山区高速公路岩堆边坡动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边坡按照性质可以分为岩质边坡和土质边坡,岩堆边坡作为岩质边坡的一种特殊情况,是岩石山坡经过物理、化学作用、形成岩石碎块、碎屑后,通过重力作用或雨水作用搬运至平缓山坡或山坡坡脚的疏松堆积物体。岩质边坡的动力问题求解主要分为拟静力法和数值模拟法,拟静力法的研究成果比较丰富,理论体系较成熟,但是有明显的缺点。而基于有限差分方法的FLAC程序,在岩土学界应用比较广泛。但是动力方面的边坡永久位移的研究相对较少,是目前该领域研究的热点和难点,特别是近两年地震频发,这就要求我们对动荷载作用下的岩质边坡的永久位移问题进行深入的研究。
     本文总结了边坡动力问题的研究现状,对有限差分原理进行了介绍,详细地总结和分析了动力求解方法,运用有限差分程序FLAC软件对岩堆边坡的永久位移的影响因素进行详细的分析,包括频率、持时、振幅、坡高和坡角五个方面。主要开展了以下工作:
     (1)在总结前人研究成果的基础上,将地震作用下边坡稳定性的影响因素归纳为边坡所处的地质背景、边坡的岩体结构类型和地层岩性组合、边坡的地形地貌条件以及边坡的水文地质条件等方面;
     (2)对边坡有限差分理论进行了详细的叙述,并对有限差分动力方程求解方法进行总结和分析,讨论了动力方程及计算方法、非线性动力方程和计算方法、M-C模型本构关系和屈服准则;
     (3)探讨了粘弹性边界条件的设置对计算结果的影响,主要得出了以下五个方面的结论:①动力输入时间对边坡的永久位移的影响,随着持续时间的增加,边坡的永久位移成增大的趋势;②边坡永久位移随着频率的增加反而呈现降低的趋势,低频地震波导致的边坡的永久位移值明显高于高频地震波,频率为10HZ是一个分界点,高于10HZ时,随着频率的增加,边坡的永久位移有明显的下降趋势,而10HZ-20HZ之间,边坡的永久位移没有太大的变化。说明边坡对动荷载的高频部分由过滤的作用;③振幅对位移的影响,随着振幅的增加,边坡的永久位移呈现明显的上升趋势,变化幅度很大;④边坡在受到地震荷载的作用下,其永久位移随着坡高的增大并不是单调的增加,本文中选取坡高H=15m,30m,45m,60m,75m,100m,120m,140m,150m,当坡高在15m-75m变化时边坡的永久位移呈现明显的增大趋势;当坡高在75m~100m变化时,边坡的永久位移基本上保持不变;当坡高在100m~150m变化时,边坡的永久位移呈现下降的趋势。这说明,边坡的坡高对边坡的永久位移的影响不是单调的,而是存在一个临界的坡高,大概是100m左右,当坡高小于临界坡高时,边坡的永久位移随着坡高的增加呈现增大趋势,当坡高超过临界坡高时,边坡的永久位移随着坡高的增加反而呈现下降的趋势;⑤边坡的坡角对边坡永久位移的影响,随着坡角的增加,边坡的永久位移呈现增大的趋势,当坡角超过60。时,坡角的改变对边坡的永久位移影响不是很大。
     (4)结合工程实际,对宜巴高速三里花岩堆边坡的永久位移进行了数值模拟计算,分析结果表明:在地震动荷载的作用下,1-1断面和2-2断面的最大永久位移分别为27.83cm和23.61m,出现在边坡的坡脚位置,这对工程实际具有指导意义。
According to property,slope can be devided into rock slope and soil slope. As a kind of rock slopes,slope of accumulation of rock mass has special geological conditions.It is formed by rock crumb which produced by physical and chemical action. The ways to analyze dynamic stability problem of rock slope can be classified as pseudo-static methods and numerical simulation methods. Although the achievements of Pseudo-static methods are abundant and theoretical systems matured, it still has many obvious defects.Based on the finite difference method,FLAC program is used widely in rock and soil engineering world.But little scholar make research on permanent displacement of slope committed by dynamic load.Especially in the past two years,earthquakes occured frequently.After all,it id necessary for us to make research on permanent displacement of slope commetted by dynamic load.
     This article summarizes the problem of slope dynamic situation.Based on the finite difference principle, a detailed summary and analysis of the dynamic solution method, the finite difference program FLAC software on the rock pile slope of the permanent displacement of a detailed analysis of the factors, including the frequency, duration, amplitude, and slope angle high five. Mainly to carry out the following work:
     (1)On the basis of previous achievements,the influence factor of slope stability under dynamic loads is classified as geological background,combination of the structure of slope an rock mass properties,conditions of terrain and landform and hydrogeology condition.
