纳米冷冻机油对HFC134a饱和蒸气压影响规律的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过将系统中的冷冻机油置换为纳米冷冻机油的方式,在制冷系统中应用纳米粉体材料是提高设备能效、延长设备寿命的重要方法。
     本文通过实验的方法考察纳米粒子在冷冻机油中的分散稳定性,在此基础上,开展添加纳米粒子的含油制冷剂饱和蒸气压的研究,以期为纳米粒子在含油制冷剂中的应用提供基础数据,同时对纳米粒子在含油制冷剂中的作用机理进行分析,探索纳米冷冻机油对制冷剂饱和蒸气压影响的规律。
     主要工作包括:
     1.纳米冷冻机油的制备及其分散稳定性研究
     通过超声震荡和添加合适的分散剂的方法,制备出纳米CuO冷冻机油和纳米NiFe2O4冷冻机油并采用沉降观测法和紫外-可见吸收光谱法考察了所制备的纳米冷冻机油的分散稳定性。
     研究发现:
     (1)通过添加合适的分散剂可以改善纳米粒子在矿物油中的分散稳定性,且对应一定含量的纳米粒子,分散剂有一个最佳的量,并非越多越好;
     (2)震荡加热时需选择低频率超声分散方式和合适的低温,才能达到较好的分散稳定效果;而利用加热箱直接加热时,高温条件下得到的纳米冷冻机油的分散稳定效果较好。
     2.纳米冷冻机油对制冷剂饱和蒸气压影响规律的实验研究
     采用稳态法,在263k~323k范围内,首先测量了纯制冷剂R134a和R22的饱和蒸气压,通过与NIST提供的标准数据相比较,最大偏差分别为-0.191和-0.183;标准偏差分别为0.095和0.103,验证了测试系统的精度。
     在263k~323k范围内,分别测量了纯制冷剂、含油制冷剂、含分散剂油溶胶的制冷剂和含纳米冷冻机油制冷剂的饱和蒸气压。
     测试结果表明:
     (1)含油制冷剂的饱和蒸气压小于纯制冷剂的饱和蒸气压,二者之间的差值随着冷冻机油含量的增加而增大;
     (2)在冷冻机油含量相同的条件下,矿物油对R22饱和蒸气压的影响大于POE油对R134a饱和蒸气压的影响;
     (3)在不含纳米粒子的条件下,矿物油对R134a的饱和蒸气压的影响小于POE冷冻机油相对R134a的饱和蒸气压的影响。其中:含量为5%时,矿物油:最大偏差为-0.627,标准偏差为0.376; POE油:最大偏差为-2.514,标准偏差为0.839;
     (4)在含油量相同的条件下,分散剂矿物油溶胶对R134a饱和蒸气压的影响与相应的纯矿物冷冻机油的影响相当。其中:含量为5%时,矿物油:最大偏差为-0.627,标准偏差为0.376; SDBS油溶胶:最大偏差为-0.365,标准偏差为0.216; Span80油溶胶:最大偏差为-0.827,标准偏差为0.530;
     (5)含有纳米冷冻机油的制冷剂的饱和蒸气压低于含油制冷剂或纯制冷剂的饱和蒸气压,差值随着纳米冷冻机油含量的增加而增大;
     (6)矿物纳米冷冻机油对R134a饱和蒸气压的影响与相应的纯POE冷冻机油的影响相当。其中:含量为5%时,纯POE油:最大偏差为-2.514,标准偏差为0.839;纳米CuO冷冻机油:最大偏差为-2.128,标准偏差为0.745;纳米NiFe2O4冷冻机油:最大偏差为-2.658,标准偏差为0.828。
Application of nano-powder materials in refrigeration system, by way of replacing refrigeration oil with nano refrigeration oil, is an important means to improve the energy efficiency of a refrigerator as well as to extend the equipment life.
