气体燃料再燃降低氮氧化物排放的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)是酸雨形成的重要前驱物,会对环境造成严重破坏。煤燃烧过程中产生的NOx是氮氧化物形成的主要来源之一。随着我国对NOx排放控制要求的提高,有效地控制燃煤过程中NOx排放已是一项十分紧迫的任务。在众多的NOx排放控制技术中,再燃(Reburning)被认为是最经济和最有应用前景的技术之一。因此,针对再燃过程进行深入研究具有重要的科学和实际意义。
     本文在系统总结和分析国内外有关再燃,尤其是气体燃料再燃过程方面研究进展的基础上,明确了影响气体燃料再燃过程的各种关键因素,进而确定了研究对象和思路。论文主要从以下几个方面开展了研究:
     采用GRI-Mech3.0反应机理对气体燃料(CH4)再燃过程进行了化学动力学计算和分析,得出了再燃反应机理中对NO还原有重要作用的一些关键反应,同时通过化学动力学计算,研究了再燃区停留时间、再燃区过量空气系数、再燃区温度、再燃燃料量以及再燃燃料种类等因素对气体燃料再燃脱硝过程的影响。
     在两台一维热态煤粉炉和一台卧式单角炉实验系统上进行了气体燃料再燃的实验研究,并对炉膛内温度、O2浓度以及NO浓度分布等进行了测量。实验研究了气体燃料再燃过程中再燃区停留时间、再燃燃料比例、再燃区过量空气系数、再燃区温度、主燃料煤种性质以及气体再燃燃料种类等各种因素对气体燃料再燃脱硝过程的影响。实验最终确定了符合实际气体燃料再燃过程的各种关键影响参数的最佳取值范围,即当再燃区停留时间为0.6s~0.9s,气体再燃燃料比例达到10%~15%,再燃区平均过量空气系数为0.8~0.9,再燃区温度水平在1500K左右时,气体燃料再燃过程就可以获得较理想的50%以上的再燃脱硝效率。
     在实验研究基础上,采用合理的NO反应模型,结合煤粉燃烧过程三维数值模拟程序对气体燃料再燃过程进行了数值模拟,并通过将实验测量数据与模拟结果进行对比分析,考察了NO反应模型的合理性。模拟结果表明,目前的模型虽然在一定程度上对再燃过程中NO浓度值的预报偏低,但模型能够比较准确的反映气体燃料再燃过程中炉膛内的燃烧状况,同时也能够对气体燃料再燃过程中NO浓度变化的总体趋势和还原水平进行比较准确的模拟。模拟采用的基于“局部平衡假设”方法的NO再燃子模型,模型简洁、计算经济,在不需要求解大量守恒方程的前提下,能够对气体燃料再燃降低NOx排放过程进行合理模拟。模拟方法能够为实际工程应用的气体燃料再燃过程模拟、设计及优化提供一种有效手段,同时也能够为今后进一步的深入研究提供一定的基础。
     在实验和数值模拟研究基础上,最后针对上海宝钢电厂350MW燃煤机组1号锅炉进行了气体燃料再燃改造和应用的工程示范。示范工程运行结果表明,锅炉采用气体燃料再燃后满负荷条件下NOx排放量达到196mg/Nm3(折算6%氧量),达到了世界发达国家的排放标准。改造后的锅炉燃烧状况良好,设备运转情况正常,锅炉燃烧效率和安全性能均未受到影响。整个示范工程设备投资小,改造成本和运行费用均很低,具有良好的经济效益和环保效益。示范工程首次在国内300MW等级机组锅炉上采用气体再燃技术使NOx排放量达到了发达国家的先进排放水平,在大容量锅炉气体燃料再燃技术工业应用方面填补了国内空白。示范工程同时也为气体燃料再燃技术的推广和产业化提供了借鉴。
Nitrogen oxides (NOx) have been recognized as acid rain precursors that impose a significant threat to the environment. Coal combustion is a major anthropogenic source of NOx. Recently, China has specified more rigorous limits for the NOx emissions. Among the most recent developments for reducing NOx emissions, reburning technology is considered to be one of the most promising and cost-effective NOx reduction strategies for coal combustion systems. Therefore, it has great scientific and practical significances to investigate the reburning process.
     This thesis provided an overview of the present researches on the reburning, especially the reburning process by gaseous fuel. The overview revealed the key influencing factor of the gaseous fuel reburning process. Simultaneously, it made the object of this study clear. The following investigations are made in this thesis:
     Firstly, the GRI-Mech3.0 mechanism was applied to calculate the chemical kinetic reactions in the gaseous fuel (CH4) reburning process. The results revealed the critical reactions for the NOx reduction in the reburning process. The influences of reburn fuel quality, reburn fuel percentage of total heat input, reburn zone temperature, residence time and excess air on gaseous fuel reburning process were also analyzed by the chemical kinetic calculation.
