侧流除磷分段进水SBR工艺处理低碳源污水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化的日益严重迫使城镇污水处理厂出水的氮、磷浓度排放标准更加严格,确保良好的脱氮除磷效果显得愈发重要。而部分城市地区的城市污水有机物浓度越来越低、污水COD/TN持续下降,如何提高低C/N比城市污水的脱氮除磷效果,已成为城市污水处理的难题。针对低碳源城市污水的碳源有机物严重缺乏,脱氮除磷效果难以同时满足的现状,采用分段进水SBR结合污泥外循环侧流除磷技术的新型组合工艺(Phostrip-step-feed-SBR,简称P-SF-SBR),通过合理分配污水中的碳源并限制好氧段曝气量的方式,减少碳源物质的无效或过度氧化,提高同步脱氮除磷效果。试验以COD/TN为2.9~4.4的低碳源城市污水为研究对象,考察了长污泥龄的SF-SBR工艺和P-SF-SBR工艺在不同曝气量下的同步脱氮除磷效果,结果表明:
     ①控制系统曝气量在较低范围(3.57 m3/h·m3左右),分段进水SBR工艺比传统单步进水SBR工艺更具脱氮优势。在进水COD浓度低于200mg/L,平均C/N比为4.4的情况下,采用分2段减量进水方式的SF-SBR系统COD、NH3-N、TN的去除率分别为86.3%、95.7%、66.3%。在相同曝气量下,传统单步进水SBR系统对平均C/N比为4.6的污水COD、NH3-N、TN的去除率分别为91.8%、79.2%、51.4%。
     ②曝气量对SF-SBR系统的硝化、脱氮效果有影响:曝气量过低,好氧段DO浓度一直维持在0.2mg/L以下,系统硝化效果不理想,出水NH3-N、TN均较高;曝气量过高,好氧段末期DO浓度大幅上升,系统硝化效果优异、反硝化脱氮效果差,出水NH3-N基本为0mg/L,但TN浓度高。
     ③在曝气量为3.57 m3/h·m3的条件下,进水方式对SF-SBR系统的污染物去除效果有影响:采用分2段等量进水方式时,系统对COD、NH3-N、TN、TP的去除率分别为78.8%、87.5%、57.5%、13.6%;采用分2段减量进水方式时,系统对COD、NH3-N、TN、TP的去除率分别为86.3%、95.7%、66.3%、31.9%。
     ④在进水COD浓度低于200mg/L、C/N比为3.9、C/P比为25.9的条件下,控制曝气量为3.57 m3/h·m3、SRT为80d,分2段进水P-SF-SBR工艺对COD、NH3-N、TN、TP的去除率分别为87.5%、99.1%、63.0%、93.2%,出水水质全面达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A类标准。
     ⑤进一步降低进水COD浓度,使C/N比为2.9、C/P比为20.2的条件下,控制曝气量为3.57 m3/h·m3、SRT为80d,分3段进水的P-SF-SBR工艺对COD、NH3-N、TN、TP的去除率分别为83.1%、97.4%、65.1%、93.7%,出水水质全面达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A类标准。
     ⑥曝气量对P-SF-SBR系统的除磷效果有影响:当曝气量等于或低于3.57 m3/h·m3时,系统除磷效果良好,出水TP浓度维持在0.5mg/L以下;当曝气量大于3.57 m3/h·m3时,系统除磷效果不稳定,出水TP浓度出现波动。
With the trend of increased water eutrophication, discharge standard of nitrogen and phosphorus in municipal wastewater treatment plant becomes more and more strict and also it becomes more and more important to guarantee the effect of nitrogen and phosphorus removal. But organics concentration of municipal sewage in some cities or areas is becoming lower and lower and the COD/TN keeps decreasing, how to increase nitrogen and phosphorus removal effect in municipal sewage with low carbon-nitrogen ratio has become difficult problems. For the serious shortage of carbon source and difficulty of simultaneous nitrogen and phosphorus removal in low-carbon source municipal sewage, a new combined process of step-feed SBR combined with side stream phosphorus removal technique by external recycle of sludge is used to enhance the biological effects of nitrogen and phosphorus removal by rationalizing the distribution of carbon source in sewage and limiting aeration amount in order to reduce the invalid or excessive aerobic consumption of organic carbon source. The research used low-carbon source municipal sewage (COD/TN=4.22~6.23) as the object of study to investigate nitrogen and phosphorus removal effect of SF-SBR and P-SF-SBR process with long sludge age at different aeration amount level.The experimental results show that:
