氮肥生产废水超低排放技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥行业是我国化肥工业的支柱产业,在国民经济中发挥着重要作用。但在氮肥行业的生产过程中,存在用、排水节点多,废水产生量大,污染物种类多等特点。目前企业都采取了相应的控制和治理措施,但是仍然存在着处理成本高、废水排放量大、处理效果差等问题,不仅水资源消耗量大,而且外排废水对周围水环境造成了污染。因此,研究开发适合氮肥行业水污染控制及资源化技术,对氮肥行业的持续发展意义重大。
     本文在对典型氮肥企业用、排水现状进行调研的基础上,结合氮肥行业水污染控制及资源化技术现状,本着“推行清洁生产,采用先进的节水技术和废水处理及资源化技术”的总体思路,以实现氮肥行业废水的综合利用及超低排放为目标,制订了实现氮肥行业废水超低排放的技术改造总体方案。
     实施的技术改造总体方案中,推行清洁生产,淘汰落后的生产工艺,采用醇烃化精炼装置净化原料气,彻底解决了铜洗工段废水排放量大,氨氮浓度高的问题;采用不锈钢多介质吸附过滤器净化甲醇残液、碳化回清水中的有机物,废水回用于造气炉夹套,节约软水用量。
     节水改造工程中,对造气、脱硫系统冷却水及碳化、合成、甲醇循环水系统进行改造,实现两个独立的闭路循环系统。通过稳定生产工艺,增加新型设备,添加各类药剂,提高循环水冷却效率。
     对于生产过程产生的废水,采用“A/O—超滤—反渗透工艺”进行处理,处理后水质好,满足生产过程的水质要求,废水排放量减少,实现了氮肥生产废水超低排放的目标。
     技术改造实施后,节约新鲜水93.6万吨/年,减少废水排放量90.0万吨/年,COD、氨氮排放量分别减少133.72吨/年和104.45吨/年;吨氨排水量达到1.26m3,远远小于《合成氨工业水污染物排放标准》(GB13458-2001)小型一级50m3/tNH3标准要求。技术改造工程总投资990.44万元,年运行费用为336.34万元,年增加经济效益200.78万元,取得了良好的社会效益、环境效益、经济效益。
Nitrogen fertilizer industry is a pillar industry of Chinese chemical fertilizer industry in the national economy played an important role.However,in the production of nitrogenous fertilizer industry,there are following characteristics,such as water,drainage nodes more,wastewater volume,a wide range of other pollutants.and so on.At present, enterprises have adopted the corresponding control and treatment measures,but there are still dealing with the high cost of wastewater discharge a large amount of poor treatment effect,not only water consumed in large quantities,but also the efflux of water caused by the surrounding water environment pollution.Therefore,with researching and developping the technology of nitrogen pollution control and resource,the nitrogen fertilizer industry's sustained development of great significance.
     In this paper,the typical nitrogen fertilizer enterprise drainage based on the status of research combined with the technology status of water pollution control and resource of nitrogen fertilizer industry,the spirit of "The implementation of cleaner production,the use of advanced water-saving technologies and wastewater treatment and resource-oriented technology" in general ideas,in order to achieve the comprehensive utilization of waste water of nitrogen fertilizer industry and ultra-low emissions, the overall wastewater program of achieveing the technological transformation and ultra-low emissions in nitrogen fertilizer industry is developed.
     In the implementation of the whole technological transformation program,with the implementation of clean production,eliminating backward production techniques,using alcohol-based refining hydrocarbon feed gas purification device,the problem of the construction section of the copper wash wastewater discharge volume and high NH3-N is solved;with the use of stainless steel multi-media filters absorption the organic matter which come from Purification of methanol residue and carbon-back-clean water.With wastewater reuse for gas furnace jacket,soft water consumption is saved.
     In the water-saving renovation project,the build gas desulfurization system,cooling water and carbon,synthesis, methanol circulating water system transformation,to achieve two separate closed circulatory system. By stabilizing the production process,increasing the new equipment,adding all kinds of agents,to improve the efficiency of circulating water cooling.
     For the production process wastewater generated using "A/O- Ultrafiltration - Reverse Osmosis Process" to treatment, the treated water quality is good to meet the water quality requirements in the production process,wastewater emissions and achieve the goal of ultra-low emissions of nitrogen fertilizer production wastewater .
