不结球白菜铁营养基因型差异及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜(Brassica campestrisssp. chinensis(L.)Makino)是我国南方必需周年供应的重要蔬菜,近来来北移面积迅速增加,并为欧、美、日等国广泛引种,逐渐成为一种世界性蔬菜。病虫严重、越夏困难是不结球白菜的主要生产障碍。采用无土栽培技术是有效解决途径之一。但很易出现失绿黄化现象,制约了无土栽培的发展。同时,不结球白菜北移栽培中也常发生失绿黄化现象。铁是无土栽培营养液单一元素成本最高(占不结球白菜营养液总成本的近1/2)的营养元素,也是最易发生营养失调的营养元素。选育可供生产应用的耐低铁品种是解决不结球白菜上述难题的有效途径。本研究利用我校丰富的不结球白菜品种资源进行了耐低铁基因型的筛选,并在此基础上进行了耐低铁机理的探讨,为解决不结球白菜缺铁失绿症和提供低成本高效益无土栽培营养液配方提供理论依据,并丰富双子叶植物耐缺铁机理的理论研究。
     1.本研究采用无土栽培方法,以缺铁的Hoagland Ⅰ配方为基本营养液,对来自我国不同生态区的40份不结球白菜品种进行了连续2期耐低铁基因型筛选,首次证明不结球白菜中存在广泛的铁营养基因型差异。通过对缺铁失绿指数、叶绿素含量、生长量等筛选指标的综合评价,筛选出“东台百合头”(DTBHT)和“无锡三月白”(SYB)两份耐低铁胁迫的珍贵资源。而“黄心乌”(HXW)和“莲坂油菜”(LBYC)为缺铁高度敏感基因型。
     同时,本研究结果还表明,在正常供铁情况下不结球白菜存在富铁能力的基因型差异。在营养液铁浓度为3mg/L条件下,供试品种“马耳头”(MET)含铁量高达295μg/gDW,而“白叶四月慢”(BYSYM)只有90μg/gDW,二者相差达二倍以上。本结果为通过育种手段和水培方法生产高富铁蔬菜,来改善我国居民铁营养状况,提供了珍贵基因型和新途径。
     2.采用2个不结球白菜基因型,培养在Fe浓度为1.0、5.0、15.0、50.0mg/L的完全营养液中,研究了介质铁浓度对幼苗干物重和体内Fe、Mn、Cu、Zn含量的影响,结果表明:2品种对Fe营养的需求明显不同,DTBHT较HXW能忍耐较低浓度的Fe,其最适生长介质Fe浓度也显著低于HXW,DTBHT在浓度为5.0mg/L时干物质积累量即达最大,而HXW即在Fe浓度为15.0mg/L时为最大。低铁浓度下DTBHT铁利用效率明显高于HXW,高浓度Fe(50mg/L)明显抑制2品种的生长,并产生轻度毒害现象。不同供铁浓度下(1—15mg/L),随着介质铁浓度的升高DTBHT和HXW根系和老叶中Mn、Cu、Zn含量也随之降低。而当介质Fe浓度达50mg/L时植株中Mn、Cu、Zn含量又有升高,2个品种间是有差异的,尤其是Zn含量,无论根系、新叶还是老叶,DTBHT的含锌量均低于HXW。本试验从铁营养利用角度验证了DTBHT较HXW具有较高的铁利用效率,说明我们所进行上述的耐缺铁筛选指标可靠,高富铁蔬菜的选育和生产首先应利用富铁基因型,在此基础上再从适度增加分质铁浓度来考虑。
Pak- choi ( Brassica campestrisssp. chinensis (L. ) Makino) is very important and necessary in the vegetable supplement in south China, and gradually planted in north China recently. It becomes a kind of world - wide vegetables growing extensively in Europe, America and Japan etc. The most serious problem during the pak —choi cultivation is diseases and insect pests, and it's difficult to grow well in hot summer. Soilless culture of pak—choi is one of effective way to overcome these problems, with the limited factor of Fe-chlorosis. Meanwhile, Fe—chlorosis appears when pak—choi grows in north China. EDTA—Fe is the most expensive element of soilless nutrition input. And Fe also is the nutrient element which causes nutrient inbalance easily. It's effective to work out these problems through the breeding of Fe—deficiency resistant genotypes which can be used in the production. Selection of Fe—deficiency resistant genotypes and the study of mechanisms were carried out in this experiment. Research will enrich the knowledge of Fe-deficiency resistance dicots and serve as scientific guide for pak —choi soilless culture.1. Continuous two times selections were carried out in 40 varieties pak —choi which are from different ecoarea under low Fe Hoagland I soilless nutrient solution. The results showed that Fe—deficiency resistant ability varied significantly among different pak —choi genotypes. Using Fe—chlorosis index, chlorophyll content and growth weight etc as selection parameters, DTBHT and SYB are two precious Fe—stress resistant varieties. While HXW, LBYC and LBY are very sensitive ones.Fe—content differed significatly among various genotypes under normal Fe supply. Fe content of MET is more than 3 times higher than BYSYM under 3 mg/'L Fe3+ nutriton, the former is 295 μg/gDW, the later is 90μg/gDW. The results is useful in supply ing valuable genotyes and new methods to improve the popular Fe — nutrition through breeding and soilless culture to produce vegetables of high Fe nutrition.
