翁益明,陈鸣.毛竹笋用林高效益经营技术及其传播效果分析[J].浙江林学院学报,2003,20(3):254-258.
    [3]张艳璇,林贤贞,季洁,刘巧云,宋美官.竹刺瘿螨危害毛竹及其生态学的初步研究[J].林业科学,2001,37(1):145-148.
    [4]]张国防,缪碧华.毛竹经营管理的研究进展[J].福建林学院学报,2000,20(4):375-379.
    [5]马太和.无土栽培[M].北京:北京出版社,1980:47-70.
    [6]连兆煌.无土栽培原理与技术[M].中国农业出版社,1994:4-10.
    [7]洪坚平,谢英荷,孟会生,张璐.水培油菜营养液养分动态变化研究[J].园艺园林科学,2008,24(1):330-334.
    [8]查丁石.不同基质和营养液对茄子的育苗效果[J].上海农业学报,1998,14(1):63-66.
    [9]赵九洲,陈洁敏,王奎玲.代用基质对仙客来幼苗素质的影响[J].莱阳农学院学报,1999,16(1):13-15.
    [10]唐翔.营养液盆栽花卉产业化试验[J].广西农业科学,2000(3):135-138.
    [11]伦华文.901无土栽培液在花卉栽培中的应用[J].热带农业科学,1998(6):68-71.
    [12]宋卫堂,张树阁,黄之栋.番茄营养液深液流无限生长型栽培Ⅱ温室综合环境的管理与调控[J].中国农学通报:2003,19(2):10-15.
    [13]陶国富,陈海生,崔绍荣.营养液膜条件下番茄苗期间歇灌溉的水势研究[J].西农业学报,2003,15(1):21-24.
    [14]秦琳琳,孙德敏,王永.无土栽培营养液循环控制系统[J].农业工程学报,2003,19(4):264-266.
    [15]D.SAVVAS.G.MANOS.Auto mated Composition Control of Nutrient Solution in Closed Soilless Culture Systems[J].journal of Agricultura Engineering research.1999,73(1): 29-33.
    [16]H.ALTUNLU.Post harvest Quality of Cucumber Grown by Soilless Culture[J].acta horticulture.2000, 51 (7): 287-292.
    [17]M.BOHME.A.OUAHID.N.SHABAN.Reaction of Some Vegetable Crops to Treatments With Lactate as Bioregulator and Fertilizer[J].acta horticulture.2000,51 (4): 33-40.
    [18]I.GRAFIADELLIS AND K.MATTAS.An Economic Analvsis of Soilless Culture in Gerbra Production[J].Hort Science.2000,35(2): 300-303.
    [19]连兆煌.无土栽培原理与技术[M].北京:中国农业出版社,1992.
    [20]邢禹贤.世界无土栽培及发展趋势[J].农业新技术新方法,1997,(3):2-17.
    [21]柴晓芹.无土栽培及其发展趋势[J].甘肃农业科技,1999,(1):4-5.
    [22]田吉林,汪寅虎.设施无土栽培基质的研究现状、存在问题与展望[J].上海农业学报,2000,16(4):87-92.
    [23]ZHENG GUANGHUA,LI SHIJUN,ZHANG FAWEI.Present situation and development of soil-less culture in china[J].Proc. of Sino-Intern.Colloq. on Soilless Culture’94, China Agric. Scientech. Press,1995,15-20.
    [24]李式军,高丽红,庄仲连.我国蔬菜无土栽培研究新技术新成果及发展方向[J].长江蔬菜,1997,(5):1-5.
    [25]程斐,孙朝晖,赵玉国,李式军.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报,2001,24(3):19-22.
    [26]李萍萍,朱忠贤,胡永光.芦苇末在食用菌和蔬菜栽培中的利用技术[J].南京林业大学学报,2000,24(6):24-26.
    [27]张德威.几种无土栽培基质的理化性质[J].浙江农业学报,1993,5(3):166-171.
