基于激光干涉的水表面声波探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下目标的特征提取及识别技术是未来海洋工程所要研究的主要技术之一。本文的研究目的是从水表面声波中提取出水下声场信息,为航空遥测潜艇等水下目标的进一步探索奠定技术基础。
     本文研究基于激光干涉的水表面声波探测技术,从水面散射光和参考光的干涉信号中解调出水表面声波的频率和振幅等信息,从而实现水下目标的探测。围绕这一主题,主要进行如下的研究工作:
     以基尔霍夫理论为基础,提出水面散射场强度空间分布的理论模型,并进行实验验证。借助格林定理得到水面散射场强度的积分表达,分析水面散射光强与入射角、散射角、入射光强、入射光波长、观测距离、介质折射率等诸多因素的定量关系。着重探讨入射光与散射光的几何条件、水表面声波振幅、波长对散射光强的影响,并进一步研究散射场强度和相位的概率分布问题,进行水下声场信息的探测效率评估。
     研究激光干涉法探测水表面声波的原理,分析水面散射光与参考光干涉信号的时域和频域图谱特征。分别阐述无水下声源、单一水下声源和多个水下声源时水表面声波频率和振幅信息的计算方法。在光学暗室下建立了一套采用该方法探测水下声信号的实验装置,实现了发声频率在100Hz-18kHz的水下目标的实时探测。
     为精确获取水下声源的发声频率,研究水下声信号频率提取技术。针对干涉条纹上出现的短时间尺度的高频相位变化,采用局部数据处理技术解调出水下声信号的频率信息,实验结果表明:相对误差为0.7%,标准偏差小于8Hz。由于小波分析在时域和频域都有表征信号局部信息的能力,本文探讨小波及小波包在水声信号检测中的应用,把原始干涉信号的高频载波成分剥离并重构,更加准确的获取水下声场信息。解调出的中高频水下声信号频率相对误差为0.3%,标准偏差小于5Hz。
The feature extraction and recognition of underwater objects is one of the major techniques to be studied in future ocean engineering. The purpose of the present study is to extract underwater acoustic information from the acoustic waves on the water surface and lay a technological foundation for the further exploration into the aeronautical telemetering of underwater objects,such as submarines.
     This paper proposes a water surface acoustic detection technique based on laser inference. The frequency and amplitude information of acoustic waves on the water surface is demodulated from the interference signals of the scattered light and reference light on the water surface in order to detect underwater objects. The following work has been done concerning this topic:
     A theoretical model for the spatial distribution of the intensity of water-surface scattered field is proposed on the basis of Kirchoff's theory and the simulation and experimental verification have been conducted. Green's theorem is used to derive the integral expression of the intensity of the water-surface scattered field and quantitative relations between the intensity of water-surface scattered light and many factors such as incident angle, scattering angle, microscopic fluctuation of the water surface, intensity of incident light, wavelength of incident light, observation distance, and refractive index of medium. Focused discussion is performed about the effects of the geometric conditions of the incident light and scatter light and the amplitude and wavelength of acoustic waves on the water surface on the intensity of scattered light. The further research is done on the probability distribution of the intensity and phase of scattered field. The efficiency of underwater acoustic information detection is evaluated.
     The basic mechanism by which the laser interference process is used to detect acoustic waves on the water surface is studied, and the time-domain and frequency-domain spectral characteristics of the signals of inference between scattered light and reference light on the water surface are analyzed. Calculation methods for the frequency and amplitude of sound waves on the water surface are explained respectively in the absence of underwater acoustic sources, in the presence of a single underwater acoustic source, and in the presence of multiple underwater acoustic sources. A set of experimental equipment is set up in a photographic laboratory to detect underwater acoustic signals with such methods and the real-time detection is realized for underwater objects with acoustic frequencies ranging 100Hz-18kHz.
