SLF/ELF观测系统研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过广泛而深入的调研,作者深刻地认识到大功率、人工源的超低频/极低频电磁波技术已经成为当今国际地球物理学界所瞩目的一个新兴的研究领域,并在地震监测预报、矿产资源勘探、核废料处理以及环境保护等方面具有广泛的应用前景。但是,在我国,目前人工源的超低频/极低频电磁波发射台的研究刚刚起步,还没有相应的超低频/极低频观测系统。本论文正是针对观测系统的研究而开展。经过详细、深入的研究,论文获得了以下的研究成果:
    1、研究总结了人工源超低频/极低频电磁信号接收的关键技术。人工源的超低频/极低频电磁信号观测系统的主要功能是在强干扰背景下接收、检测人工源超低频/极低频发射台发射的单一频率的信号,其关键在于采用相关检测技术和提高频谱分析的频率分辨率,最终提高信噪比。
    2、实现了对人工源超低频/极低频微弱信号的准确检测。虽然人工源的超低频/极低频发射台发射的信号功率很大,但经过远距离的传播后,功率会变得很小,从而被淹没在强背景噪声中,使得信号的信噪比很低。传统的检测方法对于这种微弱信号检测有很大困难,不适合于超低频/极低频观测系统。因此本项研究中采用了相关检测技术,通过软件完成互相关算法,在不增加设备硬件的情况下,实现了强背景噪声下人工源的超低频/极低频电磁波信号的检测。
    3、编写了应用于观测系统的频率细化计算处理软件。鉴于采用常规的FFT方法进行频谱分析时,如果频率分辨率要求较高,则运算量和存储量会显著增加的问题,论文中采用了基于复调制的频率细化技术,编写了应用于观测系统的频率细化计算处理软件,大大减少了FFT运算量和存储量,取得了很好的应用效果。
    4、研究分析了发射台信号频率抖动对观测精度的影响。通过数值模拟方法,研究分析了发射台信号频率抖动对观测精度的影响。据此,在观测精度要求一定时,可确定对发射信号频率稳定度的要求,或在发射信号频率稳定度已知时,可估计出信号的实际的观测精度。
    5、设计并研制了高灵敏度的感应式磁传感器。传统的感应式磁传感器(灵敏度约为100μV/nT)无法满足超低频/极低频观测的精度要求,论文在分析观测系统要求和功能的基础上,总结、分析了感应式磁传感器的设计理论,并提出了一系列设计原则和方法,成
After reading a lot of papers related to Super/Extremely Low Frequency (SLF/ELF)electromagnetic wave, the author finds out that the artificial SLF/ELF electromagnetic wavetechnique today has become a new research field attracting much attention of geophysicistsall over the world and can be used to earthquake monitoring and prediction, reconnaissance ofresources, nuclear waste disposing and environment protection. However, the SLF/ELFtransmitter facility just starts to be constructed in our homeland, and there is no correspondingSLF/ELF receiver system. Therefore, this thesis focuses on the study of developing thesystem. Some important results are obtained as follows.
    1. Summarizing the key techniques of the artificial SLF/ELF. The main function of thereceiver system is the receiving and detection of electromagnetic signal from SLF/ELFtransmitter facility in the presence of strong background noise. For receiving techniques, itis crucial to use the correlation detection technique and improve spectral resolution.
    2. Detecting the weak SLF/ELF signal of known frequency. Although the power of thesignal from SLF/ELF transmitter facility is very powerful, it will become very weak aftera long distance transmission and submerge in strong noise, which often causes very lowsignal-to-noise ratio (SNR). Because it is difficult to detect the weak SLF/ELF signal inthe presence of strong background noise using traditional methods, the correlationdetection technique is used to optimize the SNR and carried out by the correlationalgorithm without any additional hardware. The test results indicate that the weak signalcan be detected very well.
    3. Programming the Zoom FFT algorithm suitable for the receiver system. The FFTalgorithm is widely used in spectral analysis for digital signal, but if the high resolutionspectrum is desired, more FFT points must be used, which is bound to result in the sharpincrease of data storage and operation of arithmetic. In order to solve this problem andobtain the given high resolution spectrum, zoom FFT with the technique of complexmodulation is used in the system, and the corresponding codes are written. The test resultsshow that it has dealt with the problems well.
    4. Analyzing the effects of instability of signal frequency on observation precision. By thenumerical simulation method, the effects of frequency shift on observation precision havebeen studied in detail. The results show that in order to get desired signal observationprecision, the stability of the signal frequency must reach a certain level. Or when thestability of the signal frequency is given, what the signal observation precision can bedetermined.