    [28]赵九洲,陈洁敏,王义庆,赵永厚,王然.六种无土栽培代用基质理化特性的比较[J].莱阳农学院学报,2001,18(3):161-164.
    [29]齐慧霞,周丽艳,李双民.草莓无土栽培中几种基质的研究[J].河北农业职业师范学院学报,1998,12(1):71-73.
    [30]余剑东,倪吾钟,单英杰,何积秀,林天杰.不同基质对西瓜幼苗质量的影响[J].浙江农业科学,2003,(1):11-13.
    [31]祝红艺,柴岩,刘小凤,孙平阳,韩稳社,韩宝利.几种脱毒小薯培养基质的比较研究[J].吉林农业科学,2000,25(5):51-53.
    [32]林辰壹,陈青君,杨静波.几种无土栽培轻型基质对番茄幼苗生长的影响[J].新疆农业大学学报,2002,25(4):13-16.
    [33]黄云,廖铁军,欧国武,李大林.大棚蔬菜无土栽培固体基质筛选的研究[J].西北农业学报,2002,11(1):87-91.
    [34]杨春,齐海英,王秀英,崔根芳.马铃薯脱毒小薯无土栽培营养基质的筛选[J].中国马铃薯,2000,14(3):166-167.
    [35]查丁石.不同基质和营养液对茄子的育苗效果[J].上海农业学报,1998,14(1):63-66.
    [36]叶祥盛,谭启玲.不同基质栽培对蔬菜产量及硝酸盐含量影响[J].湖北农业,2003,(2):54-55.
    [37]刘淑媛,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1999,35(4):518-522.
    [38]周艺敏,程奕,孟昭芳.不同营养液及基质对黄瓜产量和品质的影响[J].华北农学报,2002,17(1):82-87.
    [39]郑光华,江浩.蔬菜花卉无土栽培技术[M].上海:上海科学出版社,1990.
    [40]康黎芳.仙客来栽培基质的研究[J].山西农业科学,2000,28(4):57-60.
    [41]蒋细旺.三种兰花栽培基质研究[J].湖北农业科学,2000(5):51-54.
    [42]赵九洲.基质与氮磷钾比例对蝴蝶兰生长发育的影响[J].园艺学报,2000,27(5):383-384.
    [43]吴永华,冯国琦,李正平.仙客来无土栽培营养液中氮磷钾铁浓度选优试验研究[J].甘肃农业大学学报,2000,35(2):197-201.
    [44]赵九洲,陈洁敏,王奎玲.代用基质对仙客来幼苗素质的影响[J].莱阳农学院学报,1999,16(1):13-15.
    [45]黄冬华.金边瑞香无土栽培研究初报[J].江西农业学报,2001,13(1):40-43.
    [46]唐翔.营养液盆栽花卉产业化试验[J].广西农业科学,2000(3):135-138.
    [47]伦华文.901无土栽培液在花卉栽培中的应用[J].热带农业科学,1998(6):68-71.
    [48]刘士哲.无土栽培技术[M],北京:中国农业出版社2001(1).
    [49]陈淑曦.无土栽培新技术[M],台北:地景出版社,1989:1-25.
    [50]马太和.无土栽培[M].北京:北京出版社,1980:1-17.
    [51]刘士哲.现代实用无上栽培技术[M].北京:中国农业出版社,2001.
    [52]潘杰.水培生菜技术研究[D].河南,河南农业大学,2003.5-11.
    [53]郭世荣.无土栽培学[M].北京:中国农业出版社,2004:1-4.
    [54]黄小均.水培条件下广东万年青生理特性研究[D].2005,5.
    [55]杨旭,邹志荣,贺忠群,李军,冯嘉,王月.蔬菜无土栽培营养液中的氮素及其调控[J].西北植物学报,2003,23(9):1644-1649.
    [56]卜崇兴.储液储气式无土栽培系统的技术创新与开发[J].上海交通大学博士后研究工作报告,2004,(11):5-12.