     After the implementation of technological transformation, saving fresh water 93.6×104t/a,reducing discharged volume of waste water by 90×104t/a, COD, NH3-N emissions reduced by 133.72t/a and 104.45t/a; tons of ammonia discharge to 1.26m3, far less than“the effluent standard of pollutants for ammonia industrial”(GB13458-2001) a small one 50m3/tNH3 standards. The total investment in technological transformation of 9.9044 million yuan, the annual operating cost of 3.3634 million yuan, an increase of 2.0078 million yuan economic benefit. It achieved good social benefits, environmental benefits and economic benefits.
引文
[1]中国统计局. 2008年中国社会统计年鉴.北京:中国统计出版社, 2008: 140
    [2]武江津.三废处理工程技术手册.北京:化学工业出版社, 2006: 139
    [3]曹素忱.无机化学.北京:高等教育出版社, 1993: 6
    [4]冯晓西,乌锡康.精细化工废水治理技术.北京:化学工业出版社, 2000: 3
    [5]雷乐成.水处理新技术及工程设计.北京:化学工业出版社, 2001: 5
    [6]孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社, 2003: 59
    [7]张兴民.浅议氮肥企业污水零排放治理技术.化肥设计, 2007, 4 (45): 38-41
    [8]熊正为,陈胜兵.小型氮肥厂废水处理工艺的选择.工业水处理, 2001, (5): 11-13
    [9]刘金成.坚持技术和管理创新实现合成氨生产污水零排放.氮肥技术, 2007,28(6): 13-18
    [10]刘金成,张新生,李印昌等.氮肥生产污水零排放综合治理总结.化肥工业, 2007, 34(1): 37-40
    [11]刘晋.实现合成氨生产两水全闭路废水零排放的体会.小氮肥, 2003(31): 1-3
    [12]王建平.氮肥工业废水治理.山西能源与节能, 2004, (2): 37-38
    [13] Lee S I, Weon S Y, Lee C W, et al.Removal of nitrogen and phosphate from wastewater by addition of bittern.Chemosphere, 2003, 51: 265-271
    [14]程传振,俎宇,苏亚南等.化肥厂终端污水的治理与研究.化肥设计, 2007, 45(6): 55-58
    [15]吴光学,管运涛,蒋展鹏等.高氨氮工业废水处理的初步研究.工业水处理, 2004(10): 25-26
    [16]彭松,蒋克彬,陈红艳.化工废水治理措施综述.江苏环境科技, 2008, (s1): 122-124
    [17]王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究.环境污染治理技术与设备, 2004, 5(6):51
    [18]王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究.环境污染治理技术与设备, 2004,2(2): 59
    [19] Hua I.,Optimization of ultrasonic irradiation as an advanced oxidation technology ,Environ. Sci.Technol.,1997 ,31(8): 2237-2243
    [20] Yang M,Kazuya U,Haruki M.Ammonia removal in bubble column by ozonation in the presence of bromide.Wat.Res., 1999, 33(8): 1911-1917
    [21]何岩,赵由才,周恭明.高浓度氨氮废水脱氮技术研究进展.工业水处理, 2008, (01): 1-4
    [22] A.Vanderpoorten, R. Palm.Compared regression methods for inferring ammonium nitrogen concentrations in running freshwaters from aquatic bryophyte assemblages.Hydrobiologia, 2001, 452(1): 181
    [23]蒋建国,陈嫣,邓舟,等.沸石吸附法去除垃圾渗滤液中氨氮的研究.给水排水, 2003, 129(13):6
    [24] Milan Z, sanchez E, Pozas C, et al. Ammonia removal from an aerobically treated piggery manure by ion exchange in xolumns packed with homoionic zeolite. Chemical Engineering Journal, 1997, 66: 65-71
    [25] B. R. Green,M. H. Kotze,J. P. Wyethe.Developments in ion exchange: The mintek perspective. JOM, 2002, 54(10)
    [26] N. P. Berezina, L. V. Karpenko.Percolation Effects in Ion-Exchange Materials. Colloid Journal, 2000, 62(6)
    [27]穆大刚,孟范平,赵莹,等.化学沉淀法净化高浓度氨氮废水初步研究.青岛大学学报(工程技术版), 2004, 19(2): 1