    5. Designing and developing high sensitivity induction coil magnetometer (ICM). Because
    the normal ICM (the sensitivity about 100 μV/nT) can not satisfy the observationprecision of the SLF/ELF receiver system, high sensitivity ICM is needed to be developed.On the basis of the analysis of the requirements and functions of receiver system, thetheory of ICM is summarized and a series of design principles and methods are proposedin the thesis. Then high sensitivity ICM is developed. After testing, the results show thatthe major specifications of ICM have achieved the level of the same products in the world:frequency ranges from 10 to 4000Hz;expanded frequency ranges from 1 to 10Hz;andsensitivity is 15mV/nT;The sensitivity can reach 150 mV/nT when combining with thereceiver system。6. Designing and writing the data acquisition and data processing software. The dataacquisition software used by measurement part and data processing software used by thesystem controlling part are designed and written using the assembly language and the VBlanguage, respectively. After testing, the results suggest that the software can be operatedeasily and conveniently and runs stably, which indicates the software is able to satisfy therequirement of long time and continuous work of the receiver system.7. Developing and testing the receiver system. The design scheme is proposed based on theanalysis of the requirements and key techniques of the receiver system. And the techniqueproblems during the development of the system are analysed and solved step by step.Then the receiver system is developed. Through test in field, the results show that thesystem specifications have achieved the design requirement, its major parameters haveachieved the level of the same products in the world: frequency ranges from 4 to 300Hz;resolution of spectrum can reach 0.001Hz and the dynamic range is more than 80dB,theminimum magnetic variation which can be detected is 0.01nT and the minimum telluricvariation is 0.5mV/km. The system runs stably and can be used for long time andcontinuous work in field.In the system test, the source is a simulated signal but not a practical one. So in the future,in order to improve the system, it is needed to receive the signal from the SLF/ELFtransmitter facility for a long time.
引文
Saraev A, Kostkin P M, Ivochkin V.G. Features of polarization of the ELF radio station electromagnetic field[J]. Physics of the Solid Earth, No7: 50-55, 1998.
    Fraser-Smith A.C, Bannister P R.Reception of ELF signals at antipodal distances[J]. Radio Sciences, 33(1): 83-88, 1998.
    A.C.Fraser-Smith, A.Bernardi, P.R.McGill, et al. Low-frequency Magnetic Field Measurements Near the Epicenter of The Ms7.1 LOMA PRIETA Earthquake[J]. Geophysical Research Letter, 17(9):1465-1468, 1990.
    A.K. Saraev, M. Pertel, Z. Molkin. Correction of the electromagnetic monitoring data for tidal variations of apparent resistivity[J]. Applied Geophysics, 49: 91-100, 2002.
    Saraev A.K, Pertel M.I, Parfentev V.E, et a1.Experimental study of the electromagnetic field from a VLF radio set for the purposes of monitoring seismic activity in the North Caueasus[J].Physics of the Solid Earth, 35(2):101-108, 1999,
    JOHNSTON M, UYEDA S. Electromagnetic Methods for Monitoring Earthquakes and Volcanic Eruptions[Z].IUGG, JSA15/GA 1.18, 1999.
    Johnston M.Review of electric and magnetic fields accompanying seismic and volcanic activity[J].Surveys in Geophysics. 18:44l-475, 1997.
    Scholz C H, Sykes L R, Aggarwal Y P, Earthquake prediction:A physical basis[J]. Science, 181, 803- 810, 1973,
    HUANG Qinghua, NAGAO Toshiyasu.Seismic quiescence before the 2000 M=7.3 Tottori earthquake[J].Geophysical Research Letter, 29(12):191—194, 2002.
    SHALIMOV S, GOKHBERG M, Lithosphere-ionosphere coupling mechanism and its application to the earthquake in Iran on June 20, 1990.A review of ionosphere measurement and basic assumptions[J].Physics of the Earth and Planetary Interiors, 105:211-218, 1998.
    G.O. Cress, B.T.Brady, G.Airowell. Sources of Electromagnetic Radiation from Fracture of Rock Samples in the Laboratory[J], geophysical Research Letters, 14,14,331-334, 1987.
    CARLOS A. ALTGELT , THE WORLD'S LARGEST "RADIO" STATION , www.oldradio.com /article/jurassic/elf.doc
    Trond Jacobsen. ZEVS, THE RUSSIAN 82 Hz ELF TRANSMITTER-An Extreme Low Frequency transmission-system, using the real longwaves, http://www.vlf.it/zevs/zevs.htm.