    2. Two pak —choi genotypes were cultured in complete nutrition solution at different Fe levels of 1. 0, 5. 0, 15. 0, 50.0mg/L to study the effects of Fe contents on seedling growth and plant Fe, Mn, Zn, Cu contents, Fe requirements of the two genotypes varied greatly. DTBHT was more tolerate to low Fe level. The optimal Fe contents for dry weight accumulation was 5. 0mg/L and 15. 0mg/L respectively. Fe efficiency of DTBHT is greatly higher than HXW under low Fe levels. High concentration of Fe (50mg/L) greatly inhibited growth of the two genotypes, and induced slightly poisonous injury, Mn, Cu, Zn contents of roots and older leaves decreased when Fe concentration was increased to 50mg/L. The response of the two genotypes varied in this respect, especially, Zn content of DTBHT was lower than that of HXW. It's proved that Fe efficiency of DTBHT is higher than that of HXW. And the selection parameters are reliable. Breeding and production of high Fe content vegetables should begin with the genotypes of high Fe content and increase the Fe content of nutrition later.3. Response of 4 different Fe stress sensitive genotypes to Fe stress. The results showed that pH of these 4 genotypes growth medium increased after Fe stress, but was lower than Fe—suply treatment. Acidity increas caused by pak—choi root system activity was weak when the NO3- used as the only nitrogen resource. Peak period of root cytoplasm membrane Fe3+ reduction capicity appears on the sixth day after Fe — dificiency treatment, that of DTBHT and SYB, which were tolerant to low Fe were much higher than that of HXW and LBYC, which were sensitive to low Fe. Chlorophyll of upper most expanded leaves of these 4 pak — choi genotypes decreased significantly under Fe stress, the effect being smaller in Fe—stress resistant genotypes than in sensitive ones. Fe content genotypes than of upper most expanded leaves of DTBHT is much higher than that of LBYC, So, DTBHT has higher Fe efficiency.4. Diural change of Fe3+ reduction capacity under different light regimes treatment was carried out on different Fe — stress sensitive pak — choi genotypes. The results showed that Fe3+ reduction capacity in the root of Fe — difiency resistant genotypes changes diurnally since the sixth day after Fe stress treatment under normal light regime (14h light/10h dark) Fe3+ reduction capacity decreased in the dark and increased under light, and reached the highest Fe3+ reduction capacity 4—6h after lighted. In contrast, reduction capacity of Fe—deficiency sensitive genotype changed irrgularly. There was little difference of root Fe3+ reduction capacity amony different genotypes in Fe supply treatmen under normal light regimes. Diurnal changes of Fe3+ reduction capacity of Fe — dificiency resistant genotypes can be broken through continous light. It's the first time that such a law was proved in pak -choi Stevens also found the similar law in soybean in 1994. So, it's possible the Fe absorption of plant not changes diurally. It's inportant in
    theory and practice in the management in soilless nutrition and the selection of Fe—deficiency resistant genotypes vising reduction capacity as parameter.5. Effects of different Fe—supply on seedling Fe, Mn, Cu and Zn contents of Fe di-ficiency—sensitive genotypes including DYBHT and LBYC- Fe—stress significantly lowered leaf Fe content, the effect being greater in new leaves than in older ones. Fe efficiency of DTBHT was higher than LBYC in Fe—stress and Fe—supply treatments. While root Fe content of DTBHT was greatly higher than LBYC in the case of Fe—supply, it become similar in Fe—stress treatment. From the results it can be concluded that roots of DTBHT have higher Fe absorbance and transportation efficiency than LBYC under Fe stress condition. Under Fe stress, Mn, Cu, Zn contents of leaves increased greatly and Mil contents of roots decreased in the two genotypes tested DTBHT showed higher Mn enriching abiolity than LBYC So, the difference of Fe using efficiency of pak—choi under Fe stress was determined by its genetic background.6. Two Fe — deficiency resistant genotypes and two ssensitive ones were selected fristly, and the genotypic difference of Fe nutrition was proved in this experiment. These are the base of the further theoretical research and high Fe—content genotypies. Fe3+ reduction capaticy of different Fe stress sensitive genotypes changed diurally, it's more obvious in Fe deficiency resistant genotypes. The results filled the gaps in fields of such research. Root system of pak—choi absorbed Fe, Cu, Mn, Zn competively or coorperative-ly- The research enriched the knowledge of Fe deficiency resistance dicots and found a new way to overcome Fe chlorosis and reduce the cost of soilless nutrition.