     Subsequently,experimental studies on gaseous fuel reburning process have been performed in two one-dimensional coal combustion furnaces and a single-burner furnace. Detailed profiles of temperature, O2 concentration and NO concentration in these furnaces were measured. The influences of primary fuel (coal) quality, reburn fuel quality, reburn fuel percentage of total heat input, reburn zone temperature, residence time, excess air on gaseous fuel reburning process were also quantitatively analyzed. The results of the experiments showed that above 50% reduction of NOx emissions can be achieved under the optimizational reburn configurations. The appropriate amount of gaseous reburn fuel is about 10%~15% of the total thermal input. The reasonable residence time of reburn zone is about 0.6s~0.9s. The optimized average excess air coefficient for reburn zone is about 0.8~0.9. The reasonable temperature of reburn zone should not exceed 1500K.
     According to the experiments, a nitric oxide model was incorporated into a comprehensive coal combustion model for predicting NO reduction in the gaseous fuel reburning process. Profile comparisons showed that the modelling methodology deployed in this study was adequate to predict the overall combustion behaviour in the furnace. The reburning-NO submodel depicted quite well the observed behaviour of NO annihilation and was capable to properly predict the NO reduction levels in the reburning process, nevertheless it must state that the present model has somewhat under-predicted the NO concentration in the reburning process. The computationally economic reburning-NO submodel, on the basis of the“partial equilibrium”approach, requires the solution of only a few transport equations to simulate the complicated physical and chemical process inherent in the reburning technology. It is expected that this model represents a useful technique to simulate, design and optimize the practical gaseous fuel reburning process. It also provides a basis for further studies.
     Finally, the gaseous fuel reburning technology was successfully applied on the 1# 350MW boiler of Baoshan Power Plant. The operating results showed that the NOx exhaust emission was about 196mg/Nm3 (O2=6%), which has reached the NOx emission standard in developed country. The boiler after modified worked well and the equipments operated normally. The combustion efficiency and security of the boiler have not been changed. The investment and operating cost of the whole demonstration project was very low. It had good benefits in economy and environment. This demonstration project adopted the gaseous fuel reburning technology on 300MW grade unit boiler for the first time and filled the domestic gaps in the large-scale reburning technique applications. It provided a successful demonstration for the popularization and commercial application of reburning technology.
引文
[1]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术.北京:化学工业出版社,2005
    [2]郑楚光.洁净煤技术.武汉:华中理工大学出版社,1996
    [3]大喜多敏一.大气保全学.东京:产业图书出版社,1982
    [4]毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998
    [5]曾汉才.大型锅炉高效低NOx燃烧技术的研究.锅炉制造,2001,3(1):1~11
    [6]曾汉才,姚斌,程俊峰等.关于我国大型锅炉NOx排放及其排放标准修订的建议.锅炉制造,2001,182(4):1~4
    [7] GB13223-2003,火电厂大气污染物排放标准.
    [8]谢克昌.煤的结构与反应性.北京:科学出版社,2002
    [9] P. F. Nelson, M. D. Kelly, M. J. Wornat. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid conditions. Fuel, 1991, 70: 403~407
    [10] S. R. Kelemen, M. L. Gorbaty, P. J. Kwiatek. Quantification of nitrogen forms in Argonne premium coal. Energy and Fuels, 1994, 8: 896~906
    [11]新井纪男.燃烧生成物的发生与抑制技术.赵黛青等译.北京:科学出版社,2001.
