甲醇高效清洁燃烧过程的基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机高效清洁燃烧技术一直是国际内燃机界研究的热点课题。针对未来超低排放、甚至零排放的排放法规,人们提出了不同的内燃机新型燃烧方式。同时,开发新型清洁代用燃料也成为当前各国研究的热点。本文对甲醇代用燃料新型高效清洁燃烧方式进行了探索性研究,即部分甲醇合成二甲醚,实现二甲醚与甲醇双燃料方式,创新性地提出了采用甲醇/DME气道喷射双燃料均质压燃(HCCI)燃烧方式和DME气道喷射与甲醇缸内直喷双燃料复合燃烧方式,以在全负荷范围内实现甲醇的高效清洁燃烧。
     采用甲醇/DME气道喷射双燃料HCCI燃烧方式,能拓宽发动机运行工况范围到原非增压柴油机中高负荷水平,并能保持极低的NOX排放,但低负荷燃烧效率和热效率低,HC和CO排放高;中高负荷甲醇/DME浓度可调范围窄,控制难度增大。采用EGR后中高负荷工况的可控范围得以拓宽,但其最大负荷范围难以扩展。在低负荷工况,采用纯DME加大比例EGR的HCCI燃烧方案能改善热效率;在中高负荷工况,采用高EGR率高DME比例方案可以提高热效率,降低HC和CO排放。
     采用DME气道喷射和甲醇缸内直喷双燃料复合燃烧方式,通过控制甲醇的喷射时刻可以实现不同燃烧模式,不同燃烧模式表现出不同的燃烧特性和排放特性。低甲醇浓度下采用高温扩散燃烧模式可以实现低负荷较高的热效率。随甲醇浓度增大,高温扩散燃烧模式出现的时刻提前,早喷燃烧可控范围变窄。采用晚喷方式,燃烧过程能得到较好的控制,高甲醇浓度大负荷下不容易出现爆震燃烧,能进一步扩展发动机负荷工况范围。CFD模拟表明,晚喷在燃烧室壁面附近有较强烈的浓度分层,高温燃烧区范围较窄,主要分布在压缩余隙和燃烧室壁面附近。变参数模拟研究表明,增大喷油速率可以缩短高甲醇浓度晚喷的燃烧持续期。
     在不同燃烧方式研究的基础上,本文提出了全负荷范围甲醇高效清洁燃烧的控制策略。即在低负荷工况,采用纯DME加大比例EGR的HCCI燃烧或二甲醚气道喷射与甲醇缸内直喷双燃料复合燃烧的甲醇高温扩散燃烧模式以获得相对高的热效率;在中高负荷工况,采用甲醇/二甲醚气道喷射双燃料HCCI燃烧方式实现高效低NOX排放的清洁燃烧;在大负荷工况,采用甲醇晚喷实现DME气道喷射与甲醇缸内直喷复合燃烧方式以保证高的功率输出。这一控制策略为甲醇燃料在内燃机上实现高效清洁利用提供了理论基础和试验依据,具有一定的参考价值。
High efficiency and clean combustion technology of internal-combustion engine has been a hotspot in international engine field all along. New engine combustion modes are presented aiming at future ultra-low and even zero emission regulation. At the same time, the development of new clean alternative fuel has also becomes a hotspot of research in many countries. In this paper, new high-efficiency and clean combustion modes of alternative fuel methanol are exploringly investigated. Based on DME and methanol dual-fuel method achieved by DME generation from a part of methanol, two kinds of combustion types are innovatively presented to achieve high efficiency and clean combustion of methanol in full load. One is HCCI combustion of methanol/DME dual-fuel port injection; another is the dual-fuel compound combustion with port injection of DME and direct injection of methanol.