     (2)The paper describes the finite difference method detailly.The method to solve dynamic equation is summaried and analyzed.Dynamic equation and computing methods,nonlinear dynamic equation and calculation methods, Mohr-Colunm elastoplastic constitutive relations ang yield critertion are also discussed.
     (3)The influence patten of viscoelasticity boundary under equation of rock slope is discussed.The main following works has been done in this paper,①the influence of slope pernament displacement made by dynamic duration is dicussed, with increasing duration,the slope permanent displaceent increased.②the influence of slope permanent displacement made by frequency is debated in the paper,with increasing frequency,the slope permanent displacement is reduced all the while,③the influence of slope permanent displacement made by amplitude of vibration,④the influence of slope permanent displacement made by slope altitude,⑤the influence of slope permanent displacement made by slope angle.
     (4)Based on SanLiHua slope of acummulation of rock mass of YiBa highway projects,the paper has done nemerical simulated computation used flac2d program. And finally the dynamic response of SanLiHua acummulation of rock mass under seimic loade named kobe are analyzed,and some useful conlusions derived.
引文
[1]祁生文,伍法权等.岩质边坡动力反应分析.北京:科学出版社,2007
    [2]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算上坡稳定安全系数的精度研究[J].水利学报,2003,(1)21-27
    [3]顾功序,林庭煌,时振梁.中国地震目录.北京:地震出版社,1983
    [4]铁道部科学研究院西北研究所.滑坡文集.北京:科学出版社,1988
    [5]丁彦慧.中国西部地区地震预测方法研究.[硕士学位论文].北京:中国地质大学,1977
    [6]陈祖煜.土质边坡稳定性分析一原理·方法·程序.北京:中国水利水电出版社,2003
    [7]Mononobe. H. A. et al. Seismic stability of the earth dam, Proc.2nd Congress on large dams Washington DC. [N],1936
    [8]薛守义,王思敬,刘建中.块状岩体边坡地震滑动位移分析[J].工程地质学报,1997,5份):131-136
    [9]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993,223-224
    [10]王存玉,王思敬.地震条件下二滩水库岸坡稳定性研究,岩体工程地质力学问题(七)[M],北京:科学出版社,1987-6574
    [11]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68
    [12]祁生文.边坡动力响应及应用研究[D].博士学位论文.中国科学院地质与地球物理研究所,2002
    [13]祁生文.边坡动力反应分析[D].博士后出站论文.中国科学院地质与地球物理研究所,2004
    [14]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学E辑,2003,33(增刊):28-40
    [15]David K Keefer. Statistical analysis of an earthquake-induce landslide distribution-the 1989 Loma Prieta, Califomia event. Eng.Geol
    [16]李大池.地震与滑坡的关系研究及地震崩滑预测的探讨.中国科学院成都地理研究所编,1978
    [17]周本刚.张裕明.中国西南她区她震滑坡的基木特征.西北她质学报.1994,16(1):95-103
    [18]薛守义.岩体边坡动力性研究:学位论文1.北京:中国科技大学,1989
    [19]祁生文,伍法权,刘春玲等.地震边坡稳定性的土程地质分析.岩石力学与工程学报,23 (16):2792-2796
    [20]周维恒.高等岩石力学.北京:水利电力出版社,1990
    [21]张倬元,王士大,王兰生.工程地质分析原理.北京:地质出版社,1993
    [22]胡广韬.滑坡动力学北京:地质出版社,1995
    [23]毛彦龙,胡广韬,毛新虎等.地震滑坡启程剧动的机理研究及离散元模拟.工程地质学报2001,09(01),75-80
    [24]谢定义.土动力学[M].西安:西安交通大学,1988
    [25]Seed. H. B. Stability of earth and rockfill dams during earthquakes in Embankment-Dam Engrg.. [J]. Casa2 grande Vol (Eds Hirschfeld and Poulos). John Wiley.1973
    [26]Kramer S L, Smith M W. Modified Newmark model for seismic displacements of compliant slopes. J Geotech Engrg ASCE,1997,123(7):635-644
    [27]Seed H B. Consideration in the earthquake design of earth and rockfill dams. Geotechnique,1979,29(3): 215-218