     The underwater signal frequency extraction technique is studied in order to obtain the precise acoustic frequencies of undertaker acoustic sources. For the short-time-scale HF phase changes in the interference fringes, a local data processing technique is used to demodulate the frequency information of underwater acoustic signals. Experimental results show that: the maximum relative error is 0.7% and the standard deviation is smaller than 8Hz. As wavelet analysis is capable of characterizing local information of signals in both the time domain and frequency domain, this paper discusses the application of wavelets and wavelet packets in the detection of underwater sound signals. The components of HF carrier waves of the original inference signals are separated and reconstructed in order to obtain more accurate underground acoustic information. The maximum relative error of the frequencies of demodulated MF and HF underwater sound signals is 0.3% and the standard deviation is smaller than 5Hz.
引文
1刘雄,张绳,蔡勇.潜艇隐蔽性建模与仿真研究.船舰科学技术. 2009, 31(8): 103~107
    2贺岩,王文奎,夏文兵,臧华国,崔雪梅,陈卫标,马力.激光多普勒振动计用于水下声光通信.中国激光. 2007, 34(5): 703~706
    3王磊,常书刚.潜艇噪声与综合降噪技术的应用.航海技术. 2007, (2): 44~48
    4 Kummert A. Fuzzy technology implemented in sonar systems.IEEE J. of Oceanic Eng., 1993, 18(4): 483~490
    5汪海洋.基于可见光航空遥感的水下目标自动识别技术研究.南京理工大学博士学位论文.南京:南京理工大学. 2008: 1~2
    6 LI Qihu, WANG Jinlin, WEI Wei. An application of expert system in recognition of radiated noise of underwater target.Beijing:Institute of Acoustics, Chinese Academy of Sciences, 1989: 404~408
    7刘贯领,凌国民,严琪.主动声纳检测技术的回顾与展望.声学技术. 2007, 26(2): 335~340
    8 Lourens J G, du Preez J A. Passive sonar ML estimator for ship proceller speed.IEEE J. of Oceanic Eng., 1998, 23(4): 448~453
    9 Strand, M.P. Underwater electro-optical system for mine identification. Dectection Technologies for Mines and Minelike Targets. SPIE, 1995: 487~497
    10 Steinvall, O., Koppari, K., Lejdebrink, U., Winell, J., Nilsson, M., Ellsén, R., Gjellan, E. DepthSounding Lidar-Performance and Models.Laser Radar Technology and Applications. Orlando: SPIE, 1996: 18~38
    11 M.P. Strand, B.W,Coles, A. J. Nevis,R.F.Regan. Laser line-scan fluorescence and multispectral imaging of coral reef environments.Ocean Optics XIII. SPIE: 1997: 790~795
    12 Hickman G D. Maccabee B S and C E,Feasibility study of airborne bathymetric sensing using the CO2 laser/acoustic technique (Brighton dam test results). AD A094694, 1980: 124~129
    13 Hickman G A,Edmonds J A. laser/acoustic ice thickness measurements. AD A221726, 1987: 450~457
    14 Hickman G A,Gerardi J J. laser/acoustic system for vertical profiling buried and surface ice. PB94-144326, 1990: 121~128LI Qihu, WANG Jinlin, WEI Wei. An application of expert system in recognition of radiated noise of underwatertarget.Beijing:Institute of Acoustics, Chinese Academy of Sciences, 1989: 404~408
    15 H. F. Pollard. Sound waves theory[M]. Pion London, 1997: 135~197
    16沈中华.激光声表面波的若干应用研究进展.红外与激光工程. 2007, 6(36): 239~244
    17 Hirao M, Fukuoka H , Horik. Acousto - elastic effect of Rayleigh wave in isotropic material [J]. Journal of Applied Mechanics, 1981,48(3): 119~124
    18张亚妮,苗润才.表面声波的激光检测技术.激光杂志. 2006, 27(2): 6~8