     HCCI combustion of methanol/DME dual-fuel port injection can extend the operating range to middle-high load level of original non-pressurized diesel engine, keeping very low NOX emissions, but having low combustion efficiency and thermal efficiency, high HC and CO emissions at low load. In addition, adjustable region of methanol/DME concentration at middle-high load is narrow so that combustion control difficulty increases. EGR can enlarge the controlled region at middle-high load, but can’t extend maximum load range. At low load, adopting pure DME HCCI combustion with high EGR rate can improve thermal efficiency. In middle-high load, adopting large DME percentage and high EGR rate can improve thermal efficiency of HCCI and decrease HC and CO emissions.
     To the dual-fuel compound combustion with port injection of DME and direct injection of methanol, various combustion modes, which represent different combustion characteristics and emissions characteristics, can be achieved by controlling different injection timings of methanol. High temperature diffusion combustion mode should be adopted to attain relatively high thermal efficiency under low methanol concentration and low load. With the increase of methanol concentration, the crank angle corresponding to high temperature diffusion combustion mode advances, and combustion controlled region of early injection becomes narrower. By adopting late injection, combustion process can be well controlled, knocking combustion can be avoided under high methanol concentration and large load, and so engine load range can be further extended. CFD simulation shows that, for late injection case, there is intensive concentration stratified near combustion chamber wall. And high temperature combustion region, which is relatively narrow, is distributed in compression clearance and near combustion chamber wall. Modeling study of varied parameters indicates that faster injection rate can shorten combustion duration under high methanol concentration for late injection.
     Based on the above study, this paper presents a control strategy for high efficiency and clean combustion of engine fueled with methanol in full load. At low load, pure DME HCCI combustion with high EGR rate or high temperature diffusion combustion mode of methanol should be adopted to attain relatively high thermal efficiency. In middle-high load, HCCI combustion of methanol / DME dual-fuel port injection should be adopted to achieve clean combustion with high efficiency and low NOX emissions. At high load, the dual-fuel compound combustion with port injection of DME and in-cylinder direct injection of methanol achieved by late injection should be adopted to ensure high power output. This control strategy, which provides theoretical and experimental basis for high-efficiency and clean utilization of methanol in engine, has a useful reference value.
引文
[1] 张澜涛,国际能源态势与我国能源安全,国际关系学院学报,2006(5): 45~52
    [2] 唐炼,世界能源供需现状与发展趋势,国际石油经济,2005,13(1):30~33
    [3] 国家机械工业局,国家汽车工业重要政策与法规,1999, 2
    [4] http://auto.people.com.cn/GB/1050/4872748.html
    [5] 王建昕,傅立新,黎维彬,汽车排气污染治理及催化转化器,北京:化学工业出版社,2000.1~21
    [6] 刘湘俊,内燃机的排放与控制,北京,机械工业出版社,2002.1~12
    [7] 郝勇,范群,赫冬青等,汽车排气污染现状及防治对策,环境保护科学,2003,29(4):15~16
    [8] K. Inagaki, T. Fuyuto, K. Nishikawa, et al. Combustion System with Premixture -controlled Compression. R&D Review of Toyota CRDL, 2006, 31(3): 35~46
    [9] P. M. Najt, D. E. Foster, Compression-ignited Homogeneous Charge Combustion. SAE Paper 830264, 1983