引文
1.上海植物生理学会主编,1984,植物生理学实验手册,上海科技出版社
    2.万寅生,1987,IAA与ABA对缺铁胁迫诱导的黄瓜根系H~+分泌的调节作用,南京农业大学硕士学位论文
    3.王培伦,1990,铁离子对甜椒生长的影响,园艺学报,17(3):217—222
    4.王建林,曹志洪,1993,根际营养环境与持续农业,植物生理通讯29(5):329—336
    5.中国科学院南京土壤研究所,1983,土壤理化分析,上海:上海科学技术出版社
    6.史瑞和编,1982,土壤农化分析,北京:农业出版社
    7.史瑞和等编著,1988,植物营养原理,江苏科技出版社
    8.任胜云译,1993,植物矿质营养遗传领域研究概况,土壤学进展,21(3):33—36
    9.刘书娟,张福锁,毛达如,1994,豌豆Spaxkle及其单基因突变体E107的铁锰吸收及转移效率,植物生理学报,20(3):249—256
    10.刘书娟,张福锁、毛达如,1996,缺铁敏感度不同的大豆品种对缺铁的适应机制,植物生理学报,22(1):1—5
    11.卞学瑜,孪港丽,苏润宇、陈正华,1994,缺铁条件下苹果砧木愈伤组织的特异反应及多肽分析,中国科学(B辑),24(2):150—156
    12.李继云、刘秀娣、周伟等,1995,有效利用土壤营养元素的作物育种新技术研究,中国科学(B辑)25(1):41—48
    13.李式军,汪李平,1995,水培生菜耐缺铁胁迫品种的筛选及其生理特性研究,园艺学报,22(2):147—152
    14.李式军,1994a,我国蔬菜生产新技术及动态(上),长江蔬菜(5):3—5
    15.李式军,1994b,我国蔬菜生产新技术及动态(下),长江蔬菜(6):3—5
    16.李式军,高祖明等编译,1988.现代无土栽培技术,北京,北京农业大学出版社
    17.汪李平,1990,水培生菜铁素营养的研究,南京农业大学硕士学位论文
    18.汪李平、李式军,1992,水培生菜营养液中铁素浓度的研究,南京农业大学学报,15(3):118—120
    19.何新华,1992,植物中的铁素营养,植物学通报,9(4):24—28
    20.连兆煌,李式军等,1994,无土栽培原理与技术,中国农业出版社
    21.陈贵林,李式军,1995,发展我国的无土栽培业,科技导报,(11):49—50
    22.陈春宏、张耀栋、高祖民,1992,不同蔬菜的铁素营养差异性研究,土壤通报,23(6):266—268.
    23.陈眷宏、张耀栋、张春兰、高祖民,1992,铁、锰相互作用及其对植物生理生化的影响,土壤肥料,(6):9—12
    24.杜建明,1985,缺铁对黄瓜苗生长和根系质子分泌的影响,南京农业大学硕士学位论文
    25.杜建明、周燮、徐义俊,1986,缺铁与生长素对黄瓜苗生长与根系分泌质子的影响,园艺学报,13(4):250
    26.南京农业大学自然与环境科学系编,1996,史瑞和教授八十年华诞纪念文集,中国农业科技出版社
    27.吴明才,1989,大豆铁素研究,Ⅱ.大豆铁胁迫响应,大豆科学,8(4):375—381
    28.张福锁主编,1993,植物营养生态生理学和遗传学,北京,中国科学技术出版社,77—113
    29.张福锁,李春俭,1995,根际微生态学——研究植物——土壤相互关系的新兴学科,张福锁,龚元石、李晓林主编,土壤与植物营养研究新动态(第三卷),北京,中国农业出版社,98—110
    30.张福锁主编,1992,土壤与植物营养研究新动态,北京,北京农业大学出版社,64—79
    31.张福锁,曹一平,1992,根际动态过程与植物营养,土壤学报,29(3):239—250
    32.张福锁、刘书娟、毛达如,韩振海,1995,苹果抗缺铁基因型差异的生理生化指标研究,园艺学报,22(1):1—6
    33.张福锁,李春俭,1995,根际动态过程与植物对营养胁迫的适应性,中国土壤学会编《中国土壤学在前进》,p71—75
    34.张礼忠,毛知耘译(A.Lauchili,R.L.Bielcski著),1992,植物的无机营养,农业出版社出版
    35.张耀栋,陈春宏、高祖民等,1993,应用过氧化氢酶活性对水培叶菜缺铁诊断初探,南京农业大学学报,16(1):60—64
    36.周厚基、仝月澳,1987,苹果树缺铁失绿的研究进展,Ⅰ.生态因子对缺铁失绿的影响,中国农业科学,20(3):23—27
    37.周厚基、仝月澳,1988,苹果树缺铁失绿研究的进展,Ⅱ.铁逆境对树体形态及生理生化的影响,2l(4):46—50
    38.施卫明,刘芷宇,1990,土壤中铁的根际效应及其吸收机理,植物生理学通讯,(2):1—7
    39.施卫明.刘芷宇,1991,麦类作物根际麦根酸的分布和难溶性铁的活化,科学通报,(1):64—67
    40.施卫明,1988.缺铁胁迫下植物根外介质pH的变化及其影响因素,植物生理学通讯,(6):28—31
    41.邱泽生,张力,杨志伟,1993,植物细胞质膜氧化还原系统,植物生理学通讯,29(1):306—314
    42.钟永安,1980,草原地区植物缺铁病初步研究,中国科学院微量元素学术交流会汇刊,化京,科学出版社,194—198
    43.唐建军,王永锐,傅家瑞,1995,植物铁素营养的生理生态观,生态科学,(1):40—46
    44.曹志洪,施卫明,1995,国外土壤生物工程研究与我国的现状,中国土壤学会编《中国土壤学在前进》,p67—70
    45.曹家树,1993,中国白菜演化和分类的研究,南京农业大学博士学位论文
    46.曹寿椿、李式军,1980,白菜地方品种的初步研究,Ⅰ.形态学观察与研究,南京农学院学报(2):32—38
    47.曹寿椿,李式军,1981,白菜地方品种的初步研究,Ⅱ.主要生物学特性的研究,南京农学院学报(1):65—77
    48.曹寿椿,李式军,1982,白菜地方品种的初步研,Ⅲ.不结球白菜的园艺学分类,南京农学院学报(2):30—37
    49.曹寿椿,1989,不结球白菜的研究及进展(上),长江蔬菜,(2):5—9
    50.曹寿椿,1989,不结球白菜的研究及进展(下),长江蔬菜,(3):3—4
    51.曹一平,陆景陵等译(Marschner著),1991,高等植物的矿质营养,北京农业大学出版社
    52.焦新之,倪晋山,1996,植物质膜的氧化还原酶,植物生理学通讯,32(1):49—58
    53.韩振海,沈隽,1991,果树的缺铁失绿症—文献述评,园艺学报,18(4):323—328
    54.韩振海,王永章,孙文彬,1995,铁高效及低效苹果基因型的铁离子吸收动力学研究,园艺学报,22(4):313—317
    55.蒋廷惠,郑绍建,胡霭堂,1994,磷铁锌缺乏时植物根系泌H~+量增加原因的浅见,植物生理学通讯.30(2):135—139
    56.大池孝也,1973,菜重金属过剩障害研究,第2报,水耕培养液中铁浓度菜亚铅过剩障害及影响,园艺学会杂志
    57.大池孝也,池田英男,1976,菜重金属过剩障害研究(第5报),水耕培养液中铁浓度菜过剩障害及影响,园艺学会杂志,45(1):50—58
    58.大池孝也,池田英男,1989,水耕培养液中铁浓度菜铜过剩障害及影响,园艺学会杂志,58(3):673—678
    59.内海修一,1995,世界施设园艺学日本施设考(一),施设园艺(2):18—20
    60.井上兴一,田岛佳苗,横田弘司等,1994,水耕栽培利用铁高含量叶菜类生产,日本土壤肥料学杂志,65(4):436—440
    61.矢泽进,佐藤隆德,并木隆和,1992,水耕栽培铁施用生理障害发现.60(4):905—913
    62.高城成一,1972,Ⅳ—2植物重金属元素吸收机构,近年农业壤肥料研究(第三集),日本土壤肥料学会编,养贤堂发行,66—72
