东河1油田石炭系东河砂岩段地质建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东河1油田石炭系油藏位于塔北隆起中段东河塘断裂背斜构造带上。东河砂岩属广海型海滩沉积的前滨和临滨微相,沉积厚度平均为250m,储层整体综合评价为中孔中渗储层,油藏类型为块状底水油藏。截止2010年11月,油藏累积产油794.2417×10~4t,累积注水1484.0×10~4m~3,油藏综合含水率52.12%。目前存在以下问题:由于油层厚度大,部分岩性段划分需要进一步落实;油层纵向夹层发育使得储层非均质性严重;油藏底部存在稠油垫,需要搞清楚稠油垫分布特征以及对油藏开发的影响;到了开发中后期油藏含水率上升快,层间矛盾更加突出等问题。针对以上问题,对油藏进行深入认识,建立正确反映油藏地质特征的地质模型,对后期开发方案调整都具有重要意义。
     本论文从东河1油田石炭系油藏的实际情况出发,综合应用钻井、取芯、岩芯化验分析、测井和生产动态等资料,对油藏地层进行精细对比、储层特征和稠油分布特征以及稠油段对油藏开发的影响进行研究;在前面研究成果基础之上进行三维储层随机建模,计算油藏地质储量和稠油段储量。论文主要取得了如下几点成果与认识:
     (1)东河砂岩段分为上下两个准层序组,下部准层序组为海平面下降期沉积,上部准层序组为海平面上升或海进期向陆退积沉积。在准层序组划分的基础之上,进一步将东河砂岩段划分为5个准层序,细分为10个岩层组(岩性段)。
     (2)东河砂岩段分五类储层:Ⅰ类储层孔隙度>18%,渗透率>100×10~(-3) m~2;Ⅱ类储层孔隙度17%~18%,渗透率50×10~(-3) m~2~100×10~(-3) m~2;Ⅲ类储层孔隙度14%~17%,渗透率10×10~(-3) m~2~50×10~(-3) m~2;Ⅳ类储层孔隙度10%~14%,渗透率3×10~(-3) m~2~10×10~(-3) m~2;Ⅴ类非储层孔隙度<10%,渗透率<3×10~(-3) m~2。1岩性段属于低孔低渗储层,主要以Ⅳ储层为主。2、3、4和5岩性段属于中孔中渗储层,主要以Ⅲ类储层为主,是主要的产层段。6、7、8和9岩性段属于中孔低渗储层,主要为水层段。
     (3)东河砂岩段夹层主要分为三类:泥质砂岩夹层、灰质砂岩夹层和泥质灰质砂岩夹层。主要以泥质砂岩夹层和泥质灰质砂岩夹层为主,该类夹层在整个东河砂岩段都较发育,而灰质砂岩夹层相对最不发育且分布比较随机,厚度较薄。
     (4)油藏底部稠油段电阻率介于油层和水层之间,深、中、浅侧向电阻率之间的幅差较大,厚度大致在10m~15m之间,平均厚度约为11.54m。油藏压力变化及注水井吸水剖面分析结果都说明稠油段对油藏边底水的推进起到了明显的抑制作用。
     综合以上研究成果,建立油藏地质模型,计算油藏地质储量为2556.6万吨,稠油段储量为255.9万吨。
The Donghe 1 carboniferous oil reservoir is located at the Donghetang riftzone anticline tectonic belt in the middle section of the North Tarim Uplift. Donghe Sandstone belongs to the foreshore and beach shoreface microfacies of wide sea-based deposition, average sedimentary thickness is 250m, the overall evaluation on reservoir is medium porosity and permeability, reservoir type is the block bottom water oil reservoir. Until November 2010, the cumulative oil production of reservoirs is 794.2417×10~4t, the cumulative water injection is 1484.0×10~4m~3, and the water cut is 52.12%.There is the following problems now. Due to the large thickness of the reservoir, part of lithologic section division needs some further implementation. The development of vertical sandwich made reservoir heterogeneity serious. Beacause of heavy oil section in the bottom of reservoir, it is needed to figure out the distributional characteristics of heavy oil section and impact of heavy oil section for reservoir development. The contradiction between layers becomes more prominent when the water cut rises rapidly in the later development of reservoir and so on. To solve these problems, we must clearly understand reservoir characteristics of the region to establish the geological model which can accurately reflect the characteristics of reservoir geology. It is very significant for the adjustment for the later development programs.