    [10] Thring R H. Homogeneous-Charge Compression Ignition (HCCI) Engine. SAE Paper 892068, 1989
    [11] Aoyama, T. et al. An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engines. SAE Paper 960081, 1996
    [12] M. Christensen et al. Homogeneous Charge Compression Ignition (Hcci) Using Isooctane, Ethanol and Natural Gas--A Comparison With Spark-Ignition Operation. SAE 972874, 1997
    [13] M. Christensen, et al. Demonstrating the Multi Fuel Capacity of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio. SAE Paper 1999-01-3679, 1999
    [14] S. S. Morimoto, et al. Operating Characteristics of a Natural Gas-Fired Homogeneous Charge compression ignition Engine (Performance improvement Using EGR). SAE Paper 2001-01-1034, 2001
    [15] S. Fiveland, et al. Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition. SAE Paper 2001-01-3609, 2001
    [16] J. O. Olsson, et al. Combustion Ratio Influence on Maximum Load of Natural Gas-Fueled Hcci Engine. SAE Paper 2002-01-0111, 2002
    [17] Z. Chen, et al. Study on Homogeneous Premixed Charge CI Engine Fueled With LPG. JSAE Paper 20014339, 2001
    [18] N. Iida, et al. Combustion Thermo-Atmosphere Combustion Analysis of (ATAC) Engine Methanol-Fueled Active Using a Spectroscopic Observation. SAE Paper 940684, 1994
    [19] M .Christensen, et al. Supercharged homogeneous Charge Compression Ignition. SAE Paper 980787, 1998
    [20] T. Seko, et al. Methanol Lean Burn in an Auto-Ignition DI Engine. SAE Paper 980531, 1998
    [21] T. Seko, et al. Combustion Improvement of a Premixed Charge compression Ignition Methanol Engine Using Flash Boiling Fuel Injection. SAE Paper 2001-01-3611, 2001
    [22] M. F. Yao, Z. Chen, Z. Q. Zheng, et al. Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel, 85(2006), 2046-2056
    [23] M. F. Yao, Z. Q. Zheng. Z. Chen, et al. Experimental Study on Hcci Combustion of Dimethyl Ether (Dme)/Methanol Dual Fuel. 2004-01-2993, 2004
    [24] A. Oakley, et al. Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuel. SAE Paper 2001-01-3606, 2001
    [25] L. Daeyup, et al. Autoignition of Alcohols and Ethers in a Rapid Compression Machine. SAE Paper 932755, 1993
    [26] K. N. Cathy, J. T. Murray. A Computational Study of the Effect of Fuel Reforming, Egr and Initial Temperature on Lean Ethanol Hcci Combustion. SAE Paper 2004-01-0556, 2004
    [27] G. Gnanam. An HCCI Engine Fuelled with Iso-octane and Ethanol. SAE Paper 2006-01-3246, 2006
    [28] H. Ogawa, N. Miyamoto, N. Kaneko, et al. Combustion Control and Operating Range Expansion With Direct Injection of Reaction Suppressors in a Premixed Dme Hcci Engine. SAE Paper 2003-01-0746, 2003
    [29] Toshio Shudo. Hcci Combustion of Hydrogen, Carbon Monoxide and Dimethyl Ether. SAE Paper 2002-01-0112, 2002
    [30] H. Yamada, Y. Goto, A. Tezaki. Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines. SAE Paper 2006-01-3299, 2006
    [31] A. Mohammadi, S. S. Kee, T. Ishiyama et al. Implementation of Ethanol Diesel Blend Fuels in PCCI Combustion. SAE Paper 2005-01-3712, 2005
    [32] S. H. Zhong, A. Megaritis, D. Yap et al. Experimental Investigation into HCCI Combustion Using Gasoline and Diesel Blended Fuels. SAE Paper 2005-01-3733, 2005
    [33] M. Christensen,B. Johansson,P. Amneus et al. Supercharged Homogeneous Charge Compression Ignition. SAE 980787, 1998
    [34] P Amneus,D Nilsson,M Christensen,et al. Homogeneous Charge Compression Ignition Engine : Experiments and Detailed Kinetic Calculations. The Fourth Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines. Comodia 98, 1998. 567~572