     ①When aeration amount of the system is at a low level(about 3.57 m3/h·m3), step-feed SBR process has a better nitrogen removal effect than traditional one-step feed SBR.When the COD concentration of influent is below 200mg/L and average C-N ratio is 4.4, the removal efficiency of COD, NH3-N,TN is respectively 86.3%,95.7% and 66.3% in SF-SBR system with tow-step feed mode. Under the same level of aeration amount the removal percentage of COD, NH3-N,TN is respectively 91.8%,79.2% and 51.4% in the traditional one-step feed SBR system.
     ②The aeration amount has influence on the effect of nitrification and denitrification of SF-SBR system:When the aeration amount is too low and DO concentration of the reactor is always below 0.2mg/L, the nitrification effect of the system is very poor and the effluent has high concentration of NH3-N and TN; When the aeration amount is too high so that DO concentration rises greatly at end of aerobic stage, the nitrification effect is good but denitrification effect is poor and the concentration of NH3-N is almost 0 mg/L but the concentration of TN is high.
     ③When the aeration amount is 3.57 m3/h·m3, the feed mode has influence on the effect of pollutants removal in SF-SBR system:When under equivalent tow-step feed mode, the removal efficiency of COD, NH3-N, TN and TP is respectively 78.8%,87.5%,57.5% and 13.6%;When under reduced tow-step feed mode, the removal percentage of COD, NH3-N,TN and TP is respectively 86.3%,95.7%,66.3% and 31.9%.
     ④When the influent COD<200mg/L, C/N is 3.9, C/P is 25.9, controlling of the aeration amount for 3.57m3/h.m3 and SRT for 80d, the average removal efficiency of COD, NH3-N, TN and TP in P-SF-SBR system with tow-step feed mode is respectively 87.5%, 99.1%, 63.0%, 93.2%,and effluent water qualities reach first-degree A standards of《Letting Standards of Town Sewage Treatment Plant》(GB18918-2002).
     ⑤When the influent COD concentration decreased further with C/N for 2.9 and C/P for 20.2, controlling of the aeration amount for 3.57m3/h.m3 and SRT for 80d, the average removal efficiency of COD, NH3-N, TN and TP in P-SF-SBR system with three-step feed mode is respectively 83.1%, 97.4%, 65.1%, 93.7%, and effluent water qualities reach first-degree A standards of《Letting Standards of Town Sewage Treatment Plant》(GB18918-2002).
     ⑥The aeration amount has influence on the effect of phosphorus removal in P-SF-SBR system:When the aeration amount is at or below 3.57m3/h.m3, the system has a good efficiency of phosphorus removal and the phosphorus concentration of effluent water is always below 0.5mg/L; When the aeration amount is above 3.57m3/h.m3, the efficiency of phosphorus removal unstable and the phosphorus concentration of effluent water is in fluctuation.
引文
[1] 2008年中国环境状况公报[R].中华人民共和国环境保护部.
    [2]吴季松.为可持续发展提供水资源保障[J].科技日报.绿色周刊,1999,3(20):34~35.
    [3]许劲.关于城市污水处理厂设计的若干问题讨论[J].给水排水, 2001,27(7):14~19.
    [4]李家龙,丘静.倒置式A2O工艺在南方城市污水处理厂的运用[J].广西城镇建设,2008,6(8):23~26.