    19 WEISBUCH G, GARRBAY F. Light scattering by surface tension waves.Am J Phys, 1979, 47: 355~356
    20 R.Aaler, A. korntl Q P. Desmares. An instrunlent for making surface wave visible [J]. IEEE Trans. Sonics ulfrason, 1965, SU-15: 157~161
    21 J. P. Monchalin. Optical detection of ultrasound [J]. IEEE Trans. UItrason. Ferroelectr. Freq. Control UFFC-33, 1986: 485~499
    22 D.A. Larson, T.D. Black, M. Green, R.G. Torti &Y. J. Wang. Optical modulation by a traveling surface acoustic wave and holographic reference grating [J]. Journal Optics Society of America A, 1990, 7(9): 1745~1750
    23 Hsieh E.A Progress Report on the Advaneed Sensor and Survey Braneh Oeean Optics Laboratory. Internal Report, 1986: 327~335
    24 Maecabee B S. Laser induced underwater sound.Ultrasonics Symposium, Internal Meeting, 1987: 125~129
    25 LeeMS, BourgeoisBS, HsiehST, et al.. A laser sensing scheme for detection of Underwater Acoustic signals. Conference Proceedings 1998 IEEE South Knoxville, in USA,1988: 253~257
    26 Lee P.H.Y., J.D.Barter, K.L.et al. Resent advance in ocean surface characteriza- tion by a scanning laser slope gaugein optics of the air sea interface : Theory and measurement [C]. L. Estep. Ed , Proc SPIE, 1992, 1749: 234~244
    27 J. D. Barter. Surface strain modulation of insoluble surface filmproperties [J]. Phys. Fluids, 1994, 6(8): 2606 ~ 2616
    28 J. D. Barter &Lee P.H.Y. Real-time wave-amplitude spectrum analyzer for air- liquid interfaces [J]. Applied Physics Letter, 1994, 64(15): 1896~1898
    29 J. D. Barter. Imaging surface - wave analyzer for liquid surfaces [J]. Applied Optics, 1997, 36(12): 2630~2635
    30 J.D.BARTER, P.H.Y.LEE. Real-timewaveamplitude spectrum analyzer for airliquid interfaces. App. l Phys. Let,t 1994, 64(15): 1896~1898
    31 Antonelli Lynn T., Kenneth M. Walsh, Andrew Alberg. Laser interrogation of air - water interface for in- water sound detection initial feasibility tests [J]. J.Acoust. Soc. Am., 1999, 106(4): 2298
    32 Antonelli Lynn T., Ivars Kisteins. Empirical acousto-optic sonar performance versus water surface condition [C]. OCEANS, Proc. MTS/IEEE, 2001, 3: 1546 ~ 1552
    33 Antonelli Lynn T. Fletcher Blackmon. Experimental investigation of optical, remote, aerial sonar[C]. OCEANS, Proc.MTS/IEEE, 2002, 4: 1949~1955
    34 R. Daniel Ferguson. Servo tracking system utilizing phase-sensitive detection of reflectance variations[U]. U. S.Patent 5943115, 1999
    35 Antonelli Lynn T. Fletcher Blackmon. Experimental investigation of optical, remote, aerial sonar [C]. OCEANS, Proc.MTS/IEEE, 2002, 4: 1949~1955
    36 Antonelli Lynn T., L. P. Kirsteins. Bearing estimation error analysis using laser acoustic sensor measurements on ahydrodynamic surface[C]. Proc. Oceans 2000 MTS/IEEE Confer ence, 2000, 2: 999~1004
    37 Antonelli Lynn T., Fletcher Blackmon, Lewis Meier III. Acousto-optic localization using a dynamic, spatio-temporal array [C]. OCEANS, Proc. MTS/IEEE, 2005, 1: 1~8
    38 BEHROOZI F,PERKINS A.Direct measurement of the disper-sion relation of capillary waves by laser interferometry.Am J Phys, 2006, 74: 957
    39 BARIK T K,ANUSHREE A,KAR S.A simple experiment on diffraction of light by interfering liquid surface waves.Am J Phys, 2005, 73: 725