     In this paper, dispersion stability of nano-particles in nano refrigeration oil was studied by experiments. The saturated vapor pressure of refrigerant that mixed with mineral nano refrigeration oil was measured. The purpose of this paper is to provide base data for application of nano-particles in the refrigerant that mixed with mineral oil, and to analyze the mechanism of nano-particles in the refrigerant that mixed with mineral oil as well as to explore the rule that impaction of nano refrigeration oil on the saturated vapor pressure of refrigerant.
     The main works included:
     1. Preparation of nano refrigeration oil and its stability.
     Nano-CuO refrigeration oil and nano-NiFe2O4 refrigeration oil ware prepared by means of ultrasonic concussion and adding appropriate dispersant. By way of observation of settlement and UV-visible absorption spectroscopy, the dispersion stability of nano refrigeration oil was estimated.
     The results show that:
     (1) Adding appropriate dispersant could significantly improve the dispersion stability of nano-particles in mineral oil, and corresponds to a certain content of nano-particles, the amount of dispersant had an optimal value, not the more the better.
     (2) In order to achieve good dispersion stabilizing effect, that concussion heating should choose the low-frequency ultrasound and suitable low temperature, however when using the heating tank, high temperature is better.
     2. Impaction of nano-refrigeration oil on the saturated vapor pressure of refrigerant.
     By way of the steady-state method, the saturated vapor pressure of pure refrigerant R134a and R22 were measured at the range of 263k~323k. The test data were compared with the standard data provided by NIST to verify the reliability of test system and the accuracy of the test data. The maximum deviation were -0.191 and -0.183 respectively, standard deviation were 0.095 and 0.103 respectively.
     At the range of 263k~323k, the saturated vapor pressure of pure refrigerant and that of the mixtures of the refrigerant respectively mixed with mineral refrigeration oil, dispersion oil sol, and mineral nano refrigeration oil were measured.
     The results as fellows:
     (1) The saturated vapor pressure of refrigerant mixed with mineral refrigeration oil is lower than that of the pure refrigerant, and the difference between them is higher as the mass fraction of refrigeration oil increased;
     (2) Under the condition of the same mass fraction of refrigeration oil, impaction of mineral oil on the saturated vapor pressure of R22 is greater than that of POE oil on the saturated vapor pressure of R134a.
     (3) When there is no nano-particles, impaction of mineral oil on the saturated vapor pressure of R134a is less than that of POE on the saturated vapor pressure of R134a. Where, when the mass fraction is 5%, Mineral oil: maximum deviation is -0.627, standard deviation is 0.376; POE oil: maximum deviation is -2.514, standard deviation is 0.839;
     (4) When with the same mass fraction of refrigeration oil in the refrigerant, impaction of dispersion mineral oil sol on the saturated vapor pressure of R134a is equivalent that of the pure mineral refrigeration oil on the saturated vapor pressure of R134a. Where, when the mass fraction is 5%, Mineral oil: maximum deviation is -0.627, standard deviation is 0.376; SDBS oil sol: maximum deviation is -0.365, standard deviation is 0.216; Span80 oil sol: maximum deviation is -0.827, standard deviation is 0.530;