     In this paper, on the bases of the actual situation of the Donghe 1 carboniferous oil reservoir, combing with the drilling, coring, core laboratory analysis, and dynamic performance data, it is researched on the reservoir fine contrast, reservoir characteristics, heavy oil distribution and its influence on the development. Based on previous research, it is established three-dimensional reservoir stochastic model, calculated the geology reserves and reserves of heavy oil section. In the paper, there are the following obtained results and understandings:
     (1)Donghe Sandstone section is divided into the upper and lower parasequence set, of which the lower part of parasequence sets belong to the fall deposition of sea level and the upper parasequence set belong to the deposition of the sea-level rising or sea into the land back to the plot. On the basis of divisons on parasequence set , Donghe Sandstone is furtherly divided into 5 parasequences and subdivided into 10 strata groups (lithologic).
     (2) Sandstone reservoir section is divided into five categories: ClassⅠis porosity>18%, permeability>100×10~(-3) m~2; ClassⅡis porosity of 17%~18%, permeability of 50×10~(-3) m~2~100×10~(-3) m~2; ClassⅢis porosity of 14%~17%, permeability of 10×10~(-3) m~2~50×10~(-3) m~2; ClassⅣporosity of 10%~14%, permeability of 3×10~(-3) m~2~10×10~(-3) m~2; ClassⅤof non-reservoir is porosity <10%, permeability <3×10~(-3) m~2. The lithologic Section 1 is low porosity and low permeability, and mainly belongs to class reservoir IV. The lithologic Section 2, 3,4 and 5 is medium porosity and medium permeability, and mainly belongs to class reservoir III which is the main producing layers. The lithologic Section 6, 7,8 and 9 are medium porosity and low permeability and the main section is the water layer.
     (3) The Sandwich of sandstone section is divided into three categories: muddy sandstone Sandwich, gray sandstone sandwich and muddy gray sandstone sandwich. The main classes are muddy sandstone Sandwich and muddy gray sandstone sandwich which are more developed in the entire Donghe sandstone, but the gray sandstone sandwich is the least developed and its distribution is random and thinner.
     (4) Heavy oil segment of Donghe Sandstone is characterized by logging response: The amplitude difference is large among Resistivity of flushed zone RXO, the lateral resistivity RM and deep lateral resistivity RD, resistivity of heavy oil is between the oil layer and water layer. The thickness of heavy section is of 10m~15m and the average thickness is about 11.54m. It is indicated that heavy oil segment in the bottom of Donghe sandstone plays a significant inhibition for the forward edge and bottom water of the reservoir by analysis of reservoir pressure and water injection wells profile.
     Finally, formation model of the Donghe sandstone in Donghe 1 Oilfield is established by the above results. According to the results of this model, geological oil reserves is 25.566 million tons and the reserves of heavy oil section is 2.559 million tons.
引文
[1]毕林锐,稠油测井识别方法研究[J].国外测井技术,2004,19(1):13~15.
    [2]陶开才,白音查干凹陷达尔其油田稠油层的识别与解释方法探讨[J].科研生产.
    [3]王佳凡,稠油储层交绘图识别方法研究[J].石油仪器,2006,20(5):61~67.
    [4]张卫兵,交绘图技术识别稠油储层的方法研究[J].石油仪器,2003.
    [5]邵春华,吐哈油田稠油层低阻成因分析及测井识别方法[J].石油仪器,2003.
    [6]李尊芝,辽河盆地杜229块复杂砂砾体稠油储层岩性识别方法研究[J].石油地质与工程,2007,21(3):24~26.