    [57]孙艳军,郭世荣,胡晓辉,高洪波.根际低氧逆境对网纹甜瓜幼苗生长及根系呼吸代谢途径的影响[J].植物生态学报,2006,30(1):112-117.
    [58]王文泉,郑永战,梅鸿献,张福锁.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化[J].植物遗传资源学报,2003,4(3):214-219.
    [59]李璟,郭世荣,胡晓辉.外源亚精胺对低氧胁迫下黄瓜根系多胺含量和呼吸代谢酶活性的影响[J].西北植物学报,2006,26(1):0092-0097.
    [60]卢昀,刘雪萍,汪晓峰,景新明,林坚.渗透调节对冷敏感大豆种子膜类脂组成和脂肪酸含量的影响[J].植物生理与分子生物学学报,2006,32(2):225-230.
    [61]黄建昌,肖艳.水分胁迫对番木瓜膜脂过氧化的影响[J].仲恺农业技术学院学报,2004,17(3):1-5.
    [62]陈永华,赵森,严钦泉,肖国樱.不同淹涝胁迫强度对杂交稻和常规稻农艺性状和生化特性的影响[J].中国水稻科学,2006(20)5:512-517.
    [63]胡晓辉,王景,郭世荣,王素平,周国贤.Ca对低氧胁迫下黄瓜幼苗生长和根系无氧呼吸酶的影响[J].西北植物学报,2005,25(10):1997-2002.
    [64]陈永华,柳俊,赵森,严钦泉,肖国樱.水稻分蘖期耐淹能力评价及不同淹涝强度对重要农艺性状的影响[J].广西农业生物科学,2006,25(2):111-115.
    [65]曾淑华,赵正雄,覃鹏,刘飞虎.淹水对转超氧化物歧化酶或过氧化物酶基因烟草某些生理生化指标的影响[J].植物生理学通讯,2005,41(5):603-606.
    [66]KENDE H , KNAAP EVD , CHO H . Deepwater rice : a model plant to study stem elongation[J].Plant Physiology ,1998,18: 1105-1110.
    [67]陈永华,严钦泉,赵森.水稻耐淹涝研究的研究进展[J].中国农学通报,2005,21(12):151-154.
    [68]李梅勇.我国蔬菜营养液膜技术新进展[J].长江蔬菜,1998,(2):1-3.
    [69]沈小明,王梅农,代静玉.不同浓度条件下玉米吸收菲的水培实验研究[J].农业环境科学学报,2006,25(5):1148-1152.
    [70]刁锐琦,钱晓刚.利用水培筛选玉米氮高效种质资源的研究[J].种子,2008,27(4):28-30.
    [71]王永锐,李卫军,余款经.耐低钾基因型水稻品种的筛选[J].广东农业科学,1997(1):3-5.
    [72]刘辉,张静,杜彦修,赵全志,陈静蕊,乔江方.不同硅吸收效率水稻品种根系对硅素水平的响应[J].应用生态学报,2009,20(2):320-324.
    [73]MURASHIGE T, SKOOG F.A revised medium for rapid growth and bioassays with tobacco tissue culture[J].Physiol.Plant,1962,15: 473-497.
    [74]WETTER L R, CONSTABEL F. Plant tissue culture methods [M]. Second revised edition, Publications N.R.C. Canada,1982,134.
    [75]YOSHIDA S, FORNO D A, COCK J H. Laboratory Manual for Physiological Studies of Rice[M]. Manila: International Rice Research Institute, 1976. 61-64.
    [76]GENTY B, BRIANTAIS J M, BAKER N R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochem Biophys, 1989,990: 87-92.
    [77]SCHREIBER U, SCHLIWA U, BILGER W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J].Photosynth Res,1986,10: 51-62.
    [78]TSAI F, PHILPOT W. Derivative analysis of hyper spectral data. Remote Sensing of Environment, 1998, 66: 41-51.
    [79]裴孝伯,李世诚,张福墁,蔡润.温室黄瓜叶面积计算及其与株高的相关性研究[J].中国农学通报,2005,21(8):80-82.