    [12] S. Kambara, T. Takarada, M. Toyoshima, et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion. Fuel, 1995, 74 (9): 1247~1258
    [13] O. C. Mullins, S. Mitra-Kirtley, J. Van Elp, et al. Molecular structure of nitrogen in coal from XANES spectroscopy. Applied Spectroscopy, 1993, 47: 1268~1275
    [14] J. R. Ples, M. A. Wajtowicz, J. A. Moulijn. Rank dependence of N2O emission in fluidized-bed combustion of coal. Fuel, 1993, 72 (3): 378~392
    [15] C. P. Fenimore. Reactions of fuel-nitrogen in rich flame gases. Combust. Flame, 1976, 28: 249~256
    [16] C. Morley. Mechanism of NO formation from nitrogen compounds in hydrogenflames studied by laser fluorescence. 18th Symp. (Int.) Combust., The Combustion Institute, Pittsburgh, PA, 1981, pp.23~32
    [17] B. Bassilakis, Y. Zhao, P. R. Solomon, et al. Sulfur and nitrogen evlution in the Argonne coals: Experiments and Modeling. Energy and Fuels, 1992, 7: 710~720
    [18]冯志华,常丽萍,任军等.煤热解过程中氮的分配及存在形态的研究进展.煤炭转化,2000,23:6~11
    [19]孙林兵,倪中海,张丽芳等.煤热解过程氮、硫析出形态研究进展.洁净煤技术,2002,8(3):47~50
    [20] L. K. Chan, A. F. Sarofim, J. M. Beer. Kinetics of the NO-carbon reaction at fluidized bed combustor conditions. Combust. Flame, 1983, 52: 37~45
    [21] C. J. Hindmarsh, W. X. Wang, K. M. Thomas, et al. The release of nitrogen during the combustion of macerals, microlithotypes and their chars. Fuel, 1994, 73: 1229~1234
    [22] M. J. Lazaro, J. V. Ibarra, R. Moliner, et al. The release of nitrogen during the combustion of coal chars: the role of volatile matter and surface area. Fuel, 1996, 75: 1014~1024
    [23] S. L. Chen, M. P. Heap, D. W. Pershing, et al. Fate of coal nitrogen during combustion. Fuel, 1982, 61: 1218~1224
    [24] L. D. Smoot, P. J. Smith. Coal Combustion and Gasification. New York, Plenum Press, 1985
    [25] T. B. Zeldovich. The oxidation of nitrogen in combustion explosions. Acta Physicochim. U.S.S.R., 1946, 21: 577~628
    [26] C.T. Bowman. Kinetics of pollutant formation and destruction in combustion. Prog. Energy Combustion Sci., 1975, 1: 33~45
    [27]曾汉才.燃烧与污染.武汉:华中理工大学出版社,1990
    [28] C. P. Fenimore. Studies of fuel-nitrogen in rich flame gases.13th Symp. (Int.) Combust. The Combustion Institute, Pittsburgh, PA, 1971, pp.373~379
    [29] J. O. L. Wendt. Mechanisms governing the formation and destruction of NOx and other nitrogenous species in coal combustion systems. 2nd Int. Conf. on Combustion Technologies for a Clean Environment, Lisbon, Portugal, 1993, pp.1~12
    [30] S. P. Visona, B. R. Stanmore. 3-D modelling of NOx formation in a 275 MW utility boiler. J. Inst. Energy, 1996, 69: 68~79
    [31] S. P. Visona, B. R. Stanmore. Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science, 1998, 53 (11): 2013~2027
    [32] B. R. Stanmore, S. P. Visona. Prediction of NO emission from a number of coal-fired power station boilers. Fuel Processing Technology, 2000, 64: 25~64
    [33] W. X. Wang, S. D Brown, C. J. Hindmarsh, et al. NOx release and reactivity of chars from a wide range of coals during combustion. Fuel, 1994, 73: 1381~1388
    [34]祁海鹰,李宇红.高温低氧燃烧条件下氮氧化物的生成特性.燃烧科学与技术,2002,18(1):17~22
    [35]赵坚行.热动力装置的排气污染与噪声.北京:科学出版社,1995
    [36]高晋生,沈本贤.煤燃烧中NOx的来源和控制其生成的有效措施.煤炭转化,1994,17(3):53~57
    [37]毕玉森.我国电站锅炉低NOx燃烧器的应用状况及运行实绩.热力发电,1998,1:4~11
    [38]刘振琪.低NOx煤粉燃烧器在我国的应用实绩.锅炉技术,1998,9:14~21
    [39]胡荫平,贾鸿祥.新型煤粉燃烧器.西安:西安交通大学出版社,1993
    [40]吴生来,郝振亚.德国低NOx煤粉燃烧器.热力发电,1997,5:51~61
    [41]郑巧生.巴威公司的低成本NOx控制技术.锅炉技术,1995,5:27~30
    [42]路涛,贾双燕,李晓芸.关于烟气脱硝的SNCR工艺及其技术经济分析.现代电力,2004,21(1):17~22
    [43]刘天齐主编.三废处理工程技术手册(废气卷).北京:化学工业出版社,1999
    [44]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究.能源研究与利用,2004,2:24~27
    [45]赵惠富.污染气体NOx的形成和控制.北京:科学出版社,1990
    [46]钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002
    [47]吴祖良,高翔,魏恩宗等.等离子体气态污染物控制技术的研究进展.电站系统工程,2004,20(2):1~4
    [48]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996
    [49] K. Kawamura. On the removal of NOx and SO2 in exhaust gas from the sintering machine by electron beam irradiation. Radiat. Phys. Chem., 1980, 16: 133~138
    [50]魏恩宗,高翔,骆仲泱.电晕放电烟气脱硝机理探讨.电站系统工程,2003,19(5):1~3
    [51] S. Masuda. Control of NOx by positive and negative pulsed corona discharge. IEEE/IAS Annu. Conf., 1986, pp.1173~1182
    [52] H. J. Herzog, E. M. Drake. Carbon dioxide recovery and disposal from large energy system. Annual Review Energy Environment, 1996, 21: 145~166
    [53]金红光.新颖化学链燃烧与空气湿化燃气轮机循环.工程热物理学报,2000,21(2):138~141
    [54] M. Ishida, H. Jin. A new advanced power-generation system using chemical-looping combustion. Energy, 1994, 19: 415~422
    [55] S. C. Hill1, L. D. Smoot. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26: 417~458
    [56]李毅.天然气再燃降低锅炉NOx的排放.华东电力,2003,6:39~41
    [57]王大军,毛科.燃煤锅炉采用天然气再燃烧技术降低NOx排放的研究.四川电力技术,2002,6:14~16
    [58] S. McCahey, J. T. McMullan, B. C. Williams. Techno-economic analysis of NOx reduction technologies in p.f.boilers. Fuel, 1999, 78:1771~1778
    [59]鹰能.关于我国天然气资源概况及使用方向的建议[EB/OL]. http://www.china5e.com/cogen/tianranqi.htm,1999-07-08/2003-05-09.