    U.S. Inan, T.F. Bell. Polar aeronomy and radio science ulf/elf/vlf project, http://www.uaf.edu/ gradsch/PARS.html, 2001
    E.A.Hoyer, R.F.Stork. The Zoom FFT Using Complex Modulation. IEEE Proc, ICASSP, 78-81, 1997.
    V. Galdi, V. Pierro, and I. M. Pinto. Evaluation of stochastic-resonance-based detectors of weak harmonic signals in additive white Gaussian noise[J]. PHYSICAL REVIEW E, 57(6): 6470-6479, 1998.
    M.E.Inchiosa, A.R.Bulsara. Signal Detection Statistics of stochastic resonator[J]. PHYSICAL REVIEW E, 53(3): R2021-R2024, 1996.
    A. Stephan, K.-M. Strack. A simple approach to improve the S/N ratio for TEM data using multiple receivers[J]. GEOPHYSICS, 56(6): 863-869, 1991..
    赵国泽, 陆建勋. 利用人工源超低频电磁波监测地震的试验与分析[J]. 中国工程科学, 5(10): 27-32, 2003a.
    王祥书. 大地电阻率在超低频/极低频电波传播技术中的作用[J]. 地震地质, 23(4): 574-580, 2001.
    刘国栋. 电磁法及电法仪器的新进展和应用[J].石油地球物理勘探, 第 39 卷增刊, 46-51, 2004.
    赵国泽, 汤吉, 邓前辉, 等. 人工源超低频电磁波技术及在首都圈地区的测量研究[J]. 地学前缘(中国地质大学, 北京), 10(特刊): 249-255, 2003b.
    国家地震局科技监测司. 地震电磁观测技术[M].北京: 地震出版社, 1996.
    赵国泽, 刘铁胜, 江钊等. 山西阳高—河北容城剖面大地电磁资料的二维反演解释[J]. 地球物理学报, 40(1): 38-46, 1997.
    G.波斯坦道弗著, 徐世浙,冯洛玕译. 大地电磁勘探原理[M]. 北京: 地质出版社, 1980.
    石应骏, 刘国栋, 吴光耀等. 大地电磁测深法教程[M]. 北京:地震出版社, 1985.
    刘国栋, 陈乐寿, 大地电磁测深研究[M]. 北京: 地震出版社, 1984.
    陈乐寿, 王光锷, 大地电磁测深法[M]. 北京: 地质出版社, 1990.
    M.A.萨多夫斯基, 施良骐, 郭才华, 王光根译. 地震电磁前兆[M], 北京: 地震出版社, 1986.
    郭自强. 地震低频电磁辐射研究[J]. 地球物理学报, 37(增刊Ⅰ):261- 267. 1994.
    魏文博.我国大地电磁测深新进展及瞻望[J]. 地球物理学进展, 17(2): 245-254, 2002.
    翁爱华, 刘国兴. 西方大地电磁测深法理论发展现状[J]. 世界地质, 17(1): 60-65, 1998
    钱家栋, 曹爱民.1976年唐山7.8级地震的电阻率和地下水前兆综合物理机制研究[J]. 地震, 18(增刊):1-9, 1998.
    卓贤军, 赵国泽. 一种资源探测人工源电磁新技术[J]. 石油地球物理勘探,39(增刊): 114-117, 2004.
    安海静, 赵家骝, 赵和云, 等. 大地电磁场的两种大震短临异常[J]. 西北地震学报, 26(2): 168-173, 2004.
    郝建国, 李德瑞, 张云福, 等. 震前极低频电磁异常及其频谱特征[J]. 地震学报, 17(1): 81-88, 1995.
    马宗晋, 傅征祥等.中国九大地震[M].北京: 地震出版社, 1982
    关华平, 张洪魁, 鲁跃等, 怀来台震前超低频电场与地震关系研究[J], 地震, 19(2): 142-148, 1999
    魏文博, 邓 明, 谭捍东, 等.我国海洋大地电磁探测技术研究进展[J]. 地震地质23(2): 131-137, 2001.
    唐宇雄, 地震电磁学的应用现状与发展趋势[J], 物探装备, 11(2): 122-123, 2001
    赵从利, 詹志佳, 高金田, 沈文志 , 北京地磁测网调整与地震预测研究[J], 西北地震学报, 25(3): 275-280, 2003
    毛桐恩. 中国震前电磁波观测与试验研究[J]. 地球物理学报,32(专辑Ⅰ): 500-504, 1989.
    钱书清, 陈智勇, 李彦堂,等. 大同5.5级地震前的电磁前兆信号[J]. 地震地磁观测与研究, 17(1):54-60, 1996.
