电极—膜生物反应器(EMBR)的构型设计及工艺过程影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要内容为基于已有的国内外对电极—生物膜系统研究理论,将当今应用较为广泛的膜生物反应器与电极组件相结合,设计制作了新型的电极—膜生物反应器(EMBR),并对其工艺工程影响因子进行初步研究。
     低浓度有机废水是一种较难处理的废水,一般的活性污泥法,包括当前广泛应用的膜生物反应器(MBR)都不能达到较高的TN去除率,主要由于反硝化环节受到限制。EMBR是针对处理低浓度有机废水新型反应器,它将一体式膜生物反应器与电极—生物膜系统相结合,利用电极—生物膜系统强化反硝化能力,提高C/N较低情况下TN的去除率。
     确定好氧区污泥浓度为12g(TSS)/L,模拟生活废水水质:有机物浓度SSO=300mg(COD)/L,NH3-N浓度为100mg/L。通过计算得出好氧区水力停留时间为4h;比负荷率为F/M=0.15 kg(COD)/(kg(MLSS)·d);进水流量Q=4ml/s;好氧区池容VO=58.75L。泥水回流比为2;缺氧区池容与总池容的比值fAO为0.6;得出缺氧区池容为88.13L;缺氧区水力停留时间6h。通过最省材料方法计算出反应器尺寸:反应器长为66.48cm,宽为39.89cm,高为66.48cm。电极-膜生物反应器(EMBR)的反硝化区由异氧—自养两段反硝化室构成,具有异氧—自养联合反硝化脱氮功能。电极单元是EMBR内的核心构件,采用活性炭纤维材料作为电极材料和采用二维平板电极,缩短了阴极极板挂膜时间,增强极板的析氢能力,强化了工艺的反硝化能力。
     试验结果表明,利用EMBR反应器可有效去除污水中的COD、NH3-N和TN。污染物去除率随电流强度的变化而随之改变,在最佳电流密度0.025mA/cm2的条件下,COD、NH3-N和TN的去除率可分别达到90%,85%,80%。当电流密度>0.03mA/cm2时,反应器工作能力开始下降。在进水C/N为3、4时,EMBR对TN的去除率最高(80%左右);在C/N为1、2时,去除率也能维持在65%以上。对COD去除率稳定在90%以上,反应器抗冲击能力较强。切断电流后,反应器对TN的去除率明显下降,COD去除率没有明显变化,电极—生物膜系统强化脱氮能力得到证明。
The study based on the theory of electrode and bio-membrane system and designed a new type Electrode-MBR (EMBR) by combining the MBR and electrode module.
     Wastewater with low organic concentration is hard to treat. Traditional activated sludge system and MBR can hardly get a good TN removal rate due to the lack of organic during the denitrification process. EMBR combines electrode and bio-membrane to strengthen the denitrification process and enhance the TN removal rate when low C/N wastewater treated.
     The sludge concentration in aerobic area of the reactor was 12g(TSS)/L. The component of simulate wastewater were SSO(300mg(COD)/L) and NH3-N(100mg/L). The HRT of aerobic area was 4h (F/M=0.15kg(COD)/(kg(MLSS)·d), Q=4ml/s). The volume of aerobic area was 58.75L. the recycle ratio was 2. The anaerobic area took up 3/5 of the whole reactor (fAO=0.6). The volume of the anaerobic area was 88.13L. HRT was 6h. Following the economizing principle, the reactor was 66.48 in length, 39.89 in wide, 66.48 in height.The anaerobic area of the EMBR had two parts. The autotrophic nitrobacteria and heterotrophic nitrobacteria were in the two areas respectively. The electrode module was the key device of the reactor. Activated Carbon Fiber was used as the electrode material. Activated Carbon Fiber shortened the bio-film culturing time enhance the hydrogen evolution ability of the electrode and boost up the denitrification process.