    [60]姚向东,张忠孝,邱莉莉等.天然气再燃降低NOx的化学动力学及影响因素分析.上海理工大学学报,2004,26(1):62~65
    [61] M. Patry, G. Engel. Formation of HCN by the action of nitric oxide on methane at atmospheric pressure, 1. General conditions of formation. Compt. Rend., 1950, 231: 1302~1304
    [62] L. J. Drummond. Shock induced reaction of methane with nitrous and nitric oxides.Bull. Chem. Soc., Japan, 1967, 42: 285
    [63] J. O. L. Wendt, C. V. Sternling, M. A. Matovich. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. Fourteenth symposium (international) on combustion. The combustion institute, Pittsburgh, PA, 1973, pp.897~904
    [64] L. D. Smoot, S. C. Hill, H. Xu. NOx control through reburning. Progress in Energy and Combustion Science, 1998, 24: 385~408
    [65] S. L. Chen, J. A. Cole, M. P. Heap, et al. Advanced NO reduction processes using–NH and–CN compounds in conjunction with staged air addition. Twenty-Second symposium (international) on combustion. The Combustion Institute, Pittsburgh, PA, 1988, pp.1135~1145
    [66] J. C. Dopazo, N. Fueyo, M. Hernandez, et al. Investigation of low NOx strategies for natural gas combustion. Fuel, 1997, 76(5): 435~442
    [67] J. Pratapas, J. Bluestein. Natural gas reburn: cost effective NOx control. Power Eng., 1994, 98: 47~50
    [68] B. A. Folsom, R. Payne, D. Moyeda, et al. Advanced reburning with new process enhancements. EPR/EPA 1995 Joint Symposium on Stationary Combustion NOx Control, Kansas City, MO, 1995, May, 19
    [69] W. A. Nazeer, R. E. Jackson, J. A. Peart, et al. Detailed measurements in a pulverized coal flame with natural gas reburning. Fuel, 1999, 78: 689~699
    [70] R. Bibao, A. Millera, M. U. Alzueta, et al. Evalution of the use of different hydrocarbon fuels for gas reburning. Fuel, 1997, 76(14/15): 1401~407
    [71] M. M. Peter, M. Z. Vladimir, H. Loc, et al. Alternative fuel reburning. Fuel, 1999, 78: 327~334
    [72] Dieter Stapf, Kai Ehrhardt, Wolfgang Leuckel. Modeling of NOx reduction by reburning. Chem. Eng. Technol., 1998, 21: 5~12
    [73] D. R. Tree, A. W. Clark. Advanced reburning measurements of temperature and species in a pulverized coal flame. Fuel, 2000, 79(13): 1687~1695
    [74] E. Hampartsoumian, O. O. Folayan, W. Nimmo, et al. Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal type. Fuel, 2003, 82: 373~384
    [75] P. Dagaut, F. Lecomte. Experimental and kinetic modeling study of the reduction ofNO by hydrocarbons and interactions with SO2 in a JSR at 1 atm. Fuel, 2003, 82: 1033~1040
    [76] P. Dagaut, J. Luche, M. Cathonnet. Experimental and kinetic modeling of the reduction of NO by propene at 1 atm. Combustion and Flame, 2000, 121: 651~661
    [77] P. Dagaut, J. Luche, M. Cathonnet. Experimental and kinetic modeling of reduction of NO by isobutene in a JSR at 1 atm. Int. J. Chemical Kinetics, 2000, 32(6): 365~377
    [78] P. Dagaut, J. Luche, M. Cathonnet. Reduction of NO by propane in a JSR at 1 atm: Experimental and kinetic modeling. Fuel, 2001, 80: 979~986
    [79] P. Dagaut, J. Luche, M. Cathonnet. Reduction of NO by n-butane in a JSR: Experimental and kinetic modeling. Energy & Fuels, 2000, 14: 712~719