    李彦堂, 郭 勇. 地震前电磁信息观测[J]. 地震学报,13(1):121-124, 1991.
    袁家治, 高桥耕三, 钱书清,等. ULF 和 VLF 地震电磁辐射的观测与研究[J]. 地震学报[J], (18)2: 272-275, 1996.
    关华平, 刘桂萍. 震前电磁辐射异常与地震关系研究[J]. 地震学报, 17(2): 237-246, 1995.
    马钦忠, 尹京苑, 顾学章. 崇明异常电磁扰动与台湾 7.5 级强震[J]. 地震, 23(4): 49-56, 2003.
    关华平, 陈智勇, 余素荣. 首都圈及其邻近地区电磁辐射映震效果研究[J]. 地震, 20(1): 65-70, 2000.
    张德齐, 王盛飞, 张念孝. 临震电磁波前兆的观测研究[J]. 地震学报, 9(4):434-442, 1987.
    张云琳, 安海静, 刘晓玲, 等. 青海共和 7.0 级地震临震电磁辐射前兆振幅谱的研究[J]. 地震学报, 15(2): 186-193, 1993.
    李兴才, 曹惠馨, 俞铁宏, 等. 一种可能的地震 ULF 电磁发射现象[J]. 地震学报, 17(3):375-382, 1995.
    詹志佳, 赵从利, 高金田, 等. 北京地区震磁研究的进展与展望[J]. 地震, 22(1):50-54, 2002.
    詹志佳, 高金田, 张洪利, 等. 震磁前兆研究[J]. 地震研究, 19(4): 340-345, 1996.
    任熙宪, 祁贵仲, 詹志佳. 唐山地震前后北京地区地磁总强度的变化[J]. 地震学报, 6(3): 271-286, 1984.
    安四喜, 陈秀儒. 大地电磁测深法的现状、作用及发展趋势[J]. 石油地球物理学报, 33(增刊1), 164-167,174, 1998.
    郝建国, 张云福, 潘怀文等. 震前极低频电磁异常及其频谱特征[J]. 地震学报, 17(1):81-88, 1995
    吴 云, 乔学军, 周义炎. 利用 GPS 探测震前电离层 TEC 异常[J]. 大地测量与地球动力学, 25(2): 36-40, 2005.
    钱书清, 吕 智, 任克新. 地震电磁辐射前兆不同步现象物理机制的实验研究[J]. 地震学报, 20(5): 535-540, 1998
    郝建国, 张云福. 地震静电预测学[M]. 北京: 石油大学出版社, 2001
    修济刚, 吴培稚, 张德齐. 地展电磁辐射研究的进展. 国际地展动态[J], 10, 1-5.1993
    潘怀文. 中国地震电磁观测系统发展展望[J]. 地震,(增刊): 115-119, 1998.
    高晋占. 微弱信号检测[M]. 北京: 清华大学出版社, 2004.
    戴逸松. 微弱信号检测方法与仪器[M]. 北京: 国防工业出版社, 1994.
    应启珩, 冯一云, 窦维蓓. 离散时间信号分析和处理[M]. 北京, 清华大学出版社, 2001
    赵家骝, 苏明达, 王燕琼. ZD9 大地电场仪[J], 西北地震学报, 17(1): 69-74, 1995.
    曾庆勇. 微弱信号检测[M]. 浙江大学出版社, 1986.
    史习智. 信号处理与软计算[M]. 北京: 高等教育出版社, 2003.
    王兰炜, 赵家骝, 王子影, 王燕琼. 相关检测技术在甚低频电磁接收机研制中的应用[J]. 西北地震学报, 4, 2004.
    赵家骝, 陈才军. 地电测量中的干扰和抑制[J]. 西北地震学报, 2(3): 31-38, 1980.
    John G.Proakis, Dimitris G.Manolakis 著. 张晓林译. 数字信号处理:原理、算法与应用[M]. 北京: 电子工业出版社, 2004.
    胡广书. 数字信号处理—理论、算法与实现[M]. 北京: 清华大学出版社, 1997
    陈 平, 罗 晶等. 现代检测技术[M]. 北京: 电子工业出版社, 2004.
    薛年喜. MatLab 在数字信号处理中的应用[M]. 北京: 清华大学出版社, 2003.
    熊 皓. 电磁波传播与空间环境[M]. 北京: 电子工业出版社, 2004.
    景占荣, 丰彦等. 信号检测与估计[M]. 北京: 化学工业出版社, 2004.
    沈红卫. 基于单片机的智能系统设计与实现[M]. 北京: 清华大学出版社, 2005.