    [35] J Dec. A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits of HCCI Engines. SAE 2002-01-1309, 2002
    [36] S Aceves,J Martinez-Frias,D Flowers et al. A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion. SAE 2001-01-3612, 2001
    [37] S. Onishi, S. H. Jo, K. Shoda, et al. Active Thermo-Atmosphere Combustion (ATAC)--A New Combustion Process for Internal Combustion Engines. SAE Paper 790501, 1979
    [38] M. Noguchi, Y. Tanaka, T. Tanaka. A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion. SAE Paper 790840, 1979
    [39] P.M. Najt, D.E. Foster. Compression-Ignited Homogeneous Charge Combustion. SAE Paper 830264,1983
    [40] R.H. Thring. Homogeneous-Charge Compression-Ignition (HCCI) Engines. SAE Paper 892068, 1989
    [41] J.Willand, R-G. Nieberding, G. Vent, C. Enderle, The Knocking Syndrome——Its Cure and Its Potential, SAE 982483, 1998
    [42] George Kontarakis, Nick Collings and Tom Ma, Demonstration of HCCI Using a Single Cylinder Four-stroke SI Engine with Modified Valve Timing, SAE 2000-01-2870, 2000
    [43] N. Kaahaaina, et al., “Use of Dynamic Valving to Achieve Residual – Affected Combustion”, SAE Paper 2001-01-0549, 2001
    [44] P. Wolters, W. Salber, J. Geiger, et al. Controlled Auto Igniton Combustion Process with an Electromechanical valve Train. SAE paper 2003-01-0032, 2003
    [45] A. Oakley, H. Zhao, N. Ladommatos, et al. Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels. SAE Paper 2001-01-3606, 2001
    [46] H. Zhao, Z. Peng, J. Williams, et al. Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (CAI) Combustion in Four-Stroke Gasoline Engines. SAE Paper 2001-01-3607, 2001
    [47] C. Marriot, et al. Experimental Investigation of Direct Injection Gasoline for Premixed Compression Ignited Combustion Phasing control. SAE Paper 2002-01-0418, 2002
    [48] C. Marriot, et al. Investigation of Hydrocarbon Emissions from a Direct Injection Gasoline Premixed Charge Compression Ignited Engine. SAE Paper 2002-01-0419, 2002
    [49] J. Willand, et al. The Knocking Syndrome: It s Cure and Potential. SAE Paper 92483 ,1998
    [50] K .Hiraya, et al. A Study of Gasoline Fueling Compression Ignition Engine. JSAE Paper 20025006, 2002
    [51] 王建昕,王志,陈虎,2006 年国际 SAE 年会及汽车动力系统研究进展,汽车工程,2006,28(6): 509-515
    [52] A. Kulzer, A. Christ, M. Rauscher, et al. Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts. SAE Paper 2006-01-0231 , 2006
    [53] Y. F. Li, H. Zhao, N. Brouzos et al. Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector, SAE Paper 2006-01-0206, 2006
    [54] G. H Tian, J. X. Wang, S.J. Shuai et al. HCCI Combustion Control by Injection Strategy with Negative Valve Overlap in a GDI Engine, SAE Paper 2006-01-0415, 2006
    [55] J. Li, H. Zhao, N. Ladommatos et al. Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine. SAE Paper 2001-01-3608
    [56] H. Zhao, J. Li, T. Ma et al. Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion. SAE Paper 2002-01-0420, 2002
    [57] S. Gharahbaghi, T. Wilson, H. Xu et al. Modelling and Experimental investigations of Supercharged HCCI Engines. SAE Paper 2006-01-0634, 2006
    [58] R. M. Wagner, K. D. Edwards, C. S. Daw et al. On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion. SAE Paper 2006-01-0418, 2006
    [59] G.H. Tian, Z. Wang, Q.Q. Ge et al. Mode Swith of SI-HCCI Combustion on a GDI Engine. SAE Paper 2007-01-0195, 2007