    [80] P. Dagaut, F. Lecomte, S. Chevailler, et al. The reduction of NO by ethylene in a JSR at 1 atm: Experimental and kinetic modeling. Combustion and Flame, 1999, 119: 494~504
    [81] P. Dagaut, F. Lecomte, S. Chevailler, et al. Mutual Sensitization of the oxidation of nitric oxide and simple fuels over an extended temperature range: Experimental and detailed kinetic modeling. Combust. Sci. and Tech., 1999, 148: 27~57
    [82] P. Dagaut, F. Lecomte, S. Chevailler, et al. The oxidation of HCN and reactions with nitric oxide: Experimental and detailed kinetic modeling. Combust. Sci. and Tech., 2000, 155: 105~127
    [83] J. O. L. Wendt. Mechanisms governing the formation and destruction of NO and other nitrogenous species in low NO coal combustion systems. Combust. Sci. and Tech., 2000, 155: 105~127
    [84] B. J. Mereb, J. O. L. Wendt. Reburning mechanisms in a pulverized coal combustor. Twenty-Third symposium (international) on combustion. The combustion institute, Pittsburgh, PA, 1990, pp.1273~1279
    [85] P. Glarborg, S. Hadvig. Development and test of a kinetic model for natural gas combustion. Nordic Gas Technology Centre, Denmark, 1991, ISBN 87-89309-44-8
    [86] D. C. Baulch, C. J. Cobos, R. A. Cox, et al. Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data., 1992, 21: 411~737
    [87] L. R. Thorne, M. C. Branch, D. W. Chandler, et al. Hydrocarbon/nitric oxideinteractions in low-pressure flames. Twenty-First symposium (international) on combustion. The combustion institute, Pittsburgh, PA. 1986, pp.965~977
    [88] B. W. Li, K. T. Wu, D. K. Moyeda, et al. Use of computer models for reburning/cofiring boiler performance evaluation: combustion modeling, cofiring and NOx control. ASME, Fact, 1993, 17: 87~94
    [89] H. S. Hura, B. P. Breent. Chemical kinetic simulation of nitric oxide reduction during natural gas reburning in pulverized coal fired boilers: combustion modeling, cofiring and NOx control. ASME, Fact, 1993, 17: 51~69
    [90] T .E. Burch, F. R. Tillman, W. Y. Chen, et al. Partitioning of nitrogenous species in the fuel-rich stage of reburning. Energy & Fuels, 1991, 5: 231~237
    [91] D. Stapf, W. Leuckel. Flow reactor studies and testing of comprehensive mechanisms for NOx reburning. Twenty-Sixth symposium (international) on combustion. The combustion institute, Pittsburgh, PA. 1996, pp.2083~2090
    [92] A. L. Myerson. The reduction of nitric oxide in simulated combustion effluents by hydrocarbon-oxygen mixture. Fifteenth symposium (international) on combustion. The combustion institute, Pittsburgh, PA. 1996, pp.1085~1092
    [93] C. J. Sung, C. K. Law, J. Y. Chen. Augmented reduced mechanisms for NO emission in methane oxidation. Combustion and Flame, 2001, 125: 906~919
    [94] I. Giral, M.U. Alzueta. An augmented reduced mechanism for the reburning process. Fuel, 2002, 81: 2263~2275
    [95] W. Chen, L. D. Smoot, T. H. Fletcher, et al. A computational method for determining global fuel-NO rate expressions, Part 1. Energy & Fuels, 1996, 10: 1036~1045
    [96] W. Chen, L. D. Smoot, S. C. Hill, et al. Global rate expression for nitric oxide reburning, Part 2. Energy & Fuels, 1996, 10: 1046~1052