    沙占友. 智能传感器系统设计与应用[M]. 北京: 电子工业出版社, 2004.
    吴湘淇, 聂 涛. 数字信号处理技术及应用[M]. 北京: 中国铁道出版社, 1986.
    张宗橙, 张玲华, 曹雪虹, 数字信号处理原理及应用[M]. 江苏: 东南大学出版社, 1997.
    徐秉铮, 欧阳景正著. 信号分析与相关技术[M]. 北京: 科学出版社, 1981.
    陈启宗. 一维数字信号处理[M]. 北京: 高等教育出版社, 1987.
    北方交通大学信息科学研究所. 近代数字信号处理通用程序[M]. 北京: 科学出版社,1988.
    刘迎春, 叶湘滨. 传感器原理、设计与应用(第三版)[M], 长沙: 国防科技大学出版社, 1997.
    W.D.库珀. 电子仪器与测量技术[J]. 北京:国防工业出版社, 1990.
    郝 芸. 传感器原理与应用[M]. 北京:电子工业出版社, 2002.
    宗孔德. 多抽样率信号处理[M].北京:清华大学出版社, 1996.
    李素芝, 万建伟. 时域离散信号处理[M], 长沙: 国防科技大学出版社, 1994.
    杨小牛, 楼才义, 徐建良. 软件无线电原理与应用[M], 北京: 电子工业出版社, 2001.
    侯朝焕, 阎世尊, 蒋银林. 实用 FFT 信号处理技术[M]. 北京: 海洋出版社, 1990.
    张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 1995.
    姜昌金. 相关检测原理与相关算法[J]. 数据采集与处理, 10(2): 104-109, 1995.
    李玉柏, 彭启琮. 基于多相分解滤波器实现的局部频率细化[J]. 电子测量与仪器学报 14(3): 26-31, 2000
    姚宗国, 王孝红, 景绍洪, 等. 在 Windows95 平台上实现数据采集与处理[J]. 山东建材学院学报, 12(2): 324-326, 1998.
    孙进才,朱维杰, 孙轶源, 等. 信号相位匹配原理的正弦信号参数的最小二乘估计[J],自然科学进展,14(10): 1204-1208,2004.
    董传岱. 阻容耦合放大器电路通频带计算[J], 山东工程学院学报, 8(3): 49-56, 1994.
    江国舟, 江 超. 微弱信号检测的基本原理与方法研究[J]. 湖北师范学院学报(自然科学版), 21(4): 45-49, 2001.
    黄 勇. 图形窗口环境 WINDOWS 中的数据采集与软件开发技术[J]. 电讯技术, 34(4): 43-55, 1994.
    李 飞, 王江萍, 孙志英. 基于VB的数据采集与处理系统的研究[J]. 计量技术, 6, 24-27, 2004.
    白奉天, 罗飞路, 张玉华. 软正交矢量型 LIA 在微弱信号检测中的应用[J]. 现代电子技术, 9, 18-20, 2003.
    聂少龙, 黄旭初, 王宣银. 微弱信号检测的原理及其实现[J]. 电测与仪表, 39(444): 9-12,2002
    周 越, 杨 杰. 复杂背景下微弱信号检测和特征分析系统的实现[J]. 小型微型计算机系统, 5,549-551,2002
    巢凯今, 陈杰美. 素因子分解局部频率细化快速算法[J]. 信号处理, 10(3), 168-174,1994.
    熊晓东, 胡 澎. 微弱信号检测技术及应用[J]. 地球物理测井, 14(5),358-363,1990
    宋绍楼, 彭继慎, 荣德生. 便携式数据采集与处理系统的研究[J]. 辽宁工程技术大学学报(自然科学版), 21(3): 335-337, 2002.
    宋浩威. 微弱信号检测仪的研制[J]. 分析仪器, 2,24-26, 2000.
    刘亦风. 闪电甚高频和甚低频信号的大容量多通道采集系统[J], 气象仪器装备, 4, 1-2, 2002.
    廖娟娟, 安 琪. 基于VXI 总线的高速数据采集模块设计[J]. 中国科学技术大学学报, 32(1): 79-84, 2002.
    周喜庆, 赵国庆,王 伟. 实时准确正弦波频率估计综合算法[J]. 西安电子科技大学学报(自然科学版), 31(5): 657-660,681, 2004.
    王岩, 李建国, 谢长生. 基于 IBM-PC 的超高速数据采集系统的研究[J]. 华中理工大学学报, 22(8): 91-96, 1994.
    中国电子技术信息网, 超/极低频通信技术, http://www.rfidinfo.com.cn/tech/, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700