    [28] Andrew E. Laursen,Sybil P. Seitzinger.Measurement of denitrification in rivers:an integrated, whole reach approach.Hydrobiologia, 2002, 485(1)
    [29] Kumashiro K,Ishiwatari H,Nawamura Y.A pilot plant study on using seawater as a magnesium source for struvite precipitation. Paper presented at Second International Conference on the Recovery of Phosphorus from Sewage and Animal Wastes, Noordwijkerhout, The Netherlands, 2001: 48-51
    [30] R. Schulze-Rettmer, Koresn. Abwasser, 1992, 39(4): 550-559
    [31] P. H Liao. Biomass Bioenergy, 1993, 4(5): 365-71
    [32]李锋,朱南文,李树平等.有氧情况下同时硝化/反硝化的反应动力学模式.中国给水排水, 1999, 15(6): 58-60
    [33]袁林江,彭党聪,王志盈.短程硝化—反硝化生物氮.中国给水排水, 2000 ,16(2): 29-31
    [34] Cory S. Christman,Daniel M. Dauer. An Approach for Identifying the Causes of Benthic Degradation in Chesapeake Bay. Environmental Monitoring and Assessment, 2003, 81(1)
    [35]吕锡武,李锋,稻森悠平.氨氮废水处理过程中的好氧反硝化.给水排水, 2000, 26(4): 17-19
    [36]李飞,陈涛,王中正,等.生物滤池中亚硝化过程的研究.能源环境保护, 2006(05): 15-17
    [37]甘树应,杨青,陈季华,等.前置生物脱氮法处理有机废水的工程设计.中国给水排水, 2000,16(8): 25-27
    [38]杨晓奕,蒋展鹏,潘咸峰.膜法处理高浓度氨氮废水的研究.水处理技术, 2003, 9(2): 85
    [39]李礼,杨平.废水生物脱氮的研究进展.四川化工, 2007,10(4): 43-47
    [40] V. Ya. Gerber.Treatment of activated sludge from biological treatment facilities. Chemistry and Technology of Fuels and Oils,2008,23(12)
    [41] Denis Pandolfi,Marie-No?lle Pons.Gram-staining characterisation of activated sludge filamentous bacteria by automated colour analysis.Biotechnology Letters,2004,26(24)
    [42]李红岩,高盂春,杨敏,等.组合式膜生物反应器处理高浓度氨氮废水.环境科学, 2002,23(5): 62
    [43] Cecen F, Gonenc I E.Nitrogen removal characteristics of nitrification and denit rification filters.Wat Sci Tech, 1994,29(10-11): 409-416
    [44] Ruiza G,Jeisonb D, Chamya R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 2003, 37: 1371-1377
    [45] Liaw Shu Liang, Cheng Wan yuan, Chang Cheng Nan. Performance enhancement of SBR applying real time control.Journal of Environmental Engineering.ASCE, 2000: 943-948
    [46]李涛.关于循环水的水质稳定与处理.化肥设计, 2009, 26(2): 11-13
    [47]曾明,倪晋仁.一种对高氨氮低C/N比的废水处理工艺及用途.环境科技, 2008, 3: 12-15
    [48]卢平,曾丽璇,张秋云,等.高浓度氨氮垃圾渗滤液处理方法研究.中国给水排水,2003,19(5):44
    [49] Horan N J, Gohar H, Hill B.Application of a granular activated carbon-biolofical fluidised bed for the treatment of landfill leachates containing high concentrations of ammonia. Wat.Sci.Tech., 1997, 36(2-3): 369-375
    [50] Fikret K, Yunus M P.Adsorbent supplemented biological treatment of pretreated landfill leachate by fed-batch operation. Bioresource Technology, 2004, 94: 285-291
    [51]颜鑫,舒均杰.新型联醇工艺与节能.北京:化学工业出版社, 2009: 48
    [52]邵表,王伟,林蓓,等.含油污水综合治理新方法.石油与天然气化工, 1999: 228-229
    [53]李春军,曹祥文.合成氨系统水侧腐蚀原因及对策.氮肥技术, 2008(02)
    [54]李明,黄民生,谢冰,等.A/O工艺的影响因素研究.上海化工,2007,32(12):1-4
    [55] J. M. Cai, R. H. Liu.Precision of integral methods for the determination of the kinetic parameters.Journal of Thermal Analysis and Calorimetry,2007,91(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700