    [60] H. Xie, Y. Zhang, N. Zhou, et al. Study of SI-HCCI-SI Transition on a Port Fuel Injection Engine Equipped with 4VVAS. SAE Paper 2007-01-0199, 2007
    [61] Fuquan (Frank) Zhao, Thomas W. Asmus, Dennis N. Assanis, et al., “Homogenous Charge Compression Ignition (HCCI) Engine: Key Research and Development Issues”, Society of Automotive Engineers, Inc., 2002
    [62] W.L. Hardy, R. D. Reitz, et al. A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI combustion. SAE Paper 2006-01-0026
    [63] T.W. Ryan, T.J. Callahan. Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Paper 961160, 1996
    [64] A.W. Gray, T.W. Ryan. Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel. SAE Paper 971676, 1997
    [65] H. Suzuki, M. Odaka, T. Kariya, Effect of start of injection on NOx and smoke emissions in homogeneous charge diesel combustion. JSAE Review 21 (2000) pp:390~392, 2000
    [66] 阪田一郎,最新发动机技术,丰田汽车技术讲座,天津大学,2003,12
    [67] H. Yanagihara, Y. Sato,J. Mizuta. A Study of DI Diesel Combustion under Uniform Higher-Dispersed Mixture Formation. JSAE Review 18(1997), pp. 247~254, 1997
    [68] R. Hasegawa,H. Yanagihara. HCCI Combustion in DI Diesel Engine. SAE Paper 2003-01-0745, 2003
    [69] H. Yokota, H. Nakajima, T. Kakegawa. A New Concept for Low Emission Diesel Comustion (2nd Rep.: Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel). SAE Paper 981933, 1998
    [70] S. Kook, C. Bae, Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine. SAE Paper 2004-01-0138, 2004
    [71] Y. Iwabuchi, K. Kawai, T. Shoji et al. Trial of New Concept Diesel Combustion System-Premixed Compression-Ignition Combustion. SAE Paper 1999-01-0185, 1999
    [72] B. Walter, B.Gatellier. Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine: the NADITM Concept Using Dual Mode Combustion. Oil & Gas Science and Technology-Rev.IFP, Vol.58 (2003), NO.1, pp. 101~114. 2003
    [73] B. Walter, B. Gatellier. Development of the High Power NADI Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions”, SAE Paper 2002-01-1744, 2002
    [74] Y. Takeda, K. Nakagome. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Paper 961163, 1996
    [75] K. Nakagome, K. Niimura. Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine. SAE Paper 970898, 1997
    [76] T. Hashizume, T. Miyamoto, H. Akagawa, et al. Combustion and Emission Characteristics of Multiple Stage Diesel Combustion. SAE Paper 980505, 1998
    [77] T. Hashizume, T. Miyamoto, H. Akagawa, et al. Emission Characteristics of a MULDIC Combustion Diesel Engine: Effects of EGR. Technical Notes, JSAE Review 20, 421~438, 1999
    [78] Y. Nishijima, Y. Asaumi, Y. Aoyagi. Premixed Lean Diesel Combustion (PREDIC) Using Impingement Spray System. SAE Paper 2001-01-1892, 2001
    [79] H. Akagawa, T. Miyamoto, A. Harada, et al. Approaches to Solve Problems of the Premixed Lean Diesel Combustion. SAE Paper 1999-01-0183, 1999
    [80] 苏万华,林铁坚,张晓宇等, MULINBUMP-HCCI 复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22(3):193~200
    [81] W. H. Su, T. J. Lin, Y. Q. Pei. A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-pulse Injection and the BUMP Combustion Chamber, SAE Paper 2003-01-0741, 2003
    [82] W. H. Su, X. Y. Zhang, T. J. Lin et al. Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference, ICEF2004-927, 2004
    [83] W. H. Su, X. Y. Zhang, T. J. Lin et al. Effects of Heat Release Mode on Emissions and Efficiencies of a Compound Diesel Homogeneous Charge Compression Ignition Combustion Engine. Journal of Engineering for Gas Turbines and Power. APRIL 2006, Vol. 128:446~454