    40 SAKAIK,CHOIPK,TANAKAH,etal.A new lightscattering tech-nique for awide- band ripplon spectroscopy at theMHz region .Review ofScientific Instruments, 1991, 62 (5): 1192~1195
    41 Fletcher Blackmon., Lee Estes, Gilbert Fain. Linear opto-acoustic underwater communications [J]. Appl. Opt., 2005, 44(18): 3833~3845
    42 Fletcher A. Blackmon, Lynn T. Antonelli. Experimental detection and reception performance for uplink underwater acoustic communication using a remote, in- air, acousto- optic sensor [J]. IEEE J . Ocean. Eng., 2006, 31(1): 179~187
    43 Kenneth M. Walsh, Lynn T. Antonelli. Photon Transducer[U] U. S. Patent 6188644, Feb. 2001
    44崔桂华,李荣福,田作喜.激光遥感探测水下声信号的研究.船舰科学技术. 2002, 24(1): 46~50
    45宫彦军,江荣熙,李晓伟,孙金祚.利用激光从散射光中提取水下声信号的探测技术.烟台大学学报(自然科学与工程版). 2003, 16(1): 38~42
    46苗润才,时坚,赵晓凤.干涉法测量低频表面波的衰减系数.光子学报. 2005, 34(3): 382~385
    47罗道斌,苗润才,刘香莲,朱峰.低频液体表面波的光衍射及衰减特性的研究.激光技术. 2007, 31(6): 584~586
    48祁建霞,苗润才,董军.光衍射法测量低频液体表面波衰减系数.激光技术. 2008, 32(5): 496~498
    49戴振宏,孙金祚,隋鹏飞.水下声源引起的水表面横向微波的理论研究.国防科技大学学报. 2004, 26(1): 95~98
    50宫彦军,毕冬梅,吴汉华,江荣熙,孙金祚,吴振森.水下声场激励水表面横向微波的色散关系.吉林大学学报(理学版). 2006, 44(5): 723~726
    51秦慧平,黄时中,丁绪星.激光探测水下声信息的计算与分析.安徽师范大学学报(自然科学版). 2007, 30(4): 451~454
    52秦慧平,丁绪星,王再见.水下声信号光电探测技术的实验研究.激光技术. 2008, 32(3): 290~292
    53尚建华,贺岩,臧华国,等.新型声光通信激光多普勒信号的鉴频电路[J].中国激光. 2008, 35(1): 92~96
    54王燕,方尔正.激光通量变化法探测水下声信号.南京理工大学学报(自然科学版). 2009, 33(1): 69~73
    55陈洁.激光探测水下目标方法研究.哈尔滨工程大学博士论文. 2009: 56~61
    56向艳红,赵寿根,杨林华.关于微小振动的激光多普勒测量.强度与环境. 2009, 36(6): 50~54
    57曹青华,彭仁军,吴键,等.激光在湍流大气中的干涉仿真[J].应用光学. 2006, 27(4): 312~314
    58蒋礼,罗少轩,阳艳,等.用迈克尔逊干涉仪测量全息干板膜厚度[J].应用光学. 2006, 27(3): 250~253
    59朱日宏,陈磊,王青,等.移相干涉测量术及其应用[J].应用光学. 2006, 27(2): 85~88
    60王淑珍,谢铁邦.基于激光干涉的接触式微位移测量仪.工具技术. 2010, (44): 105~107
    61曹勇,熊伟,沈斌,王飞.激光干涉原理在振动测量中的应用.现代电子技术. 2009, (21): 210~212
    62 Yeh Y, Cummins H Z.Localized Fluid Flow Measurments with an He-Ne Laser Spectrometer.Applied Physics Letters, 1964, 4(10): 176~178
    63 Kroeger R D. Motion Sensing by Optical Heterodyne Doppler Detection from Diffuse Surface.Proc.of the IEEE, 1965, 53(2): 211~212
    64 Barker L M, Hollenbach R E.Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials. Rev. Sci. Instrum. 1965, 36(11): 1617~1620
    65 Barker L M.In Behavior of Dense Media under High Dynamic Pressure. Gorden and Breach,N.Y.,1968, 483~505
    66 Johnson J N,Barker L M.Dislocation Dynamic and Stead Plastic Wave Profiles in 6061-T6 A luminum.J.Appl Phys., 1969, 40(11): 4321~4334
    67 Simpson D,Smy P R.Optical Mixing of Laser Radiation Reflected from a Shock Wave.J.Appl.Phys.,1969, 40(12): 4928~4932
    68 Maron Y .Interferometric Method for Measuring High Velocities of Diffuse Surface. Rev.Sci. Instrum., 1978, 49(11): 1598~1599
    69 Barker L M,Hollenbach R E.Laser Interferometric for Measuring High Velocities of any Reflecting Surface.J.Appl.Phys.,1972, 43(11): 4669~4675
    70 Intergrated optical units for laser anemometry,Durst F., Whitelaw, J.Phys. E.Sci. Isrtum. 4, 1971
    71 Amery B T.Wide Range Velocity Interferometer.Proc.Of the 6th Symposium on Detonation, AC-R-221, Office of Naval Research,Dept.Of the Navy, Arlington, VA, 1976: 673~681