     The results showed EMBR could remove the COD, NH3-N and TN well. The removal rate changed with the current density. Under the best current intensity, the removal rate of COD NH3-N and TN were 90% 85% and 80% respectively. When the current density was above 0.03mA/cm2, the removal rate began to decrease. At the C/N of 3 or 4, the EMBR could get a highest TN removal rate (82%). At the C/N of 1 or 2, the TN removal rate was above 65% and the COD removal rate maintained above 90%. The EMBR had a good resistant ability to the shock organic loading. Without the current the reactor’s TN removal ability drop down apparently. But the COD removal rate didn’t drop down. It proved the good TN removal ability of electrode-biofilm system.
引文
[1]徐明,操家顺,常飞等. BCFS工艺处理低C/N比城市污水中试研究.水处理技术, 2007, 33(10): 46-48
    [2]侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响.中国给水排水, 2005, 21(12): 19-23
    [3] Kerril. Cast. J R V Flora. An evaluation of two cathode materals and the impact of copper on bio-electro-chemical denitrification.Water Research, 1998, 32(1): 63-70
    [4]谨防硝酸盐污染.安全与健康(上)2002, 1: 12
    [5] T Watanabe, H Motoama, M Kuroda. Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a Bio-electrochemical reactor process. Water Research, 2001, 35(17): 4102-4110
    [6]王海燕等.电化学氢自养与硫自养集成去除饮用水中的硝酸盐.环境科学, 2002, 22(6): 711-715
    [7] Y Sakakibara. Denitrification and neutralization with an electro-chemical and biological reactor. Water Science and Technology, 1994, 30(6): 151-155
    [8]徐亚同.废水反硝化除氮.上海环境科学, 1994, 13 (10): 8-12
    [9]黄民生,高廷耀.电极生物膜法反硝化的试验研究.上海环境科学, 1996, 15(6): 25-27
    [10]徐伯兴等.生物膜电极法在废水处理中的应用.污染防治技术, 1998, 11(1): 45-47
    [11]黄显怀等.电极生物膜法处理水中硝酸盐氮的试验研究.哈尔滨工业大学学报, 2003, 35(12): 1486-1488
    [12]张瑾,黄显怀,鲍立宁等.电极生物膜反应器中异养反硝化菌脱氮能力的测定.安徽建筑工业学院学报, 2005, 13(4): 52-55
    [13] J R V Flora. Numerical modeling of a bilfilm-electrode reactor used for enhanced denitrification, Water Science and Technology, 1994, 29(10-11): 517-524
    [14] Y Sakakibara, M Kuroda. Electric prompting and control of denitrification. Biotech eng, 1993, 42 (4): 535-537
    [15] R B Mellor, J Ronnenberg, W H Campbell. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature, 1992, 355: 717-719
    [16] ShahnazIslam. Electrolytic denitrification: long term mance and effect of current intensity, Water Research, 1998: 528-536
    [17] J R V Flora. Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification. Water Science and Technology, 1994, 29(10-11): 4517-4524
    [18] M Kuroda, T Watanabe, Y Umedu. Simultaneous oxidation and reduction treatments of polluted water by a bio-electro reactor. Water Science and Technology, 1996, 34(9): 101-108
    [19] Z Feleke. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Research, 1998; 32(9): 2728-2734
    [20] Y Sakakibara. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification, Water Research, 2001; 35(3): 768-778