    [80]AUNG IH. The plant root and its environment[M]. Charlottesville: University Press of Virginia,1974: 29-52.
    [81]林世青,许春辉,张其德.叶绿素荧光动力学在植物抗性生理、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-6.
    [82]郭春芳,孙云.叶绿素荧光动力学在植物抗性生理研究中的应用[J].福建教育学院学报,2006,7:120-123.
    [83]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91.
    [84]何林,饶显秀.观赏竹定向培育关键技术[J].中国林副特产,2006(1):21-23.
    [85]谭宏超,周滔,曹云德.“南竹北移”快速育苗及栽培技术实验初报[J].林业调查规划,2002,27(4):104-110.
    [86]高峰,阳雄义,辉朝茂.园艺观赏竹类及其在园林中的应用[J].竹子研究汇刊,2006,25(2):53-59.
    [87]卢义山,汤庚国,倪竞德.江苏主要观赏竹种的形态特征及其园林配置Ⅰ刚竹属[J].江苏林业科技,2005,32(3):13-18.
    [88]郑清芳,郑蓉,连巧霞.观赏竹的特征检索及用途分类[J].竹子研究汇刊,2002,21(3):25-32.
    [89]周蕴薇,刘艳萍,戴思兰.用叶绿素荧光分析技术鉴定植物抗寒性的剖析[J].植物生理学通讯,2006,(5),42:945-950.
    [90]张杰,邹学忠,杨传平,敖红.不同蒙古栎种源的叶绿素荧光特性[J].东北林业大学学报,2005,33(3):20-21.
    [91]吴楚,王政权,孙海龙,郭盛磊.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J].林业科学,2005,41(4):31-36.
    [92]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [93]LONG S P, HUMPHRIES S, FOLKOWSKIP G. Annual review of plant physiology and plant molecular biology[J].Photo inhibition of Photosynthesis in Nature,1994,45: 633- 662.
    [94]吕芳聪,刘云龙,郑良康波,刘云龙,郑良康.5种红山茶叶绿素荧光特性的比较研究[J].经济林研究,2003,21(40):4-7.
    [95]唐延林,王人潮.遥感技术在精准农业中的应用[J].现代化农业,2002,2:33-35.
    [96]GLTELSON A A, KAUFMAN Y J, STARK R. Novel algorithms for remote estimation of vegetation fraction [J].Remote Sensing Environ,2002,80: 76-87.
    [97]PINAR A. Grass chlorophyll and the reflectance red edge[J].International Journal of Remote Sensing, 1996,17(2): 351-357.
    [98]BLACKBURN G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyper spectral approaches[J].Remote Sensing Environ, 1998,66: 273-285.
    [99]李向阳,刘国顺,杨永锋,赵春华,喻奇伟,宋世旭.烤烟叶片高光谱参数与多种生理生化指标关系研究[J].中国农业科学,2007,40(5):987-994.
    [100]FILLELLA J PENUELAS. The red edge position and shape as indicators of plant cholorophyll content biomass and hydric status[J]. International Journal of Remote Sensing, 1994,15 (7):1459-1470.
    [101]HORLER D NH. The red edge of Plant Leaf Reflectance[J].Inter-national Journal of Remote Sensing, 1997,18(4): 273-288.
    [102]SMITHK L, STEVENM D, COLLS J J. Use of hyper spectral derivative ratios in the red-edge region to inentify plant stress responses to gas leaks [J].Remote Sensing of Environment,2004, 92: 207-211.
    [103]ZARCO-TEJADE P J, PUSHNIK JC, DOBROWSKIS. Steady-state chlorophylla fluorescence detection from canopy derivative reflectance and double-peak red-edge effect[J].Remote Sensing of Environment, 2003, 84: 283-294.
    [104]谷艳芳,丁圣彦,陈海生,高志英,邢倩.干旱胁迫下冬小麦(Triticum aestivum)高光谱特征和生理生态响应[J].生态学报,2008,28(6):2690-2697.