    72 Hemsing W F.Velocity Sensing Interferometer (VISAR) Barker L M.Multi- BEAM VISAR for simultaneous Velocity vs.Time Measurements,Shock Compression of Condensed Matter-1999,ed.BY M.D.Furnish 2000: 999~1002
    73 Sweatt W C, Stanton P L,Crump OB.Simplified VISAR System. SAND-90- 2149C, 1990: 1504~1509
    74 K. J. Taylor. Absolute calibration of microphones by a laser Doppler technique [J]. J. Acoust. Soc. Am., 1981, 70(4): 939~945
    75 Hemsing W F, Mathews A R,Warmes R H,Whittemore G R.VISAR: Line- Imaging Interferometer. LA-UT-90-2320, 1990: 1352~1357
    76 JMIES J, LUCAM, HKKIWELL N Aet al. Torsional and bending vibrationmeasurement on rotor using laser technology [ J]. Journal of Sound and Vibration, 1999, 226(3): 441~467
    77 HALLIWELLNA.The laser torsionalvibtometer: a step forward in rotating machinery diagnostics [J]. Journal of Sound and Vibration,1996, 190(3): 399~418
    78 BEELL JR, ROTHBERG S J.Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: whatdowe measure [J]. Journal of Sound and Vibration, 2000, 237(2): 245~261
    79 HALLIWELLN A,HOCKNELLA,ROTHBERG J.On themeasurement of angular vibration displacement: a laser tiltmeter [J]. Journal of Sound and Vibration, 1997, 208(3): 497~500
    80 C.E.Riva, B.L.Petrig,R.D.Shonat and C.J.Pournaras,Scattering Process in LDV from Retinal Vessels, Appl. Opt. 28, 1989: 1078~1083
    81 Ralph P.Tatam,Special Issue on Optical Flow Measurement Recent Advances and Applications,Optics and Laser in Engineering, 1997: 27,529~530
    82 K.Patorski, M.Kujawinska, Automatic Interferogram Analysis, Optics and Laser in Engineering, 1991: 14, 235~237
    83齐永岳,赵美蓉,林玉池.高精度单频激光干涉仪的设计与试验研究.传感器与微系统. 2009, 28(4): 50~53
    84周秀云,张涛,程玉华.高精度高测速双纵模热稳频激光干涉仪研究,电子科技大学学报. 2009, 38(3): 451~454
    85郑小兵.随机表面光散射的研究和应用综述.量子电子学报. 1999, 16(2): 97~104
    86 Beckmann P, Spizzichino A, The Scattering of Electromagnetic Waves from Rough Surfaces.London: Pergamon Press, 1963
    87 Renau J, Cheo P K,Cooper H G. Depolarization of linearly polarized EM waves backscattered from rough metals and inhomogeneous dielectries. J. Opt. Soc. Am., 1967, 57(4): 459~466
    88 Bahar E.Roview of the fullwave solutions for sough surface scattering and depo1arizationcomparison with geometric and physical optics perturbation and two-scale solutions.J.Geoghys.Res., 1987, 92: 5209-5224
    89 Nieto-Vesperinas M.Garcia N.A detailed study of the scattering of scalar wave from random rough surfaees.OPtica Acta, 1981, 28(12): 1651~1672
    90 Wolf E.A generalized extinction theorem and its role in scattering throry. Coherence and Quantum Optics.New York: Plenum Press, 1973: 339~357
    91 Brooks L D. Microprocessor-based instrumentation for bidirectional reflecetance distribution function(BRDF) measurement from visible to far infrared (IFR). SPIE, 1980: 257
    92 Dewitt D P.Description and evaluation of a bidirectional reflectance factor reflectometer.(NASA)NAS-9-14016-75-76, 1975
    93 Stockham Lee W. A description of the DFAN bidirectional reflectometer and bidirectional reflectance characteristics of stainless steel 304.DFAN TR 72-3, Technical Report, 1972
    94 Nicodemus F E.Geometrical considerations and nomenclature for reflectance,National Technical Information Service PB-273439, 1977.