    [7]王宁,井楼油田低阻薄层稠油测井解释方法研究[J].石油天然气学报,2010,32(1):261~263.
    [8]韩宏恩,河南油田稠油油藏识别评价方法[J].四川地质学报,2010,30(1).
    [9]刘福利,哈萨克斯坦盐上浅层稠油水淹成因及识别方法[J].石油钻探技术,2007.
    [10]李玉泉,核磁共振测井在识别稠油水淹层中的应用[J].国外测井技术,2006,21(6):33~39.
    [11] Joao de D. S. Nascimento,用核磁共振和常规测井资料识别稠油——巴西深海储层研究实例[J].测井与射孔,2005.
    [12]田鑫,二维核磁共振测井识别稠油储层方法研究[J].核电子学与探测技术,2008.
    [13]熊国欣,核磁共振成像原理[M] .北京:科学出版社.2007.
    [14]黄隆基,核测井原理[M] .北京:石油大学出版社.2000.
    [15]中国石油天然气总公司勘探局,测序地层学原理及应用[M].北京:石油工业出版社.1998.
    [16]杜奉屏,油矿地球物理测井[M] .北京:地质出版社.1984.
    [17]肖立志,核磁共振测井原理与应用[M] .北京:石油工业出版社.2007.
    [18]熊国欣,核磁共振成像原理[M] .科学出版社.2007.
    [19] George R. Coates. Lizhi Xiao and Manfred G.Prammer, NMR Logging Principle and Applications,Hallihurton Energy Services 2000.
    [20] E,Galford and D,M,Marschall,Combining NUMR and Conventional Logs to Determine Fluid Volumes and Oil Viscosity in Heavy-Oil Reservoirs SPE 2000.
    [21] George R .Coates,et al. NMR logging principles & applications,Hosuton .Halliburton Energy Services,1999.
    [22] Cowan,B, Nuclear magnetic resonance and relaxation, Cambridge University Press, Cambridge, U.K.
    [23] K J. Dune,D.J.Bergaman G.A. Latorraca,Nuclear magnetic resonance petrophysical and log-ging applications , Seismic exploration , volume 32.
    [24] B.Sun, K J Dunn,B.J. Bilodesu, et a1 Two-di-mensional NMR Logging and Field Test Results. SPWLA 45th Annual Logging Symposium, PaperDD, June, 2004.
    [25] Jia ailin.The technology and methodology of reservoir geological modeling in the evaluationphase of oilfield development[C].SPE 50879,1998,67~75.
    [26]汤军.对储层建模的研究[J].石油天然气学报.2006.28 (3): 50~52.
    [27]韩登林,张昌民,李忠等.油气田开发中后期的储层三步建模法—以赵凹油田为例[J].地质科技情报.007.26 (5):109~112.
    [28]丁圣,林承焰等,油藏地质建模及实时跟踪研究[J].地球科学与环境学报.2010.32(1):70~75.
    [29]陈国飞,王加强.相控储层建模在大庆长垣杏56井区葡一组中的应用[J].石油天然气学报.2008.30 (2): 511~513.
    [30]李毓等,四川洛带遂宁组气藏微相精细建模研究及应用[J].成都理工大学学报(自然科学版).2009.36(4):362~366.
    [31]赵翰卿,付志国,吕晓光.储层层次分析和模式预测描述法[J].大庆石油地质与开发. 2004.23 (5): 74~78.
    [32]邓宏文,王红亮,祝永军.高分辨率层序地层学[M].地质出版社.2002.6.11.
    [33]王家华,张团峰.油气储层随机建模[M].北京:石油工业出版社.2001.
    [34]黄晓松等.利用多学科数据进行沉积相随机模拟研究[J].基础及前沿研究(中国科技信息).2010.9:46~47.
    [35]杜铭,郭康良.沙15块油藏储层相控建模研究[J].石油天然气学报.2006. 28 (6): 46~47.