    [97] H. Xu, L. D. Smoot, S. C. Hill. A reduced kinetic model for NOx reduction by advanced reburning. Energy & Fuels, 1998, 12: 1278~1289
    [98] H. Xu, L. D. Smoot, S. C. Hill. Computational model for NOx reduction by advanced reburning. Energy & Fuels, 1999, 13: 411~420
    [99] H. Xu, L. D. Smoot, D. R. Tree. Prediction of nitric oxide destruction by advanced reburning. Energy & Fuels, 2001, 15: 541~551
    [100] E. Vilas, U. Skifter, A. D. Jensen, et al. Experimental and modeling study of biomassreburning. Energy & Fuels, 2004, 18: 1442~1450
    [101] W. Y. Chen, B. B. Gathitu. Design of mixed fuel for heterogeneous reburning. Fuel, 2006, 85: 1781~1793
    [102] A. Demirbas. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 2005, 31: 171~192
    [103] PECT Review, Update on NOx control technologies. Office of Fossil Energy, U.S. DOE, Pittsburgh Energy Technology Center, P. O. Box 10940, Pittsburgh, PA, 15236-0904, 1995, Spring, pp.28~29
    [104] E. P. Lanigan, E. S. Golland, J. M. Rhine. The demonstration of gas reburning at Longannet: leading the world in low-NOx technology. Proceedings-International Gas Reburn Technology Workshop, ed. W. Bartok, Malmo, Sweden, 1995, February 7~9, pp.D121~138
    [105] U. S. Department of Energy Report. Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers. 1999, May, pp.1~32
    [106]方斌,罗永浩,陆方,冯琰磊.燃煤锅炉再燃技术中再燃燃料的特性与选择.热能动力工程,2004(9):443~446
    [107]冯琰磊,罗永浩,陆方,季俊杰.层燃炉低NOx再燃烧技术的实验研究.动力工程,2004(2):29~33
    [108]季俊杰,罗永浩,陆方.若干因素对层燃炉气体再燃降低NOx的影响.工业锅炉,2002(5):7~10
    [109]张怡,罗永浩,方斌等.天然气再燃降低NOx排放的实验研究.上海交通大学学报,2006, 40(8):1293~1296
    [110]林鹏云,罗永浩,陆方.天然气再燃降低燃煤锅炉NOx排放的研究.动力工程,2006,26(1):149~152
    [111]张忠孝,姚向东,乌晓江等.气体再燃低NOx排放试验研究.中国电机工程学报,2005,25(9):99~102
    [112]苏适,蔡崧,徐益谦.次级燃料还原燃烧产物内NOx的动力学特性研究.环境科学学报,1995,7:330~335
    [113]刘燕燕,周伟国,罗时杰等.天然气再燃技术在电厂锅炉的应用.上海电力学院学报,2004,9:35~38
    [114]钟北京,施卫伟,傅维标.煤粉再燃过程中NO异相还原机理的重要性.燃烧科学与技术,2002,1:6~8
    [115]钟北京,施卫伟,傅维标.煤和煤焦还原NO的实验研究.工程热物理学报,2000,5:383~387
    [116]钟北京,施卫伟,傅维标.煤焦再燃过程中催化剂对NO还原的影响.热能动力工程,2001,5:259~262
    [117]钟北京,施卫伟,傅维标.烟煤焦催化还原NOx实验研究.燃烧科学与技术,2001,1:44~47
    [118]钟北京,施卫伟,傅维标.煤再燃过程中燃料特性对NO还原的影响.燃烧科学与技术,2001,2:115~119
    [119]曾东,巢江辉,郑守忠等.携带流反应器中煤粉再燃烧NO还原特性.环境科学,1999,7:67~70
    [120]李戈,师东波,池作和等.煤粉再燃还原NO的实验研究.电站系统工程,2004,1:44~46
    [121]周昊,邱坤赞,王智化等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响.燃料化学学报,2004,4:146~150
    [122]高正阳,阎维平,刘忠.低挥发分烟煤再燃还原NO的实验研究,华北电力大学学报,2003,1:41~44
    [123]吴少华,刘辉,姜秀民等.采用超细煤粉再燃技术降低氮氧化物排放.中国电力,2003,2:1~4
    [124]钟海卿,金晶,陈占军.超细煤粉再燃技术的探讨.锅炉技术,2003,11:5~7
    [125]金晶,张忠孝,李瑞阳等.超细煤粉燃烧氮氧化物释放特性的研究.动力工程,2004,10:716~720
    [126]刘忠,阎维平,高正阳.停留时间对微细煤粉再燃还原NO效率的影响.燃烧科学与技术,2004,8:354~358
    [127]刘忠,阎维平,高正阳等.超细煤粉的细度对再燃还原NO的影响.中国电机工程学报,2003,10:204~208
    [128]梁秀俊,高正阳,杜彦芬等.煤粉再燃过程煤焦与NO的反应机理分析.华北电力技术,2003,12:5~6
    [129]梁秀俊,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析.华北电力技术,2004,4:19~21
    [130]阎维平,高正阳,刘忠等.煤粉细度对再燃还原烟气氮氧化物影响的实验研究.电力科学与工程,2003,2:1~4
    [131]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N释放规律的试验研究.中国电机工程学报,2004,8:238~242
    [132]徐璋,邓涛,李戈等.超细煤粉再燃降低NOx排放的试验研究.热力发电,2004,2:34~37