    63.茅野充男,1972,Ⅳ—3植物重金属元素吸收艺移动,近年农业土壤肥料研究(第三集),日本土壤肥料学会编,养贤堂发行,73—79
    64.高城成一,1984,根铁吸收调节机构植物间差异,东北农业土壤肥料,190—195
    65.新町文绘,长谷川功,矢崎仁也,1992,毛状根用实验系植物根铁缺乏对应答机构解析,日本土壤肥料学会杂志,63(2):202—209
    66.新町文绘,长谷川功,矢崎仁也,1994,植物铁缺乏分泌铁还原机构关系,日本土壤肥料学会杂志,65(4):413—418
    67. Aktas M, Egmond VF, 1979, Plant and Soil, 51: 257—274
    68. Allen S, Raven JA, 1987, Intracellular pH regulation in Rieinus communis growth with ammonium or nitrate as N source: The role of long distance transport, J. Exp. Bot., 38(189): 580
    69. Alcantara E, De la Guardia MD, Romera FJ, 1991, Plasmalemma redox activity and H~+ extrusion in roots of Fe—defieient encumber plants, Plant Physiol., 96: 1034—1037
    70. Ao TY, Fan F, Korea RF, Faust M, 1985, Iron reduction by apple roots, J. Plant Nutri., 8: 629~644
    71. Alearaz CF, 1986, Influence of ferredexin levels on nitrate reductase activity in iron difficient lemon leaves, J. Plant Nutri., 9(11): 1450
    72. Beusiehem MLV, Bass R, Kirkby EA, et al, 1985 In tracellular pH regulation during NO_3~- assimilation in shoot and roots of Ricimus communis. Plant Physiol, 78: 768
    73. Bell DF, Chanegy RL, Angle JS, 1988, Staining localization of ferric reduction on roots. J. plant Nutri., 11: 1237—1252
    74. Bienfait HF, Van Bliek AM, Bino RJ, 1982, Different regulations on ferric reduction and aeidfieation of the medium by roots of Fe—stressed plants in A Rhizosta. J. Plant Nutr., 5: 447—450
    75. Bienfait HF, 1988, The turbo reductase in plant plasma membranes. In plasma membrane oxidoreduetase in control of animal and plant growth, Eds. Grane FL, Morren DJ, Low HE, pp. 89—98, Plenum press New York, USA
    76. Bientfait HF, 1985, Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake, J. Bioenerg Biomember 17: 73—83
    77. Bienfait HF, 1988, Proteins under the control of the gene for Fe efficiency in tomato, Plant Physiol., 188: 785—787
    78. Binenfait HF, Weger LA, Kramer D, 1987, Control of the development of iron—efficiency reactions in potato as a response to iron defficiency is located in the eoots, Plant Physiol., 83: 244—247
    79. Bienfait, HF, 1988. Mechanisms in Fe—efficieney reactions of higher plants, J. Plant-Nutr., 11(6—11): 605—629
    80. Brancadoro L, Rabotti G, Scienza A, Zoechi G, 1995, Mechanisms of Fe—efficiency in roots of Vitis ssp. in response to iron deficiency stress, Plant and Soft, 171: 229—234
    81. Brown JC, et al, 1976, A technique to determine iron efficiency in plants, Soil Sci. Soc. Amer. J., 40: 398—405
    82. Brown JC, JoUey VD, 1989, Plant metablic responses to iron—deficiency stress, Bio-Science, 39: 545—551
    83. Brown JC, 1978, Plant Cell Environ., 1: 249—257
    84. Brown JC, Warm EV, 1982, Breeding for Fe efficiency: Use of indicator plants, J. Plant Nutr., 5(4—7): 623—635
    85. Bunning E, 1958, Tageseriodische Bewegungen, Encyclopedia of Plant Physiol., X Ⅶ, 1: 579—656, Berlin—Gottingen—Heidelberg, Berlin, Germany
    86. Busheva M, Garab G, Liker E, 1991, Diurnal fluctuations in the content and functional properties of the light harvesting chlorophyll a/b complex in thylakoid membranes, Plant Physiol., 94: 997—1003
    87. Bruggemarm W, Moog PR, 1989, NADH—dependent Fe~(3+) EDTA and oxygen reduction by plasma membrane vesicles from barley roots, Physiol. Plant, 75: 245—254
    88. Bruggemann W, Moog PR, Nakagawa H. Janiesch P, Kuiper PJC, 1991, Plasma membrane—bound NADH: Fe~(3+)—EDTA reductase and iron deficiency in tomato (Lycopersicurn esculentum), Is there a Turboreductase? Physiol Plant., 79. 339—346