    [21] M Prosnansky. High-rate denitrification and SS rejectiom by biofilm-biological melectrode reactor(BER) combined with microfiltration, Water Research, 2002, 36: 4801-4810
    [22]郭一令,王铮,薛梅等.旋转电极型生物反应器的脱氮研究.中国给水排水, 2003, 19(2): 9-11
    [23]范彬等.异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究.环境科学学报, 2001, 21(3): 257-262
    [24]余川江,张乐华等.电极-生物复合反应器处理城市污水的初步研究.环境污染治理技术与设备, 2005, 6(11): 85-88
    [25]熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向.工业水处理, 1998, 18(1): 6-10
    [26]范彬,曲久辉等.复三维电极-生物膜反应器脱除饮用水中的硝酸盐.环境科学学报, 2001, 21(1): 39-43
    [27]黄民生,景有海,王水华.具有反硝化能力的氢细菌特及其应用.上海环境科学,1997, 16(1): 36-37
    [28]叶德宁,应迪文,贾金平.活性炭纤维电极在水处理中的应用及进展.中国给水排水, 2007, 23(18): 20-23
    [29]谭佑铭,王萌,罗启芳等.固定化反硝化菌涂层电极及模拟脱氮装置的研制.卫生研究, 2004, 33(4): 407-409
    [30]鲍立宁,洪桂云,黄显怀等.电极生物膜脱氮工艺中反硝化菌相分析.安徽建筑工业学院学报, 2004, 12(5): 1-4
    [31]鲍立宁,黄显怀,樊美珍等.电极生物膜反应器中反硝化菌的初步研究.生物学杂志, 2005, 22(6): 32-34
    [32]张瑾,黄显怀,鲍立宁等.电极生物膜反应器中异养反硝化菌脱氮能力的测定.安徽建筑工业学院学报, 2005, 13(4): 52-55
    [33]李建平,袁兴中等.电流和碳氮的量比对生物电极脱氮速率影响的模拟.中南大学学报(自然科学版), 2004, 35(2): 234-238
    [34]李建平,袁兴中等.生物电极膜内脱氮速率模型.中南大学学报, 2004, 35(3): 418-422
    [35]李文卫.废水生物电极反硝化模型研究.湖南大学, 2005
    [36]应迪文,贾金平,张乐华等.电化学强化脱氮中反硝化菌对活性炭纤维电极电化学反应影响初步研究.环境污染与防治, 2005, 27(7): 501-504
    [37]刘晓,黄显怀.电极-生物膜法在生物脱氮处理中的潜力.工业用水与废水, 2006, 35(3): 57-59
    [38]曾一鸣.膜生物反应器技术.国防工业出版社, 2007: 50-70
    [39] LiXiaoyan, WangXiaomao. Modelling of membrane fouling in a submerged membrane bioreactor. Desalination, 2006, 287(1): 151-161
    [40] B Lesjean, T Leiknes. AMEDEUS and EUROMBRA projects: boosting the development of MBR technologies in Europe. Desalination, 2006, 200(3): 710-711
    [41] T Leiknes, H Bolt, M Engman. Assessment of membrane reactor design in the performance of a hybrid biofilm membrane bioreactor(BF-MBR). Eurombrane, 2006, 20(10): 24-28
    [42] S Rosenburger, R Witizig, W Manz. Operation of different membranedioreactors; experimental results and physiological state of thenicrogrganisms. Water Science andTechnology, 2000, 41(10-11): 269-277
    [43] B Lesjean, T Leilnes, R Hochstrat. MBR: Technology gets timely EU cash boost. Filtration & Separation, 2006, 43(9): 20-23
    [44] J Wagner, K H Rosenwinkel. Sludge production in membrane bioreactorsunder different conditions. Water Science and Technology, 2000, 41(10-11): 251-258
    [45] J H Roorda, J H J M van der Graaf. New parameter for monitoring forlingduring ultrafiltration of WWTP effluent. Water Science and Technology, 2001, 43(10)241-248
    [46]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展.工业水处理, 2003, 23, (1): 1-7
    [47]沈耀良,王宝贞.废水生物处理新技术—理论与应用.北京中国环境科学出版社, 1999,143-145
    [48]娄金生,谢水波,何少年等.生物脱氮除磷原理与应用.国防科技大学出版社, 2002, 24-25
    [49]徐咏蓝,李春喜等.活性炭纤维电极法降解水中有机物的研究.工业水处理, 2002, 22(8): 7-9
    [50]张旺玺,宋清臣.一种全新活性炭—活性炭纤维.金山油化纤, 2001: 42-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700