     (5) The saturated vapor pressure of refrigerant mixed with nano refrigeration oil is lower than that of refrigerant mixed with pure mineral oil or that of pure refrigerant, and the difference falls as the mass fraction of nano refrigeration oil drops;
     (6) Impaction of mineral nano refrigeration oil on the saturated vapor pressure of R134a is equivalent that of pure POE on the saturated vapor pressure of R134a. Where, when the mass fraction is 5%, Pure POE oil: maximum deviation is -2.514, standard deviation is 0.839; Nano-CuO refrigeration oil: maximum deviation is -2.128, standard deviation is 0.745; Nano-NiFe2O4 refrigeration oil: maximum deviation is -2.658, standard deviation is 0.828;
引文
[1] Yu B FWu Y Z,Wang Z G. Phase-out and Replacement of CFCs in China. Bulletin of the International Institute of Refrigeration[J]. 2000, LXXX: 2-11
    [2] David A Diddion.The Application of HFCs as Refrigeration[C].Twentieth of refrigeration,Sydned.Auserial,2000,6:73-76
    [3] Crswick,F.A,Fischer.S.K,Sand.J.R.Potential Impacts of CFC Restrictions On Rsfrugeration and Space-conditioning Equipment[J].International Journal of Refrigeration 1998:217-221
    [4]王汝霖.润滑剂摩擦化学[M].北京:中国石油化工出版社,1994,10:278-293
    [5]王瑞祥,邹德宝,张秋丽等.纳米颗粒用于制冷系统的可行性分析[J].流体机械,2003.31(增刊):120-124
    [6]邹德宝.纳米颗粒对HFC/矿物冷冻机油工质体系作用的初步研究[D].北京:北京建筑工程学院,2004,6
    [7] Wang Ruixiang,Hao Bin,Zou Debao.An Investigation on a Refrigerating System Using HFC134a+Minaral Refrigeration Oil Blends Nano-particles TiO2 as Working Fluids[C].Proceeding of 4th International Conference on Compressor and Refrigeration,Xi’an,China,2003,10:313
    [8] Zou Debao, et al.Investigation on the Action of Nano-particles on the Solubility and Miscibility of Mineral Lubricant Oil and HFC Refrigerant[C]. Proceedings of the 4th International Conference on Compressor and Refrigeration. Beijing ,2003,461-469
    [9]王瑞祥,纳米技术在制冷领域的应用介绍[J].家电科技,2005,6-7
    [10] Pawel K,Eastman A,David C.Nanafluids for Thermal Transport[J].Materialstoday, 2006,6: 35-44
    [11] Ma Xuehu,Su Fengmin,Chen Jiabin,et al.Heat and mass transfer enhancement of the bubble absorption for a binary nano fluid[J].Journal of Mechanical Science and Technology,2007,21:1813-1818
    [12] Li Xinfang,Zhu Dongsheng,Wang Xianju.Evaluation od dispersion behavior of the aqueous cooper nano-suspensions[J].Journal of Colloid and Interface Science,2007,310(2):456-463
    [13] Hwang Y J,Ahn Y C,Shin H S,et al.Investigation on characteristics of thermal conductivity enhancement of nanofluids[J].Current Applied Physics,2006,6: 1068-1071
    [14]李泽梁,李俊明,王补宣等.SDBS对氧化铜纳米颗粒悬浮液粘度的影响[J].工程热物理学报,2003,24(5):849-851
    [15] Zhang Lingling,Jiang Yunhong,Ding Yulong,et al,Investigation into thenanofluids[J].Journal of Nanoparticle Research,2007,9:479-489
    [16] Chopkar Manoj,Das A K,Manna I,et al.Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool[J].Heat Mass Transfer,2008,44: 999-1004
    [17]单凤军,高杰,贾文乐.纳米TiO2粉体分散性的研究[J].化学工程,2006,34(1): 52-54
    [18]牛永效,王毅,王恩德等.聚丙烯酸钠对纳米SiO2分散稳定性能的影响[J].东北大学学报,2008,29(11):1641-1644
    [19]汪谨,许煜汾.超细粉体在液相中分散稳定性的研究[J].合肥工业大学学报,2002,25(1):123-126
    [20]杨卉,张幼珠.纳米氧化锌的分散性研究[J].印染助剂,2005.22(12):12-14
    [21] Choi S U S,Eastman J A.Enhanced heat transfer using nanofluids,US, 6221275[P].2001-04-24.