    89. Buckhout TJ, Bell PF, Lustar DG, Chaney RL, 1989, Iron—stress induced redox activity in tomato is localized on the plasma membrane, Plant Physiol., 90. 151—156
    90. Byron DF, et al, 1983, Screening soybeans for iron efficiency in the growth chamber, Crop Science
    91. Cakmak I, Van Wetering DAM, Marsehner H, Bienfait HF, 1987, Involvement of superoxide radical in extracellular ferric reduction by iron—deficient bean roots, Plant Physiol., 85: 310—314
    92. Camp SD, Jolley V D, Brown JC, 1987, Comparatice evaluation of factors involved in Fe stress response in tomato and soybean, J. Plant Nutri., 10: 423—442
    93. Chancy RL, Brown JD, Tiffin LO, 1972, Obligatory reduction of ferric chelates in iron uptake by soybeans, Plant Physiol., 50: 208—213
    94. Chaney RL, et al, 1982, Effect of Phosphate on regulation of Fe—stress response in soybean and peanut, J. Plant Nutri., 5: 649—487
    95. Chaney RL, 1989, Kinetics of ferric chelate reduction by roots of iron—deficient peanut (Arachis hypogeae), Acta Bot. Neerl., 38: 153—163
    96. Chancy RL, Chen Y, Green CE, Holden MT, Bell PF, Luster DG, Angle JS, 1992, Root hairs on chlorotic tomatoes are an effect of chlorosis rather than part of the adaptive Fe—stress—response, J. Plant Nutr., 15: 1857—1875
    97. Cianzio SR, Fehr WR, 1980, Genetic control of iron deficiency chlorosis in soybeans. Iowa State J. Res., 54: 367—375
    98. Chosack E, Tubinstein B, Reinheld L, 1991, Effect of iron deficiency on the electron transport process of plasmalemma enriched vesicles isolated from cotton roots, Plant Sci., 77. 163—172
    99. Comett JD, Johnson GV, 1991, Ferric chelate reduction by suspension culture cells and roots of soybean., a kinetic comparison, Plant and Soil, 130: 75—80
    100. Coulombe BA, et al, 1982, Bicarbonate can induce iron chlorosis in Wagne soybeans, Agron. Abst., 204
    101. Coyne DP, Korban SS, Krudsem D, Clark RB, 1982 Inheritance of iron defficiency in crosses of Dry beans(Phaseolus vulgaris L.), J. Plant Nutri., 5(4—7): 575—585
    102. De Vos CR, Lubberding LJ, Bienfait HF, 1986, Rhizosphere acidification as a response to iron deficiency in bean plants, Plant Physiol., 81: 842—846
    103. Dolcet—Sanjuan R, Mok DWS, Mok MC, 1992, Characterization and in vitro selextion for iron efficiency in Pyrus and Cydonia, In Vitro Cell Dev Biol., 289: 25—29
    104. Esty JC, Onken AB, Hossner LR, Matheson R, 1980, Iron use efficiency in grain sorghum hybrids and parental lines, Agron. J., 72: 589—592
    105. Fleming AL, Chancy RL, Coulombe BA, 1984, Bicarbonate inhibits Fe—stress response and Fe uptake—translocation of chlorosis susceptible soybean cultivars, J. Plant Nutri., 7: 699—714
    106. Fcarbanks DJ, Orf JH, Inskeep NP, Bloom PR, 1987, Evaluation of soybean genotypes for iron—deficiency chlorosis in potted calcareous soil, Crop Sci., 97: 953—95
    107. Fehr WR, 1982, Control of iron—deficiency chlorosis in soybeans by plant breeding, J. Plant Nutri., 5(4—7): 611—621
    108. Grusak MA, Welch RM, Kochion LV, 1990, Physiological characterization of a single gene mutant of Pisum sativum exhibiting excess iron accumulation, 1. Root iron reduction and iron uptake, Plant Physiol., 93: 976—981
    109. Gorton HL, Willams WE, Binns ME. 1989, Circadian stomatal rhythms in epidemal peelsfrom Vicia faba, Plant Physiol, 90: 1329—1334