    [133]方建. 280t/h锅炉三次风超细煤粉作为再燃燃料降低NOx排放的技术方案.浙江电力,2004,1:16~18
    [134]欧大武,方磊,李戈等.利用三次风再燃降低NOx排放研究.电站系统工程,2003,1:24~26
    [135]池作和,徐璋,潘维等.三次风中超细煤粉再燃降低NOx排放的几个关键问题分析.浙江电力,2003,1:1~5
    [136]徐璋,李戈,潘维等.利用三次风细粉再燃降低NOx排放的几个关键问题分析,热力发电,2003,9:42~46
    [137]张强,李彦鹏,徐益谦等.生物质能再燃烧还原氮氧化物NOx的探讨.能源研究与利用,2000,1:31~33
    [138]林鹏云,罗永浩.生物质再燃降低燃煤锅炉NOx排放研究综述.锅炉技术,2006, 37(3):68~71
    [139]段佳,罗永浩.生物质燃料再燃研究进展.热能动力工程,2006,21(3):227~230
    [140]李戈,池作和,斯东坡等.生物质废弃物再燃降低NOx排放的试验研究.热力发电,2004,2:41~44
    [141]孟德润,赵翔,杨卫娟等.水煤浆再燃降低NOx排放技术的应用前景分析.热力发电,2005,11:15~17
    [142]沈伯雄,姚强.再燃脱硝的动力学模拟和组分影响分析.环境科学学报,2002,9:677~682
    [143]沈伯雄.天然气再燃脱硝化学反应的简化模型.电站系统工程. 2004,20(6):7~8
    [144]钟北京,傅维标.煤的挥发分对NOx再燃特性的研究.燃烧科学与技术,2000,2:185~189
    [145]钟北京,傅维标.再燃燃料中HCN对NOx还原的影响.热能动力工程,2000,1:4~8.
    [146]钟北京,傅维标.再燃燃料中HCN对NOx还原的的重要性.燃烧科学与技术,2000,1:77~84
    [147]钟北京,傅维标.气体燃料再燃对NOx还原的影响.热能动力工程,1999,11:419~423
    [148]姚向东,张忠孝,邱莉莉等.天然气再燃降低NOx的化学动力学及影响因素分析.上海理工大学学报,2004,1:62~65
    [149]姚向东,张忠孝,邱莉莉等.天然气再燃还原NO的动力学模拟.电站系统工程,2004,7:13~15
    [150]范耀国,姚洪,徐明厚等.分级燃烧时NOx排放特性的数值研究.工程热物理学报,1997,9:649~652
    [151]沈毅敏,还博文,何磊.炉内再燃烧还原NOx的数值模拟.动力工程,2000,2:515~519
    [152]郭永红,孙保民,康志忠.超细煤粉再燃低NOx燃烧技术的数值模拟.动力工程,2005,25(3):422~426
    [153]唐浩,钟北京,傅维标等.大型褐煤锅炉煤粉再燃技术的数值模拟.热能动力工程,2006,21(4):378~382
    [154]文军,王春昌,王月明等.采用再燃技术降低锅炉NOx排放的工程实践.中国电力,2005,38(10):68~71
    [155]文军,齐春松,王月明等.细煤粉再燃技术在我国燃煤锅炉上的首次工程应用.热力发电,2004,8:29~31
    [156] U. Greul, H. Rudiger, H. Spliethoff, et al. NOx controlled combustion in a bench scale test facility. Proceedings of the 21st technical conference on coal utilization & fuel systems, Clearwater, Florida, USA, 1996
    [157] Hartmut Spliethoff, Ulrich Greul, Helmut Rudiger, et al. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility. Fuel, 1996, 75(5): 560~564
    [158] V. V. Lissianski, V. M. Zamansky, P. M. Maly. Effect of metal-containing additives on NOx reduction in combustion and reburning. Combustion and Flame, 2001, 125: 1118~1127
    [159] J. A. Miller, C. T. Bowman. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15: 287~338
    [160] P. Kilpinen, P. Glarborg, M. Hupa, et al. Reburning chemistry: a kinetic modeling study. Ind. Eng. Chem. Res., 1992, 31: 1477~1490
    [161] P. Glarborg, M. U. Alzueta, K. Dam-Johansen, et al. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame, 1998, 115(1): 1~27
    [162] P. Dagaut, F. Lecomte, S. Chevailler, et al. Experimental and detailed kinetic modeling of nitric oxide reduction by natural gas blend in simulated reburning conditions. Combustion Science and Technology, 1998, 139(1): 329~363
    [163] G. P. Smith, D. M. Golden, M. Frenklach, et al. GRI-Mech 3.0. http://www.me. berkeley. edu/gri_mech
    [164] P. Glarborg, J. A. Miller, R. J. Kee. Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Combust. Flame, 1986, 65: 177~202
    [165] P. Glarborg, S. Hadvig. Reaction rate survey for natural gas combustion. Modeling and Chemical Reaction. NGC Report, Nordic Gas Technology Centre, Horsholm, Denmark, Jan, 1991
    [166] C. W. Gear著.常微分方程初值问题的数值解法.费景高,刘德贵,高永春等译.北京:科学出版社,1978