    [28]李素华,朱维申.优化方法在弹性、横观各向同性以及弹塑性围岩变形观测反分析中的应用[J].岩石力学与工程学报,1993,12(2):105-114
    [29]吕涛,地震作用下岩体地下洞室响应及安全评价方法,中国科学院研究生院博士学位论文,武汉,2008
    [30]袁勇,孙钧.岩体本构模型反演识别理论及其工程应用[J].岩石力学与工程报,1993,12(3):232-239
    [31]龚晓南.2000.土工计算机分析.北京:中国建筑工业出版社
    [32]Wilson RC, Keefer DK. Dynamic analysis of slope failure from the 6 August 1979 Coyote Lake California Earthquake. B Seismol Soc Am,1983:863-877
    [33]Esposito E, Porfido S, Simolnelli Al, Mastrolorenzo q Laccarino G. Landslides and other surface effects induced by the 1997 Umbria-Marche seismic sequence. Eng Geol,2000,58(1):353-376
    [34]Harp EL, Jibson RW Inventory of landslide triggered by the 1994 North-ridge, California Earthquake. US Geol Surv Open File Rep,1995,17:95-213
    [35]CarroM, DeAmicis M, Luzi L, Marzorati S. The application of predictive modeling techniques to landslides induced by earthquakes:the case study of the 26 September 1997 Umbria-Marche earthquake (Italy). Eng Geol,2003,69(1):139-159
    [36]Terzaghi. K. Mechanisms of landslide, Engineering Geology (Berdey) Volume.1950: Geo-logical Society America
    [37]Newmark N. M. Effects of earthquakes on dams and embankments. Geotechnique,1965, 15(2):139-165
    [38]程谦恭,胡厚田,彭建兵等.高边坡岩体渐进性破坏粘弹塑性有限元数值模拟,工程地质,2000,8(1):26-30
    [39]刘明维,郑颖人.基于有限元强度折减法确定滑坡多滑动而方法.岩石力学与工程学报,2006,25(8):1544-1549
    [40]梁庆国,韩文峰,马润勇等.强地震作用下层状岩体破坏的物理模拟研究.岩土力学,2005,26(8):1307-1311
    [41]肖克强.地震荷载作用顺层岩体边坡变形特征及稳定性研究:[学位论文].北京:中国科学研究生院,2006
    [42]冯德益.地震波理论与应用,北京,地震出版社,1988:57-68
    [43]丁彦慧,王余庆,孙进忠等.地震崩滑与地震参数的关系及其在边坡震害预测中的应用.地球物理学报,42(5):101-106
    [44]Seed H.B and K.L.Lee Id. Liquefaction of Saturated Sanda During Cyclic Loading. Soil Mech Found.Div, ASCE, (May),1966,93(3):83-106
    [45]李海波,蒋会军,赵坚等.动荷载作用下岩体工程安全的几个问题.岩石力学与工程学报,2003,22(11),1887-1891
    [46]Poulous S J, Castro G,France J W. Procedure for liquefaction evaluation. J Geotech Engrg ASCE,1985,111(6):772-792
    [47]Gazetas G.Seismic response of earth dams some recent develoments. Soil Dyn Earthq Engrg.1987,6(1):30-47
    [48]Yegian M K, Lahlaf, A M. Dynamic interface shear strength properties of geomembrabes and geotexiles. J Geotech Engrg ASCE.1992,118(5):760-779
    [49]Halatchev R V. Probabilistic stability analysis of embankment and slopes. Proceeding of the international conf on ground control in mining,1992,432-437
    [50]Al-homond A S, Tahtamoni W W. Reliability analysis of three dimensional dynamic slope stability and earthq induced permanent displacement. Soil Dyn and earthq engrg, 2000,19(2):91-114
    [51]廖振鹏.论结构物的竖向地震输入.地震工程与工程振动,1983,3(2):74-88
    [52]孙玉科.边坡岩土稳定性分析.北京:科学出版社,1 987
    [53]胡广韬.滑坡动力学.北京:地质出版社,1995
    [54]黄建梁,王威中.坡体地震稳定性的动态分析.地震工程与工程震动,1997,17(4):113-122
    [55]廖振鹏.工程波动理论导论(第二版).北京:科学出版社,2002
    [56]廖振鹏.近场波动数值模拟.力学进展,1997,27(2):193-212
    [57]吴世明.土动力学.北京:中国建筑出版社,2001
    [58]徐志英,周健.奥罗维尔土坝三维简化动力分析.岩土工程学报,1996,18(7):82-87
    [59]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析.地震工程与工程振动,2001,21(21):1 16-120
    [60]卢增木.顺层岩石高边坡的稳定性研究.武汉:中国科学院武汉岩土力学研究所硕士论文,2005.
    [61]中国科学院武汉岩土力学研究所.沪蓉国道主干线湖北省宜昌至恩施高速公路高边坡稳定性初评报告,2004,6.
    [62]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析.中国工程科学,2002,4(10):57-61,78.
    [63]刘波,韩彦辉(美国).FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700