    110. Grusak MA, Weich RM, Kochian LV, 1990, Does iron deficiency in Pisun sativum enhance the activity of the root plasmalemma iron transport protein? Plant Physiol., 94: 1353—1357
    111. Guerinof ML, Yi Y, 1994, Iron: Nutritions, noxious, and not readily available, Plant physiol, 104: 815—820
    112. Hether NH, Oisen RA, Jackson LL, 1984, Chemical identification of iron reductants exuded by plant roots, J. Plant Nutri., 7: 667—676
    113. Holden MJ, Luster DG, Chaney RL, Buckorf JJ, Robinson C, 1991, Fe~(3+)—Chelate reductase activity of plasma membianes isolated from tomato (Lycopersiconesculentum Mill) roots. Plant Physiol., 97: 537—544
    114. Holden MJ, Luter DG, Charley RL, Buckhowt TJ, 1992, Enzymology of ferric chelate reduction at the root plasma membrane, J. Plant Nutri., 15: 1667—1678
    115. Israel DW, Jackson WA, 1982, Iron balance, uptake and transport processes in N_2—fixing and nitrate—and ureadependent soybean plants, Plant physiol., 69: 171
    116. Inskeep WP, Bloom PR, 1986, Effect of soil moisture on soft pCO_2, soil solution bicarbonate, and iron cdhlorosis Soybeans, Son Sci. Soc. Am. J., 50: 946—952
    117. Jolley VD, Brown JC, 1987, Soybean response to iron—deficiency stress as related to iron supply in the growth medium, J. Plant Nutr., 10: 637—651
    118. Jolley VD, Faibands DJ, Sterens WB, Terry KE, Orf JH, 1992, Root iron—redution capacity for genotypic evaluation of iron efficiency in soybean, J. Plant Nutr., 15: 1679—1690
    119. Jessen HJ, Fehr WR, Coamzie SR, 1988, Registration of germplasm lines of soybean, A11, A12, A13, A14, A15, Crop Sci., 28: 204
    120. Jolley VD, Brown JC, Nugonf PE, 1991, A genetieally controlled response to Fe—deficiency stress in muskmelon, Plant Soft, 130: 87—92
    121. Lesuisse E, Labbe P, 1992, Iron reduction and frans—plasma membrane electron transfer in the yeast Saccharomyces cerevisiae, Plant Physiol., 100: 769—777
    122. Luster DG, Bucdhout TJ, 1988, Characterization and partial purification of mulitiple elect on transport activities in plasma membranes from maize roots, Physiol. Plant, 73: 339—347
    123. Landberg EC, 1982, Transfer cell formation in the root epidermis. A prerequisite for Fe—efficiency? J. Plant Nutr., 5: 415—432
    124. Miller RO, Olsen RA, 1986, Changes in the roots of sunflower under iron stress, 9: 815—822
    125. Manthey JA, Mcloy DL, Crowley DE, 1993, Chelation affects on the iron reduction and uptake by low—iron stress tolerant and non—folerant citrus rootstocks, J. Plant Nutr., 16: 881—893
    126. Martin JH, Gordon RM, Fitzwater SE, 1990, Iron in Antarctic waters, Nature, 2345: 165—158
    127. Marschner HV, Romheld, Kissel M, 1986, Different strategies in higher plants in moblilization and uptake of iron, J. Plant Nutr., 9: 694—713
    128. Marsehner H, Romheld V, 1994, Strategies of plants for acquisition of iron, Plant and Soil, 165: 261—274
    129. Moog PR, Van der Konij TAW, Bruggemann W, Schiefelbein JW, Kuiper PJC, 1994, Responses to iron deficiency in Arabidopsis thallana: The Turbo reductase does not depend on the formation of root hairs and transfer cells ptanta (in press)
    130. Moog PR, Wolfgang Bruggemann, 1994, Iron reductase systems on the plant root plasma membrane—A review, Plant and Soil, 165: 241—260
    131. Niebur WS, Fehr WR, 1981, Agronomic evaluation of soybean genotypes resistant to iron deficiency chlorosis, Crop Sci. 21: 551—554
    132. Nelson SD, 1992, Response of several wildland shrubs and forbs of arid regions to iron—deficiency stress, J. Plant Nutr. 15: 2015—2023