    [167] M. U. Alzueta, P. Glarborg, K. D. Johansen. Low temperature interactions between hydrocarbons and nitric oxide: an experimental study. Combustion and Flame, 1997, 109(1): 25~36
    [168]孙学信主编.燃煤锅炉燃烧试验技术与方法.北京:中国电力出版社,2002
    [169] N. Kandamby, G. Lazopoulos, F. C. Lockwood, et al. Mathematical modelling of NOx emission reduction by the use of reburn technology in utility boilers. In ASME Int. Joint Power Generation Conference and Exhibition, Houston, Texas, 1996
    [170] D. J. Dimitriou, N. Kandamby, F. C. Lockwood. A mathematical modeling technique for gaseous and solid fuel reburning in pulverized coal combustors. Fuel, 2003(82): 2107~2114
    [171] M. H. Xu, Y. G. Fan, J. W. Yuan. Modelling and mechanism of NOx emissions under fuel staging during combustion. Combus. Sci. Technol., 1998, 133: 377~394
    [172] J. Xiang, L. S. Sun, S. Q. Guan, et al. 3-D numerical simulation of NOx formation with PDF-ARRHENIUS model. Proceedings of the 3th Asia-Pacific conference on combustion. Seoul, Korea, 2001, pp. 632~635
    [173]向军,熊友辉,郑楚光等. PDF-ARRHENIUS方法模拟煤粉燃烧氮氧化物生成.中国电机工程学报,22(6):156~160
    [174] M. H. Xu, J. W. Yuan, D. Shifa, et al. Simulation of gas temperature deviation in large-scale tangential coal fired utility boilers. Comput. Methods Appl. Mech. Engrg., 1998, 155: 369~380
    [175] M. H. Xu, J. L. T. Azevedo, M. G. Carvalho. Modelling of the combustion process and NOx emission in a utility boiler. Fuel, 2000, l 79: 1611~1619
    [176]肖理生,程俊峰,曾伟等.四角切圆煤粉锅炉中NOx生成的数值模拟.动力工程,20(2):592~597
    [177] Y. R. Sivathanu, G. M. Faeth. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames. Combust. Flame, 1990, 82: 211~230
    [178] R. K. Hanson, S. Salimian. Survey of Rate Constants in H/N/O Systems. In W. C. Gardiner, editor, Combustion Chemistry, 1984, page 361
    [179] G. G. De Soete. Overall reaction rates of NO and N2 formation from fuel nitrogen.15th Symposium (international) on Combustion. The Combustion Institute, Pittsburgh, PA, 1975, pp.1093~1102
    [180] L. D. Smoot, P. J. Smith. NOx pollutant formation in a turbulent coal system. In Coal Combustion and Gasification. Plenum: NY, 1985
    [181] J. M. Levy, L. K. Chan, A. F. Sarofim, et al. NO/Char reactions at pulverized coal flame conditions. 18th Symposium (international) on Combustion. The Combustion Institute, Pittsburgh, PA, 1981, pp. 111~120
    [182] C. T. Bowman. Chemistry of gaseous pollutant formation and destruction. In Fossil Fuel Combustion. Bartok, W. and Sarofim, A. F., Ed., J. Wiley and Sons: Canada, 1991
    [183] A. J. Dean, R. K. Hanson, C. T. Bowman. A shock tube study of reactions of C atoms and CH with NO including product channel measurement. J. Phys. Chem., 1991, 95: 3180~3189
    [184] K. M. Leung, R. P. Lindsted. Detailed kinetic modeling of C1-C3 alkane diffusion flames. Combust. Flame, 1995, 102: 129~160
    [185] W. H. Yang, B. Wlodzimierz. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism. Fuel Processing Technology, 2005, 86: 943~957
    [186] A. M. Eaton1, L. D. Smoot, S. C. Hill. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog. Energy Combust. Sci., 1999, 25: 387~436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700