    [105]DEMMIG B, BJ RKMAN O. Comparison of the effect of excessive light on chlorophyll fluorescence and photon yield of O2 evolution in leaves of higher plants [J]. Plant, 1987, 171: 171-184.
    [106]李亚东,陈伟,张志东.土壤pH值对越桔幼苗生长及元素吸收的影响[J].吉林农业大学学报,1994,16(3):51-54.
    [107]潘静娴,黄丹枫,王世平,贾志宽.育苗基质pH对甜瓜穴盘苗营养特性的影响[J].植物营养与肥料学报,2002,8(2):251-253.
    [108]DEMMIG B, WINTER K, KRGER A, KZYGAN F C. Photo inhibition and zeaxanth information in intact leaves: A possible role of the xan-thophylls cycle in the dissipation of excess light energy[J]. Plant Physiol,1987,84: 218-224.
    [109]李艳,张显,李莲梅,邹凤英.不同营养液及其pH值对欧洲报春生长及光合速率的影响[J].西北林学院学报2007,22(2):33-36.
    [110]卢从明,张其德,匡延云.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报,1994,36:93-98.
    [111]原红娟.观叶植物水培试验研究[J].山西农业大学学报,2006(4):338-339.
    [112]王永锐,李卫军,余款经.耐低钾基因型水稻品种的筛选[J].广东农业科学,1997,1:3-5.
    [113]CHEN J J,REN YH, HAN J F. Effects of pH rhizo sphere on root growth in tobacco[J].Plant Physiology Communications, 1993,29(1): 34-37.
    [114]MA C C, HONG F S. Effect of pH on seed germination and seedlings growth and metabolism in rape[J]. Acta Agronomica Sinica,1998,24(4):509-512.
    [115]张仲新,方正,华珞,常赞,尹宝重.水培条件下营养液pH值对含羞草生长发育的影响[J].首都师范大学学报(自然科学版),2008,29(6):43-45.
    [116]星川清亲.水稻小苗的生理及其育种技.北京:科学出版社,1977.
    [117]赵和文,柳振亮,刘建斌,陈甜.无土栽培营养液pH值对黄连木幼苗生长及营养元素吸收的影响[J],北京农学院学报,2004,19(4):48-50.
    [118]郑芝波,王晓宁,麦进培,胡事君,罗诗.不同配方营养液对三种观叶植物水培的效应[J].亚热带植物科学,2006,35(4):12-15.
    [119]林东教,罗健,刘士哲,谢勇健,郑开宇.仙人球水培种植初探[J].华南农业大学学报(自然科学版),2004,25(2):13-16.
    [120]王明元,鲁玉洋.基质pH值对枳幼苗生长和抗氧化酶活性的影响[J].中国南方果树,2009,38(5):32-33.
    [121]陈婵婵,肖斌,余有本,巩雪峰.陕南茶园土壤有机质和pH值空间变异及其与速效养分的相关性[J].西北农林科技大学学报(自然科学版),2009(1):182-188.
    [122]MICHAEL S, WATT, PETER W, RICHARDSON B;MASON EG;LECKIE AC. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dry land site[J]. Forest Ecology and Management,2003,(184): 93-104.
    [123]张旺锋,王振林,余松烈,李少昆,曹连莆,王登伟.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796.
    [124]张旺峰,李蒙春,勾玲,杜亮.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95.
    [125]GAYLER S, WANG E, PRIESACK E, SCHAAF TMAIDL FX.Modeling biomass growth, N uptake and phenological development of potato crop[J]. Geoderma, 2002, (105): 367-383.
    [126]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物学报,2001,25(3):312-316.
    [127]杨志彬,陈兵林,周治国.施氮量对花铃期棉花果枝生物量累积时空变异特征的影响[J].应用生态学报,2008,19(10):2215-2220.