    95 Weidner V R,Hsia J J.Reflection properties of pressed polytetrafluoroethylene power.J.OPt.Soc.Am., 1981, 71(7): 856~861
    96 Guissard A, Baufays C, Sobieski P.Sea surface description requirement for electromagnetic scattering calculaitions.J Geophy.Res., 1986, 91(C2): 2477~ 2492
    97 Mendez E R, O’Donndl K A.Obseration of depolarization a backscattering enhancement in light seattering from Gaussian random surfaces.Optics Communcations, 1987, 61(2): 91~95
    98 Leskova T A et al.Enhanced backscattering of light from a ramdomly rough interface between a dipole-active medium and a dielectric.SPIE, 1997, 3141:139~151
    99 Luna R E et al.Scatteting by one-dimensional random rough metallic surfaces in a conical configuration.Optics, Letters, 1995, 20(7): 657~659
    100 O’Donndll K A et al. Experimental study of scattering from characterized random surfaces.J.OPt.Soc.Am.A, 1987, 4: 1194~1205
    101 Kim,M.J.,Dainty,J.C.,Friberg,A.T.and Sant,A.J.,”Experimental study of enhanced backscattering from one-and two-dimensional random rough surfaces,”J.Opt.Soc.Am.A,Vol.7, 569~577, 1990
    102 Knotts, M.E.and O’Donnell, K.A.,”Measurements of light scattering by a series of conducring surfaces with one-dimentional roughness,”J.Opt. Soc. Am.A. Vol.11, No.2, 697-710, Feb., 1994
    103 O’Donnell, K.A.and Knotts, M.E.,”Polarization dependence of scattering from one dimensional rough surfaces,”J.Opt.Soc. Am.A. Vol.8, No.7, Ju, 1991: 1126~1131
    104 Luna, R.E.and Mendez, E.R,”Scattering by one-dimensional random rough metallic surfaces in a conical configuration,”Optics letters,Vol.20 No.7. Apr. 1995: 657~659
    105 Novikov, I.V.and Maradudin, A.A.,”Stokes matrix in conical scattering from a onedimensional randomly rough mental surfaces,”SPIE Proc.3141, Scattering and Surface Poughness, 1997: 171~185
    106 Leskova,T.A.,Maradudin,A.A. and Shchegrov,A.V.,Enhanced backscattering of leght from a ramdomly rough interface between a dipole-active medium and a dielectric,”SPIE Vol. 3141, 1997: 139~151