    [5]侯红娟,王洪洋,周琪.低碳高氮磷城市污水中碳源组分对反硝化的影响[J].中国给水排水,2006,22(22):368~372.
    [6]邱兆富,周琪,杨殿海,等.低碳氮比城市污水短程生物脱氮试验研究[J].工业水处理,2006,26(11):35-38.
    [7] Her Jiunn-Jye,Huang Ju-Sheng.Influences of carbonsource and ratio on nitrate/nitrate denitrification and car-bon breakthrough[J]. Bioresource Technology, 1995, 54(1): 45-51.
    [8] Gómez M A,González-López J,Hontoria-Garc E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter[J]. Journal of HazrdousMaterials, 2000, 80(1-3):69-80.
    [9]邵林广.南方城市污水厂实际运行水质远小于设计值的原因及其对策[J].给水排水,1999,25(2):11~13.
    [10]郑兴灿,李亚新.污水除磷脱氮技术[M].北京,中国建筑工业出版社,1998.
    [11]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京,化学工业出版社,2002.
    [12]吉芳英.排除厌氧富磷污水ERP-SBR除磷脱氮工艺研究[D].重庆大学博士论文,2004.
    [13]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水,2000,26(12):1~4.
    [14]张自杰.排水工程(下册第四版)[M].北京,中国建筑工业出版社,2000:312-313.
    [15]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给谁排水.2000.26(12):1~4
    [16] H.A.Nicholls,D.W.Osborn.Bacterial stress:prerequisite for biological removal of phosphorus[J]. WPCF,1979.51(3):557~569.
    [17] J.B.Heymann.The biochemistry for enhance phosphorus removal by activated sludge[J].Water Science and Technology,1985,17(11/12):303~304.
    [18] G.V.R.Marais,R.E.Loewenthal,I.P.Siebritz.Observations supporting phosphate removal by biological excess uptake-a revive[J].Water Science Technology,1983,15(3/4):15~41.
    [19] Arun V,Mino T,Matsuo T. Biological mechanisms of acetate uptake mediated by carbohydrateconsumption in excess phosphate removal systems[J].Water Res,1988.22(5):565~570.
    [20]高廷耀,夏四清,周增炎.城市污水生物除磷脱氮机理研究进展[J].上海环境科学,1999,18(1):16~18.
    [21]朱怀兰,史家樑.SBR除磷系统中的积磷细菌[J].上海环境科学,1994,13(4):16~18.
    [22] Jens P K J and Mogens H. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Wat. Res,1993,27(4):617~624.
    [23] W.J.Ng, S.L.Ong and J.Y.Hu. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor[J]. Wat. Sci. Tech,2001,43(3):139~146.
    [24]牛学义. Posotrip侧流除磷工艺及其应用实例[J].给水排水,2002,28(11):8~12.
    [25] Levin G V. Sewage treatment processes-Phostrip process[J]. US patent ,1996,8(11):22~25.
    [26]邵林广,游映玖,陶惠芳等.控磷除磷在水体富营养化控制中的作用[J].环境与开发,1999,14 (2):19~20.
    [27]汪大翚,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001.
    [28]吕锡武等.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境与城市生态,2001, 14(1):33~35.
    [29]李丛娜等.同步硝化反硝化脱氮研究[J].给水排水, 2001, 27(1):22~24.
    [30]张龙等. SBR系统中同时硝化反硝化生物脱氮研究[J].环境工程, 2005, 23(4):29~32.
    [31]吕锡武,李峰,稻森悠平等.氨氮废水处理过程中的好氧反硝化研究[J].中国给水排水,2000, 26 (4):17~20.
    [32] Klangduen Pochan,Airg Keller.Study of factors affecting simultaneous nitrification and denitrification(SND) [J].Wat. Sci. Tech, 1999, 39(6):61~68.