    133. Nugent PE, 1994, Iron Chlorofic Melon Germplasm C940—fe, Hortscience, 29 (1): 50—51
    134. Nugent PE, Bbella HS, 1987, An iron deficient mutant in muskmelon Cucumis melo L., HortScience, 29(1): 50—51
    135. Nugent PE, Bbella HS, 1987, An iron deficient mutant in muskmelon, cucumis meto L., HortScience, 22(5): 722(Abstr)
    136. Olsen RA, Brown JC, 1980, Factors related to iron uptake by dicotyledonous and monocotyledonous plants, J. Plant Nutr., 2: 629—645
    137. Olsen RA, Bennett JH, Blume D, Brown JC, 1981, Chemical aspects of the stress response mechanism in tomatoes, J. Plant., 3: 905—921
    138. Paulsen H, Bogordd L, 1988, Diurnal and circadian rhythms in the accumulation of mRNA for the fight—harvesting chlorphyn a/b binding protein in tobacco, Plant Physiol., 88: 1104—1109
    139. Romera FJ, Alantara E, 1994, Iron—deficiency stress responses in cucumber roots, Plant Physiol., 105: 1133—1138
    140. RSmheld V, Marschner, 1981a, Iron deficiency stress reduced morphological and physiological changes in roots tips of sunflower, Physiol. Plant, 53: 354—360
    141. R6mheld V, Marschner H, 1981b, Rhythmic iron stress reactions in sunflower at suboptimal iron supply, Physiol Plant, 53: 347—353
    142. Romheld VH, Marschner, Lramer D, 1982, Response to Fe deficiency in roots of "Fe—efficient" plant species, J. Plant Nutr., 5: 489—498
    143. Rdmheld V, Marshner H, 1983, Mechanism of iron uptake by peanut plants, I. Fe (Ⅲ ) redution chelate splitting and release of phenolics, Plant Physiol., 71: 949— 954
    144. Romheld V, Marschner H, 1984? Plant—induced pH changes in the rhizosphere, of "Fe—efficient"and "Fe—mefficient"soybean and corn culivars, J. Plant Nutr. , 7:623-630
    145. Romheld VC, Muller, Marschner H, 1984, Localization and capacity of proton pu- mps in roots of intact sunflower plants, Plants Physiol. , 76: 603—606
    146.Romheld V, 1987, Different strategies for iron acquisition in higher plants, Physiol. Plantarum, 70.231—234
    147. Romera FJ, Alcantara E, de la Guardia MD, 1992, Effects of bicarbonate phosphate and high pH on the reducing capacity of Fe deficient sunflower and cucumber plants, J. Plant Nutr. , 15:1519—1530
    148. Rosenfield CL, Reed DW, Kent MW; 1991, Dependency of iron reduction on development of a unique root morphology in Ficus benjamina L. , Plant Physiol. , 95: 1120-1124
    149. Rubinstein B, Stern AI, Stout RG, 1984, Rodox activity at the surface of oat root cells, Plant Physiol, 76:386—391
    150. Romera FJ, Alcantara E, de la Guardia MD, 1991, Characterization of the foler- ance to iron chlorosis in different peach root stocks growth in nutrient solution, Ⅱ. Iron—stress response mechanism, Plant Soil, 130:121—125
    151. Schmidt W Janiesch P, Bruggemann W, 1990, Fe —EDT A reduction in roots of Plantago lanceolata by a NADH - Depedent plasma memebrane—bound redox system, J. Plant Physiol. , 138:450—453
    152.Schmidt W, Janiesch P, 1991b, Specificity of the electro donor for transmembrane redox systems in bean (Phaseolus vulgaris L. ) roots, J. Plant Physiol. 138:450— 453
    153. Schmidt W, 1992, Plasmale mmagebundene Redox systeme und ihre Funktion bel der Eisenaneighung boherer pflanzen, Ph. D thesis, University of Olelenburg, FRG
    154. Sijmons PC, Lanfermeijer FG, De Boer AH, Prjns HB, Bienfait HF, 1984a, Depolarization of cell membrane potential during trans — plasma membrane electron transter to extracellular electron acceptors in iron—deficient roots of Phaseolus vulgaris L. , Plant Physiol. , 76:943—946