    [84] A. Helmantel, I. Denbratt. HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel. SAE Paper 2004-01-0935, 2004
    [85] Y. Mase, J. I. Kawashina, T. Sato, et al. Nissan’s New Multivalve DI Diesel Engine Series. SAE Paper 981039, 1998
    [86] S. Kimura, O. Aoki, H. Ogawa, et al. New Combustion Concept for Ultra-clean and High-efficiency Small DI Diesel Engines. SAE Paper 1999-01-3681, 1999
    [87] S. Kimura, O. Aoki, Y. Kitahara, et al. Ultra-clean Combustion Technology Combining a Low-temperature and Premixed Combustion Concept for Meeting Future Emission Standards. SAE Paper 2001-01-0200, 2001
    [88] Suzuki, H., Koike, N., Odaka, M. Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition, Part 1: Experimental Investigation of Combustion and Exhaust Emission Behavior Under Pre-Mixed Homogeneous Charge Compression Ignition Method. SAE Paper 970313, 1997
    [89] Suzuki, H., Koike, N., Odaka, M. Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition, Part 2: Analysis of Combustion Phenomena and NOx Formation by Numerical Simulation with Experiment. SAE Paper 970315, 1997
    [90] Suzuki, H., Koike, N., Odaka, M. Combustion Control Method of Homogeneous Charge Diesel Engines. SAE Paper 980509, 1998
    [91] Odaka, M., Suzuki, H., Koike, N. et al. Search for Optimizing Method of Homogeneous Charge Diesel Combustion. SAE Paper 1999-01-0184, 1999
    [92] Shawn Midlam-Mohler, Yann Guezennec, Giorgio Rizzoni, et al. Mixed-Mode Diesel HCCI with External Mixture Formation: Preliminary Results. 8th Diesel Engine Emissions Reduction (DDER) Workshop, Aug. 25-29, 2002
    [93] Yann Guezennec, Shawn Midlam-Mohler, Giorgio Rizzoni. A Mixed Mode HCCI/DI Engine Based on a Novel Heavy Fuel Atomizer. 9th Diesel Engine Emissions Reduction (DDER) Workshop, Aug. 24-28, 2003
    [94] Shawn Midlam-Mohler. Diesel HCCI with External Mixture Preparation. 10th Diesel Engine Emissions Reduction (DDER) Workshop, Aug29-Spet.2, 2004
    [95] Y. Urata, M. Awasaka, J. Takanashi, et al. Study on Gasoline HCCI Engine equipped with Electromagnetic Variable Valve Timing System. Proceedings of Aachener Kolloquium Fahrzeug- und Motorentechnik 2004, Aachener, Germany, May, 2004. pp 493-511.
    [96] J. Lavy, J.C. Dabadie, C. Angelberger etal. Innovative Ultra-low NOx Controlled Auto-ignition combustion Process for Gasoline Engine. SAE paper 2000-01-1837, 2000
    [97] S. Magnus, E. D. John. An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines. SAE paper 2004-01-1900, 2004
    [98] E. D. John, H. Wontae, S. Magnus. An Investigation of Thermal Stratification in HCCI engines Using Chemiluminescence Imaging. SAE Paper 2006-01-1518, 2006
    [99] D. L. Flowers, S. M. Aceves, J. R. Smith, et al. Hcci in a Cfr Engine: Experiments and Detailed Kinetic Modeling. SAE Paper 2000-01-0328, 2000
    [100] S. Magnus, E. D. John. Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates. SAE Paper 2004-01-2994, 2004
    [101] E. D. John. Understanding HCCI charge stratification using optical, conventional, and computational diagnostics. SAE HCCI Symposium, Lund, Sweden, September, 2005
    [102] N. Milovanovic, D.Blundell, R. Pearson, J. Turner, R. Chen. Enlarging the operational range of a gasoline HCCI engine by controlling the coolant temperature. SAE paper 2005-01-0157, 2005
    [103] M. Christensen, B. Johansson. Influence of Mixture Quality on Homogeneous Charge Compression Ignition. SAE Paper 982454, 1998