    [22] Lo Chih Hung,Tsung Tsing Tshih,Chen Liang Chia,et al.Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system(SANSS)[J]. Journal of Nanoparticle Research,2005,7:313-320
    [23]王涛,骆仲泱,郭顺松等.可控纳米流体的制备及热导率研究[J].浙江大学学报(工学版),2007,41(3):514-518
    [24]Goodwin,A.R.H.The vapor pressure of 1,1,1,2-tetrafluoroethane (R134a) and chlorodifluoromethane (R22) [J] International Journal of Thermophysics, 1992 13(5):837-854
    [25]Januarius V. Widiatmo, Saturated-Liquid Densities and Vapor Pressures of 1,1,1-Trifluoroethane, Difluoromethane, and Pentafluoroethane[J], J. Chem. Eng. 1994,39(4):304-308
    [26]L. A. Weber, Vapor Pressures and PVT Properties of the Gas Phase of 1,1,1-Trifluoroethane[J] J. Chem. Eng. 1996, 41(6), 1477-1480
    [27]肖红,刘晖.R134a蒸气压的Antoine常数[J],化学工程,1995,23(1):75-77
    [28]余大启,李卓毅,曹炳阳等. R134a PVT性质的分子动力学模拟[J],工程热物理学报, 2003, 24(6) 929-931
    [29]王忠伟,段远源,孟龙等. HFC-134a和HFC-236fa饱和蒸气压的实验研究[J]工程热物理学报增刊, 1997, 25(4):16-20
    [30]周斌,章伯其.制冷工质HFC-134a热物理性质参数计算[J].江南大学学报,2005,4(4):390-393
    [31]李立,朱明善.一个HFC-134a的专用状态方程[J].工程热物理学报,1993,14(3):234-237
    [32]朱明善,吴江,张天孙.新的HFC134a蒸气压方程[J].工程热物理学报,1991,12(1):8-11
    [33]D.P.Wilson and R.S.Basu.”Thermodynamics Properties of a NewStratosphericallt Sofe Working Fluid-REFRIGERANT134a”.the ASHRAE summer meeting,June,1988
    [34]H.Kubota, T.Yamashita, Y.Tanaka and T.Makita,”Vapor Pressure of New Fliorocarbons”, Reprinted from International Jounal of Thermophysics, 10,3,1989
    [35]C.C.Piao H.Sato and K.Watanabe,”a Study of Thermodynamic Properties of CFC Alternative R134a”,The Ninth Japan Symposium on Thermophysical Properties, 1989
    [36]L.A.Weber,”Vapor Pressure and Gas-Phase PVT Data for 1,1,2-Tetrafluorethane”, Reprinted form International Jounal of Thermophysics,10,3,1989
    [37]王怀信,马一太,吕灿仁等.HFC134a的蒸气压与临界参数实验研究[J].工程热物理学报,1993,14(2):122-124
    [38]魏文建,丁国良,胡海涛等.R410A制冷剂和POE VG 68润滑油混合物热物性模型[J].科技报道,2007,28(1):37-44
    [39]曹晓林,黄东,刘春雨.油/制冷剂蒸气压、比容和粘度的计算[J].流体机械,1998,27(5):57-59
    [40] W·L·Martz,C·M·Burton,A·M·Jacobi,Vapor–liquid Equilibria for R22,R134a,R125,and R32/125 with a polyol ester lubricant: measurements and departure from ideality[J],ASHRAE Trans·1996 102 (2):367–374
    [41]Hughes D.W. McMullan J.T. Mawhinney K.A, etal, pressure enthalpy charts for mixtures or oil and refrigerant R12[J]. International Journal of refrigeration, 1982.5(4): 199-202
    [42]傅烈虎,王瑞祥,丛伟等.应用纳米添加剂的冰箱性能实验研究[J].西安交通大学学报学报,2008,42(7):852-854
    [43]毕胜山,史琳等.纳米制冷剂冰箱性能的实验研究[J].清华大学学报,2007,47(11):1999-2002
    [44]张秋丽.A型二氧化钛微粒对矿物冷冻机油粘度影响的研究[D].北京建筑工程学院硕士学位论文,2005
    [45]雍翰林,毕胜山,史琳.HFC134a/TiO2纳米粒子工质体系应用于冰箱的实验研究[C].中国制冷学会,第四届全国制冷空调新技术研讨会,南京:东南大学出版社,2006,581-585
    [46]郝斌.采用纳米介质的矿物油/HFCs制冷系统初步实验研究[D].北京建筑工程学院学位论文,2002
    [47] Jin-Kyeong Kim.Numerical design of ammonia bubble absorber applying binary nanofluids and surfactants[C].International Journal of Refrigeration,2007,30 (6) : 108-109