    [33] S.H.Isaaca,M.Henze.Contrilled carbon source addition to an alternating nitrification -denitrificatiion wastewater treatment process including biological premoval[J]. Wat. Res, 1995, 29(1):77~89.
    [34] N. F Y. Tam, Y S. Wong,G. Leung. Significance of external carbon sources on simultaneous removal of nutrients from wastewater[J]. Wat. Sci. Tech, 1992, 36(10):73~76.
    [35]邹联沛,刘旭东等.MBR中影响同步硝化反硝化的生态因子[J].环境科学,2001, 22(4): 51~55.
    [36]胡国杰,张颖丽. 21世纪中国水环境保护面临挑战[J].工业技术经济, 2002, 6:34~35.
    [37]王洪洋,朱雁伯.生物脱氮除磷常规工艺及新发展[J].天津市政工程, 2003, 15(3):25~28.
    [38]陈欣燕,程晓如,陈忠正.从微生物学探讨生物除磷脱氮机理[J].中国给水排水,1996,15(5):32~33.
    [39] Rensink J H,Donker H J G W and Simons S J. Phosphorus Removal at Low Sludge Loading[J].Wat.Sci.Tech.1985.17(11/12):177~186.
    [40] M.S.Finstein.Nitrogen and phosphorus removal from combined sewage components bymicrobial activity[J].Appl.Microbiological.1966,14:679~684.
    [41] T.Kuba,A.Wachtmeister,M.C.M.van Loosdrecht and J.J.Heijnen. Effect of nitrate onphosphorus release in biological phosphorus removal systems[J].Wat.Sci.Tech.1994.30(6):260~269.
    [42] Jens P K J.and Mogens H. Biological phosphorus uptake under anoxic and aerobic conditions[J].Wat.Res.1993.27(4):617~624.
    [43] W.J.Ng,S.L.Ong and J.Y.Hu. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor[J].Wat.Sci.Tech.2001.43(3):139~146.
    [44]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29~31.
    [45]周少奇,范家明,吴宋标,黄庆明等.氧化沟同时硝化反硝化的生物脱氮机理[J].环境科学与技术,2002,25(6):3~4.
    [46] Turk O,Mavinci D S.Selective inhibition: a novel concept for removing nitrogen from highly nitrogenous wastes [J] .Environ.Technol. Lett .,1987,8:419~426.
    [47] H. W.zhao,D.S.Mavinic,W.K.Oldham and F.A.Koch. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J].Wat.Res.1999,33(4):961~970.
    [48] M.Fuerhacker,H.Bauer,etal.Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors[J].Wat.Res.2000,34(9):2499~2506.
    [49] Sen Priyali, Dentel Steven K. Simultaneous nitrification-denitrification in a fluidized bed reactor[J].Water Sci &Tech, 1998, 38(1):247~254.
    [50] Watanabe W, et al. Simultaneous nitrification and denitrification in micro-aerobic biofilm[J]. Water Sci &Tech, 1992, 26:511~522.
    [51] Castigdeti D, Hollocher T C. Heterotrophic nitrification among denitrification[J]. Appl. Environ Microbiol, 1984, 47 (4):620~623.
    [52] Prakasam T.B, Loehr R.C. Microbial nitrification and debitrification in concentrated wastes[J]. Wat Res, 1972, 6:859~869.
    [53] Helmer C, Kunst S. Simultaneous intrification denitrication in an aerobic biofilm systrm[J]. Wat. Sci. Tech, 1998, 37(4~5):183~187.
    [54]郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系[J].环境污染治理技术与设备, 2000, 1(1):8~13.
    [55] HanakiK,HongZ,MatsuoT. Production of nitrous oxide gas durign denitrification of wastewater[J].Water Science and Technology,1992,26:10~27.
    [56] Bruce E. Rittmann, Wayne E. Langeland. Simultaneous denitrification with nitrification in single-channel oxidation ditches[J].Journal WPCF, 1985,57(4):300~309.