    107金亚秋.随机粗糙面上后向散射的增强.物理学报. 1989, 38(10): 1611, 1619
    108吴健,何毅,冯志超.粗糙表面激光散射镜反射方向的边凸现象.科学通报. 1993, 38(9): 782~785
    109赵得康,等.微粗糙度光散射研究: (l)散射角分布全空间测量系统.激光与红外, 1993, 23(3): 49~51
    110吴振森,韩香蛾.不同表面反射率谱和激光双向反射分布函数的研究.军用目标特性和传输特性“八五”技术成果论文集(光学特性部分). 1996: 384~393
    111魏庆农,等.双向反射分布函数的绝对测量方法.光学学报. 1996, 16(10): 1425~1430
    112郑小兵.随机表面光散射的数值分析.博士论文.中科院安徽光机所. 1998
    113童创明,黄泽贵,胡国平,王积勤.低掠入射时分形粗糙面散射的高阶微扰解.电波科学学报. 2007, 22(1): 148~152
    114马保科,郭立新,马东英.一维粗糙面散射的射线追踪法研究.光散射学报. 2007, 19(3): 268~271
    115杨超.粗糙海面电磁散射的小斜率近似方法.系统工程与电子技术. 2009, 31(8): 1814~1818
    116潘永强,吴振森,杭凌侠.表面上方微粒及微粗糙度偏振光散射特性.光学技术. 2009, 35(4): 611~614
    117杨杰,吴凡.粗糙表面可见光散射特性的实验研究.中国测试. 2009, 35(2): 125~128
    118闫沛文,童创明,邓发升.基于BMIA\CAG快速算法的粗糙面散射特性计算.上海航天. 2008, 28(2): 19~22
    119井绪峰,谭玉贵,张俊超,滕树云,程传福. Sinc相关随机表面及光散射的数值计算.山东师范大学学报(自然科学版). 2008, 23(2): 43~45
    120刘鹏.三维粗糙面散射中IRBC的FFT加速计算.北京邮电大学学报. 2009, 32(1): 77~80
    121蔡喜平,李惠民,刘剑波,等.主动式光学三维成像技术概述.激光与红外. 2007, 37(1): 22~25
    122陈士英,张平贵,卢俊平.激光雷达技术及其在大气环境监测中的应用.内蒙古科技与经济. 2010, 2(总204期): 85~86
    123李交通,朱海.机载激光雷达系统水下最大探测深度分析.四川兵工学报. 2009, 30(1): 113~114
    124陈利,贾友,张尔严.激光雷达技术及其应用.河南理工大学学报(自然科学版). 2009, 28(5): 583~586
    125王建宇,洪光烈,卜弘毅,徐卫明,肖功海,何志平,林均仰,舒嵘.机载扫描激光雷达的研制.光学学报. 2009, 29(9): 2584~2589
    126毛建东,华灯鑫,何廷尧.小型米散射激光雷达的研制及其探测.光子学报. 2010, 39(2): 284~287
    127郑发泰,华灯鑫,周阿维. Mie散射激光雷达大气回波信号经验模式分解算法的研究与应用.中国激光. 2009, 36(5): 1068~1074
    128张贵彦,袁宏韬,缪同群.一种测量光学表面粗糙度的全积分散射仪.红外与激光工程. 2007, 36(增刊): 265~269
    129张楠,陶正苏,郭瑞鹏.一种基于光散射原理在线测量晶圆表面质量的方法.传感器与微系统. 2007, 26(8): 104~106
    130 Wolff L B.Diffuse reflection from smooth dielectric surface.SPIE, 1993, 1995: 26~44
    131 Sangston K J.Analytical aspects of ultrawideband sca scatter.SPIE, 1997, 3066: 52~63
    132王小青,余颖,陈永强,朱敏慧.海面散射仿真中不同波浪谱和松弛率模型选取的对比研究.电子与信息学报. 2010, 32(2): 476~480
    133闫沛文,童创明,邓发升.不同风速下海洋粗糙面散射系数的计算.上海航天. 2006, 4: 23~26
    134耿志祥,陈遵田.考虑时间因子的激光引信海面散射模型.探测与控制学报. 2009, 31(3): 64~67
    135郑小兵.随机表面光散射的数值分析.中国科学院安徽光学精密机械研究所博士学位论文.合肥:安徽光学精密机械研究所. 1998: 23~24
    136张德丰. MATLAB小波分析.机械工业出版社, 2009: 158~181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700