    [36]孙洪泉.地质统计学及其应用[M].中国矿业大学出版社.1990.
    [37] Holden L, Hauge R, Skareφ?Modeling of fluvial reservoirs with object models [J]?Mathematical Geology, 1998, 30 (5): 473~495
    [38]兰丽凤等.曲流河砂体三维构型地质建模及应用[J].西南石油大学学报(自然科学版). 2010.32(4):20~26.
    [39]吴胜和,金振奎,黄沧钿等.储层建模[M].北京:石油工业出版社,1999.
    [40]杨永利.双河油田核三段Ⅶ上油组储层相控随机建模[J].石油天然气学报.2006.28 (5): 58~60.
    [41]刘立峰等.塔中地区碳酸盐岩储集相控建模技术及应用[J].石油学报.2010.31(6):952~958.
    [42]刘瑞兰,王泽华,孙友国等.准噶尔盆地车排子油田火成岩双重介质储集层地质建模[J].新疆石油地质. 2008.29 (4): 482~484.
    [43]王建,黄毓瑜,金勇等.基于测井数据的三维地质模型构建与可视化[J].测井技术, 2003, 27(5):410-412.
    [44]李毓,杨长青.储层地质建模策略及其技术方法应用[J].石油天然气学报.2009.31(3):30~35.
    [45]廖保方等.非均质河道砂体多级相控建模方法探讨[J].石油天然气学报.2010.32(3):32~37.
    [46]文华.多尺度信息用于精细地质建模[J].新疆石油天然气. 2010.6(3):58~62.
    [47]吕晓光,姜彬,李洁.密井网条件下的储层确定性建模方法[J].大庆石油地质与开发,2001, 20(5):19-25.
    [48]田景春,塔里木盆地东河塘组层序地层学研究[J].地球科学与环境学报,2007,29(2):130~136.
    [49]朱筱敏,塔里木中部地区东河砂岩段沉积特征和沉积环境演变[J].地质科学,2004,39(1):27~35.
    [50]顾家裕,塔里木盆地石炭系东河砂岩沉积环境分析及储层研究[J].地质学报.1996,70(2):153~162.
    [51]王招明,塔里木盆地晚泥盆世早石炭世东河砂岩沉积相[J].古地理学报,2004,6(3):289~296.
    [52]吴因业,塔里木盆地满西区块强制海退体系域沉积模式[J].石油学报,2003.
    [53]赵良才等,塔里木盆地东河油田总体开发方案[R].塔里木:中石油塔里木油田分公司勘探开发研究院(内部资料),1992.
    [54]孙龙德等,东河1油田开发调整方案[R].塔里木:中石油塔里木油田分公司勘探开发研究院(内部资料),1998.
    [55]开发所塔北室,东河油田中含水期调整方案研究[R].塔里木:中石油塔里木油田分公司勘探开发研究院(内部资料),2001.
    [56]塔里木油田勘探开发研究院,东河油田东河1石炭系油藏综合调整方案[R].塔里木:中石油塔里木油田分公司勘探开发研究院(内部资料),2006.
    [57] Baeon,J.R.,and R.H.KemPthorne,“Waterflood Oil Reeovery in Fractured Reservoirs,with Directionally Drilled Wells,”Society of Petroleum Engineering Journal ,August 1984,PP.375-381.
    [58]李海鹏.高含水期剩余油挖潜—以赵凹油田核三段Ⅳ3 1层系为例[D] .成都理工大学油气田开发地质. 2009.
    [59]纪友亮.层序地层学[M].同济大学出版社.2007.6.
    [60]中国石油天然气总公司勘探局.层序地层学原理及应用[M].石油工业出版社.2005.7.
    [61]王渝明,许运新,黄德利,李士奎,王幼梅,姜在兴,任海滨,马风成.陆相沉积地层油层对比方法[M].石油工业出版社.2001.7.
    [62]贾爱林.精细油藏描述及地质建模技术[M].石油工业出版社.2010.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700