    [57] Andreas D.Andreadakis. Physical and chemical properties of activated sludge floc[J]. Wat. Res,1993, 27(12):1707~1714.
    [58] Klangduen Pochana, Jiirg Keller, Paul Lant. Model development for simultaneous nitrification and denitrification[J]. Wat. Sci.Tech, 1999, 39(1):235~24.
    [59] Y Wataeabe, S. Masuda, M. Ishiguro. Simultaneous nitrification and denitridication in micro-aerocbic biofilms[J].Wat. Sci. Tech, 1992, 26(3-4):511~522.
    [60] Anthonisen A C. Inhibition of nitrification by ammonia and nitrous acid[J]. J . W. P. C. F, 1976, 48 (5):835~852.
    [61]李晔,胡海.生物脱氮工艺技术的研究进展[J].工业安全与环保, 2003, 29(1):17~19.
    [62] Van de Graaf, A.A., de Bruijn P., Robertson L.A. Autotrophic growth of anaerobic ammonium- oxidizing micro-organisms in a fluidized bed reactor.Microbiology.1996, 142:2187~2196.
    [63]张可方,杜馨,张朝升,方茜. DO、C/N对同步硝化反硝化影响的试验研究[J].环境科学与技术,2006,30(6):3~5
    [64] A.A.van De Graaf, A.Mulder, and at al. Anaerpbic oxidation of ammonium is a biologically mediated process[J]. Appl. Environ.Microbiol. 1995, 61(4):1246~1251.
    [65] M Strous, E van Gerven, P Zheng. Ammonuym removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX)process in different reactor configurations[J]. Wat.Res. 1997, 31(8):1955~1962.
    [66] U.van Dongen, M.S.M.Jetten and M.C.M.vanLoosdrecht. The SHARON-ANAMMOX process for treatment of ammonium rich wastewater[J]. Water Science &Technology. 2001, 44 (1):153~160.
    [67] L Kual and W Verstracte. Ammonium removal by the oxygen-limited autotrophic nitrication- denitrification system[J]. Appl. Environ. Microbiol. 1998, 64(1):4500~4506.
    [68]谢珊,李小明,曾光明,杨麒,刘精今.短程硝化—反硝化生物脱氮[J].环境科学与技术,2000,Vol.16:29~31
    [69]王亚宜,彭永臻等.反硝化除磷理论工艺及影响[J].中国给水排水, 2003, 1(19):33~36.
    [70]卢峰,杨殿海等.反硝化除磷工艺的研究开发进展[J].中国给水排水, 2003, 19: 32~34.
    [71]马娟,彭永臻,王丽等.反硝化除磷技术及其影响因素分析[J].工业水处理,2009,29(4):4~11.
    [72]曹家顺,杨雪冬, Mark Van Loosddrecht. BCFS工艺-生物除磷新工艺[J].中国给水排水, 2002, 18(2):23~26.
    [73] Van Loosdrecht M C M, et al. Upgrading of wastewater treatment processes for integrated nutrient removal-BCFS process[J]. Water Sci.Technol. 1998, 37(9):209~217.
    [74]郝晓地,汪慧贞, Mark van Loosdrecht.可持续除磷脱氮BCFS工艺[J].给水排水, 2002, 28(9):7~9.
    [75]张波等.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水, 1997, 13(3): 21~25
    [76]罗固源,罗宁,吉方英.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水, 2002, 18(9):4~7.
    [77]郝晓地,汪慧贞,钱易.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺*(上) [J].给水排水,2002,6(28):6~11
    [78] Chuang S H. Effects of SRT and DO on nutrient removal in a combined AS-BIOFILM process[J]. Water Research & Technology. 1997, 36(12):19~27.
    [79]刘俊新.生物膜与活性污泥结合新工艺脱氮除磷研究[D].哈尔滨建筑大学, 1998.