    155. Schmidt W, Juniesch P, 1991a, Ferric redution by Genurn urbamum, A Kineti(?) study, J. Plant Nutr. , 14:1023—1034
    156. Scrimshaw NS, 1991, Iron deficiency, Sci. Amer. , 265(10): 46—52
    157. Stoppel R, 1916, Die abhangigkeit der schlafbewegungen yon phaseolus mulfzflontr von versehiedenen aubenfakforen, Z. Bot., 8: 609—684
    158. Sweeney BM, 1987, Rhythmic phenomena in plants, 2nd edition, Academic press, San Diego CA
    159. Stevens Von Jolley D, Neff Hansen C, 1994, Diurnal rhytimieity of root iron reduction in soybean as affected by various light regimes, J. Plant Nutr., 19(12): 2193—2202
    160. Schmidt WP, Janlesch, Bruggemann W, 1990, Fe—EDTA Reduction in roots of plantag lanceolata by a NADH—dependent plasma Membrane—bound Redox system, Plant Physiol., 136: 51—55
    161. Schmidt W, 1994, Root—mediated ferric reduction—respones to iron deficiency, exogenously induced changes in hormonal balance and inhibition of protein synthesis, J. Experimental Botany, 45(275): 725—731
    162. Takagi SK, Nomoto, Takemoto T, 1984, Physiological aspect of mugineic acid aposible phytosiderophore of graminaceous plants, J. Plant Nutr., 7: 469—477
    163. Tipton CL, Thowsen J, 1985, Fe(Ⅲ) reduction in cell walls of soybean roots, Plant Physiol., 79: 432—435
    164. Valenti V, Scalorbi M, Guerrini F, 1991, Induction of plasma membrane NADH—ferricyanide reductase following iron in format roots, Plant Physiol. Biochem., 29: 249—255
    165. Weiss MG, 1943, Inheritance and physiology of efficiency in iron utilization in soybeans, Genetics, 28: 253—268
    166. Wallace A, Lunt OR, 1960, Iron chlorosis in horticultural plants a review, Pro. Am. Soc. Hort. Sci., 75: 819—841
    167. Welch RM, Norvell WA, Schaefer SC, Shaft FE, Kochian LV, 1993, Induction of iron(Ⅲ) and coprer (Ⅱ) reduction in pea (pisum sativum L.) roots by Fe and Cu status does the root—cell piasmalemma Fe(Ⅲ)—chaelate reduetasepreform a general role in regulating cation uptake? Planta, 190: 555—561
    168. Walter AA, Pith G, Scholz H, Marschner V Romheld, 1995, Effects of iron nutritional status and time of day on concentrations of phytosiderophores and nicotianamine in different root and shoot zones of Barley, J. Plant Nutr., 18(8): 1517—1593
    169. Zhang CV, Romheld, Marschner H, 1995a, Retranslocation of iron from primary leaves of beans plants tinder iron deficiency, J. Plant Physiol., 146: 286—272
    170. Zhang CV, Romheld, Marschner H, 1995b, Distribution pattern of roots supplied ~(59)iron in iron—sufficient and iron deficient bean plants, J. Plant Nutr., 18(10): 2049-2058
    171. Zhang CD, 1995, Uptake, transport and remobilization of iron in bean plants Verlag ulrich E Grauer, Stuttgart
    172. Zheng GH, Li SJ, Zhang DW, 1994, Present situation and development of soilless culture in China, International symposium on soilless culture, Hangzhou, China
    173. Zocchi G,Cocucci S, 1990, Fe uptake mechanism in Fe efficicent cucumber roots, Plant Physiol. , 92:908-911
    174. Zaiter HZ, Coyne DP, Clark RB, 1987, Temperature, grafting method and root- stock influence on iron—deficiency chlorosis of bean, J. Amer. Soc. Hort. Sci. , 112(6) :1023-1026
    175. Zaiter HZ, Pcoyne D, Clark RB, 1987, Genetic vanation and inheritance of resistance of leaf iron deficiency chlorosis in dry beans, J. Amer. Soc. Hort. Sci. ,112: 1019-1022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700