    [48] Jin-Kyeong Kim.Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids[C].International Journal of Refrigeration, 2007,30(1):50-57
    [49] Jin-Kyeong Kim.The effect of nano-particles on the bubble absorptionperformance in a binary nanofluid[J].International Journal of Refrigeration,2006, 29(1):26-29
    [50] Choi Stephen US.Enhancing Thermal Conductivity of Fluids with Nanoparticles [J].American Society of Mechanical Engineers, Fluids Engineering Division(Publication)FED,1995,231:99-105
    [51] Eastman J A, Chio U S and Li S et al. Enhanced Thermal Conductivity through the Development of Nanopaiticles[J].In Komarneni S, Parker J C and Wollenberger H J. Nanoparticles and Nanocomposite Materials,MRS,Pittsburgh,1997,3-11
    [52] Lee S,Chio U S.Application of Metallic Nanoparticles Suspension in Advanced Cooling Systems[J].ASME,PVP,1996,1:182-191
    [53]宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2007,21(4):466-470
    [54] Maxwell-Garnett J C.Colors in metal glasses and in metallic films[J].Philos Trans Roy.Soc A,1904,203:385-420
    [55] Bruggeman D A G.Berechnung verschiedener physikalischer konstanten con heterogenen substanzen(I): Kielekt rizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen.A nnlen der Physik.Leipzig,1935,24:636-679
    [56] Chen G. Particularities of heat conduction in nanostructures[J].Nanoparticle Res,2000,2:199-204
    [57]彭小飞,俞小莉,夏立峰等.纳米流体有效热导率预测[J].化工学报,2007,58(2): 299-303
    [58]谢华清等.氧化铝纳米粉体悬浮液强化导热研究[J].硅酸盐学报,2002 ,30(3): 272-275
    [59]Wang Buxuan, Zhou Leping, Peng Xiaofeng.Thermophysical properties ofnanoparticles suspension and size effect on specific heat capacity of nanoparticles·J·Engineering Thermophysics(China), 2004,25(2): 296-298
    [60]Xuan Yimin, Li Qing. Simulations of structure and thermal conductivity of nanofluids·J·Engineering Thermophysics(China),2002,23(2): 206-208
    [61]姜未汀,丁国良,王凯建.基于颗粒团聚理论的纳米制冷剂导热系数计算[J]上海交通大学学报,2006(08)
    [62] Q J Xue, W M Liu,Z J Zhang.Sintering characteristics of nano-crystalline materials[J].Wear,1997,213:29-32
    [63] Dong J X,Chen G X,Luo X M,et al.A new concept—formation of permeating layer from nonactive antiwear additives[J].Lubrication Engineering,1994,22:124-128
    [64] L. Rapoport,V. Leshchinsky et al.Tribological properation of WS2 nanoparticles under mixed lubrication[J].Wear,2003,255:785-793
    [65] Zj Zhang,J Zhang,QJ Xue.J.Phy.Chem,1994,98:12973-12977
    [66]叶斌,陶德华,孟令和.纳米(CF)x及添加剂在绿色润滑油基础油中的减摩抗磨性能[J].中国粉体技术,2003,(4)
    [67]郭志光,顾卡丽,徐建生.纳米润滑添加剂的润滑自修复效应[J].材料保护,2003,1:36-39
    [68]张立,王会东,张龙华.几种纳米润滑油添加剂在齿轮油中的应用研究[J].纳米科技,2006,3:7-10
    [69]徐建生,夏会芳,周红星等.纳米铜作润滑油添加剂的性能研究[J].2008,30(2):105-107
    [70]乔玉林,徐滨士.纳米微粒的润滑和自修复技术[M].北京:国防工业出版社,2005,9(1):157-158
    [71]李佳民,孙勇,张兆国,等.纳米粉体的分散[J].科技信息,2006,6:18
    [72]王文波,刘玉芬,申书昌.表面活性剂实用仪器分析[M].北京:化学工业出版社,2003:106
    [73]殷海青.光度分析中工作曲线偏离朗伯-比尔定律的原因[J].青海师专学报,2004,(5):63-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700