    [128]曹翠玲,李生秀.氮素水平对冬小麦分蘖期某些含氮化合物及生物量的影响[J].西北农林科技大学学报(自然科学版),2002,30(6):11-15.
    [129]Hehl G,Mengel K.Der Einfluss einer variierten kalium-und Stickstoffdungung auf den ohelhydra-tgehalt verschiedener Futterpflanzen[J].Landwirisch Forsch Sondenh,1972,2: 117-129.
    [130]张富仓,康绍忠,龚道枝,李志军.不同磷浓度对玉米生长及磷、锌吸收的影响[J].应用生态学报,2005,16(5):903-906.
    [131]王聪,刘曙光,李志刚,成晓东,邢庆芬.磷胁迫对不同基因型大豆苗期叶片特征的影响[J].内蒙古民族大学学报(自然科学版),2004,19(3):303-306.
    [132]丁玉川,陈明昌,程滨,李丽君,李典友.不同大豆品种磷吸收利用特性比较研究[J].西北植物学报,2005,25(9):1791-1795.
    [133]吴明才,肖昌珍,郑普英.大豆磷素营养研究[J].中国农业科学,1999,32(3):59-64.
    [134]郭朝晖,李合松,张杨珠,黄见良,黄昌勇.磷素水平对杂交水稻生长发育和磷素运移的影响[J].中国水稻科学,2002,16(2):151-156.
    [135]邰继承,杨荣华,苏雅乐其其格,宋桂云,李培芬.钾素水平对水稻幼苗生长发育的影响[J].内蒙古民族大学学报(自然科学版),2007,22(1):48-52.
    [136]曹国军,杜立平,李刚,刘宁,陈世纪.不同钾素营养水平对春玉米碳代谢的影响[J].玉米科学,2008,16(4):46-49.
    [137]GLTELSON A A, KAUFMAN Y J, STARK R. Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing Environ,2002,80: 76-87.
    [138]PINAR A. Grass chlorophyll and the reflectance red edge[J].International journal of remote sensing,1996,17(2): 351-357.
    [139]BLACKBURN G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: Anevaluation of some hyper spectral approaches[J].Remote Sensing Environ, 1998,66: 273-285.
    [140]LIU Z Y, HUANG J F, WU X H. Hyper spectral remote sensing estimation models on vegetation coverage of natural grassland[J].Chinese Journal of Applied Ecology, 2006,17(6): 997-1002.
    [141]FENG J C,HU X L,MAO X J. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J].Economic Forest Researchs,2002,20(4): 14-18.
    [142]YANG X Q,ZHANG S Q,LIANG Z S,SHAN Y. Effects of water stress on chlorophyll fluorescence parameters of different drought resistance winter wheat cultivars seedlings[J] .Acta Botanica Boreali-Occidentalia Sinica,2004,24(5): 812-816.
    [143]LUO Q H,LI ZH J,WU W M,HAN L. Comparative study of photosynthetic and chlorophyll fluorescence characteristics of populus euphratica and p.pruinosa[J].Acta Botanica Boreali-Occidentalia Sinica,2006,26(5): 983-988.
    [144]JIANG C D,GAO H Y,ZOU Q. Changes of donor and acceptor side in photo systemⅡcomplex induced by iron deficiency in attached soybean and maize leaves[J].Photosynthetica,2003,41:267-271.
    [145]MOMMER L,VISSER E J W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity[J].Ann.Bot.,2005,96: 581-589.
    [146]PANDA D,RAO D N,SHARMA S G,STRASSER R J,SARKAR R K. Submergence effect on rice genotypes during seedling stage: pro-bing of submergence driven changes of photo systemⅡby chlorophyll a fluorescence induction O-J-I-P transients[J].Photosynthetica,2006,44: 69-75.
    [147]VYAL Y A,DYUKOVA G R,LEONOVA N A,KHRYANIN V N. Adaptation of the photosynthetic apparatus of the immature broad-leaf trees to the floodplain conditions[J].Russ.J.Plant Physiol.,2007,54: 58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700