    [80] Fukuda Y, Hashimoto K. Denitriication treatment at an existing plant ( second part) [J]. Prco of Japan SewerageWorkAssociation, 1991, 28: 502-504.
    [81] Kitaya M, Hasuno T, Katayama M. Operation conditions for step denitriication method and its effect[J]. Prco of Japan Sewerage Work Association, 1994,31: 458-460.
    [82]顾夏生.废水生物处理数额模式[M].北京,清华大学出版社,1993.
    [83] Grady C P L,Daigger GT,Lim H C.Biological wastewater treatment[M].New York,Marel Dekker,1999:38~42.
    [84]邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺[J].中国给水排水, 2003, 19(4):32~36.
    [85]黄利彬.分段进水脱氮工艺试验研究[J].山西建筑, 2007,33(25):196~197.
    [86]王伟,王淑莹,孙亚男.分段进水A /O工艺在低DO下处理生活污水研究[J].中国给水排水2007, 23(21):1~5.
    [87] Crawford G,Black S,Stafford D,et al.The step bio-Pprocess at lethbridge-over one full year of operation[A].Proceedings of 73rd Annual Conference and Exposition[C].USA:Anaheim,California,2000:87~94.
    [88] Kitaya M,HasunoT, KitayamaM. Operation conditionsfor step denitrifyicationmethod and its effect[A]. Proc of Japan Sewerage Work Association [C]. Japan,Tokyo,1994:125~132.
    [89] CarrioL,StreettF,MahoneyK. Practical consideration for design of a step feed biological nutrient removal system[A]. USA:Anaheim,California, 2000:345~251.
    [90]祝贵兵,彭永臻,吴淑云等.分段进水生物脱氮工艺的优化控制运行研究[J].中国给水排水,2006, 22(21):1~5.
    [91]韩志英.分步进水序批式反应器处理猪场废水工艺研究[D].浙江大学博士论文,2007
    [92] LinY E,Jing S R.Characterization of denitrifieation and nitrification in a step一feed alternating anoxic-oxic sequencing batch reactor[J].Wat.Environ,Res,2001,73(5):526~533.
    [93]周少奇,周吉林,范家明.同时硝化反硝化生物脱氮技术研究进展[J].环境技术,2002,2(2):38~44
    [94]徐伟锋,孙力平,古建国,郑先强. DO对同步硝化反硝化影响及动力学[J].城市环境与城市生态,2003,16(1):8~10.
    [95]陈滢等.低溶解氧SBR除磷工艺研究[J].中国给水排水,2004,20(8):40~42.
    [96]白璐等.低溶解氧条件下活性污泥沉降性的研究[J].工业水处理,2005,25(5):54~56.
    [97]李亚静等.SBR法处理低碳源城市污水处理除磷脱氮效果及规律研究[J].天津城市建设学院学报,2006,12(2):112~115.
    [98]王伟,王淑莹,孙亚男.分段进水A/O工艺在低DO下处理生活污水研究[J].中国给水排水,2007,23(21):1~5.
    [99]吉方英,杨琴,罗固源.实验室自配HACH-COD替代试剂[J].给水排水,2003,29(1): 23~26.
    [100]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.第四版.北京.中国环境科学出版社,2002.
    [101] Palm.J1C,Jekins.D,Parker.D S.Relationship between organic loading, dissolved oxygen concentration and sludge settle ability[J].WPCF,1980,52(10):2484~2506.
    [102]孙亚男,彭永臻,王伟.不同流量分配比下分段进水脱氮工艺的性能研究[J].中国给水排水,2008,24(5):18~26.
    [103]王伟,彭永臻,王海东等.溶解氧对分段进水生物脱氮工艺的影响[J].中国环境科学,2006,26(3):293~297.
    [104]祝贵兵,彭永臻,吴淑云等.碳氮比对分段进水生物脱氮的影响[J].中国环境科学,2005,25(6):641~645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700