    [104] E. D. John, S. Magnus. Isolating the Effects of Fuel Chemistry on Combustion Phasing in An Hcci Engine and the Potential of Fuel Stratification for Ignition Control. SAE Paper 2004-01-0557, 2004
    [105] A. Tanet, W. Philipp, M. S. Volker, et al. Expanding the Hcci Operation With the Charge Stratification. SAE Paper 2004-01-1756, 2004
    [106] S. Magnus, E. D. John. Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels. SAE Paper 2006-01-0629, 2006
    [107] R. Steeper,S. D. Zilwa. Automotive HCCI Combustion Research. 2005 Advanced Combustion Engine Program Review. Argonne National Laboratory, USA. April 2005
    [108] K. Akihama, Y. Takatori, K. Inagaki,et al. Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature. SAE Paper 2001-01-0655, 2001
    [109] M. Allard. Issues Associated With Widespread Utilization of Methanol. SAE Paper 2000-01-0005,2000
    [110] 魏象仪,杨名华,压燃甲醇的自燃历程和火焰温度的光测研究,内燃机工程,1993(1)
    [111] 訾琨.高原地区发动机燃用醇类燃料及技术措施,昆明理工大学学报,2000,25(3):88~92
    [112] K. Niwa, S. Inoue. Advance of Technology on Methanol Fuels and Methanol Vehicles in Japan. SAE Paper 952753, 1995
    [113] 曾剑,靳常青,甲醇-替代燃料中的佼佼者,商业时代,2005.7
    [114] M.E. Karpuk, D.W. John, L. D. James, Dimethyl ether as an ignition enhancer for methanol-fueled diesel engines. SAE Paper 912420, 1991
    [115] T. Murayama, T. Chikahisa, J. Guo, et al. A study of a compression ignition methanol engine with converted dimethyl ether as an ignition improver. SAE Trans. Journal of Fuels and Lubricants. 1992, 101: 1210-1220
    [116] K.H. Kozole, J. S. Wallace. The Use of Dimethyl Ether as a Starting Aid for Methanol-Fueled SI Engines at Low Temperatures. SAE Paper 881677, 1988
    [117] M.E. Karpuk, W.C. Scott. On board dimethyl ether generation to assist methanol engine cold starting. SAE Paper 881678, 1988
    [118] D. L. Horstman, D. L. Abata, J. M. Keith. On-Site DME Generation from Methanol for Pilot Injection in CI Engines. SAE Paper 2003-01-3198, 2003
    [119] 郑尊清,尧命发,汪洋等,二甲醚均质压燃燃烧过程的试验研究,燃烧科学与技术,2003,9(6):561-565
    [120] Zhili Chen, et al. Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine. SAE Paper 2000-01-0329, 2000
    [121] J. B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, 1988:154
    [122] 蒋德明,内燃机燃烧与排放学,西安:西安交通大学出版社,2001.7
    [123] J. O. Olsson, P. Tunestal, J. Ulfvik et al. The effect of cooled EGR on Emissions and performance of a turbocharged HCCI engine. SAE paper 2003-01-0743, 2003
    [124] S. S. Morimoto, Y. Kawabata, T. Sakurai et al. Operating Characteristics of a Natural Gas-Fired Homogeneous Charge compression ignition engine (Performance improvement using EGR). SAE Paper 2001-01-1034,2001
    [125] AVL LIST GmbH,Fire CFD Solver v8.4- Theory, A-8020 Graz, 2005.5
    [126] 解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,2005
    [127] 魏象仪,内燃机燃烧学,大连理工大学出版社,大连,1998,p11~22
    [128] Held, T. J. and Dryer, F. L., A Comprehensive Mechanism for Methanol Oxidation, Int. J. Chem. Kinetics, v. 30, pp. 805-830 (1998)
    [129] http://www.tfd.chalmers.se/~ogink/hccifamily.html
    [130] 梁霞,二甲醚/甲醇双燃料均质压燃燃烧数值模拟研究,天津大学硕士学位论文,2005
    [131] 黄豪中,苏万华,一个新的用于 HCCI 发动机燃烧研究的正庚烷化学反应动力学简化模型,内燃机学报,2005,23(1):42~51
    [132] AVL LIST GmbH,Fire CFD Solver v8.4- General Gas Phase Reactions,A-8020 Graz, 2005.5
    [133] 郑清平,压燃式天然气发动机燃烧过程模拟计算和试验研究,天津大学博士学位论文,2006
    [134] 周力行,湍流两相流动与燃烧的数值模拟,北京:清华大学出版社,1991,34~38
    [135] 陶文铨,数值传热学(第 2 版),西安:西安交通大学出版社,2001,332~364
    [136] 蒋炎坤,CFD 辅助发动机工程的理论与应用,北京:科学出版社,2004(1~10)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700