漂浮栽培植物对富营养化水体中磷的去除效应基因型差异及原因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化已成为当代许多国家政府和公众最为关注的环境问题之一。随着富营养化的加剧,藻类水华发生的频率和幅度也大大增加,特别是有毒水华对水环境的危害和水生生物的安全威胁已严重影响了水体的正常功能、社会和经济的可持续发展。氮(N)和磷(P)是引起水体富营养化的主要营养盐因子,其中最主要的限制因子就是磷,因此如何经济、有效和简便地去除富营养化水体中的磷是目前解决水体富营养化问题的关键。近年来,随着人们对生态环境重视程度的提高,使用生态修复的方法来治理富营养化水体已成为新的研究热点。生态修复水体富营养化和植物去除营养盐的能力大小十分相关。本论文应用水体修复小试和中试等技术平台,研究比较了不同季节性植物材料对富营养化水体中P的吸收去除能力以及产生植物之间基因型差异的原因分析。取得的主要创新性成果包括:
     1.通过比较研究不同季节性的漂浮栽培植物材料[夏秋季:大漂(Pistiastrariotes Linn)、矮杆美人蕉(Canna flaccida)、水鳖(Hydrocharis dubia):冬春季:冬牧70(Secale Celeale L.)、串叶松香草(Silphium petroliatumLinn.)、多花黑麦草(Lolium multVlorum Lam.)]对富营养化水体中磷素(P)及其他污染物的吸收净化效应的基因型差异,筛选出分别适合在夏秋季(较高温季节)和冬春季(较低温季节)用来进行富营养化水体植物生态修复工程的高效除磷植物材料,以达到常年保持高效净化水质之目的。结果表明,大漂(Pistiastratiotes Linn.)和冬牧70(Secale cereale L.)分别是夏秋季和冬春季对富营养化水体中的P素及其他污染物去除效果最好的植物材料。试验结束后,水体总磷(TP)平均降低了50%左右,化学需氧量(CODMn)平均降低了35%左右,生化需氧量(BOD_5)平均降低了55%左右,叶绿素a(Chla)浓度平均降低了40%左右,较好地抑制了藻类的暴发,降低水体pH值且维持在中性水平,并能显著提高水体透明度。同时我们还通过比较不同季节性的漂浮栽培植物材料对不同P污染水平的富营养化水体(低P:0.01 mg/L;高P:0.50 mg/L)中磷素及其他污染物的去除效应,发现大漂和冬牧70都比较适合用来修复高P(0.50 mg/L)污染水体,因为此时这两种植物对污水中的P素去除效率最高,对其他污染物的净化效果也最好;其次是矮杆美人蕉(Canna flaccida)和串叶松香草(Silyhiumperfoliatum Linn.),它们也较适合在高P污染水体中生长;除磷效率较低、净化效果较差的植物则分别是水鳖(Hydrocharis dubia)和多花黑麦草(LoliummultVlorum Lam.),且这两种植物都较适合在低P污染水体中生长。
     2.通过研究高效除磷的漂浮栽培植物大漂(Pistia stratiotes Linn.)和冬牧70(Secale cereale L.)以及低效除磷的漂浮栽培植物水鳖(Hydrocharisdubia)和多花黑麦草(Lolium multVlorum Lam.)对P吸收的动力学特点与植物去磷效应的相关性,结果发现大漂和冬牧70对磷吸收的最大吸收速率(V_(max))和米氏常数(K_m)都要高于对照植物水鳖和多花黑麦草。V_(max)越高代表植物吸收P素的能力越强;K_m越小代表植物对低P的亲和能力越强。因此,大漂和冬牧70对磷吸收的能力较强且较适合在高P污染水体中生长,而水鳖和多花黑麦草对磷吸收的能力较低且较适合在低P污染水体中生长。研究结果还表明,大漂和水鳖、冬牧70和多花黑麦草这四种不同季节性的漂浮栽培植物生长速率最快、对富营养化水体中P素去除效率最高的植物生长阶段都是在5-20天的这个时间段内,其次植物生长较快、除磷效果较好的则是在20-35天的这个时间段内。
     3.通过研究高效除磷的漂浮栽培植物大漂(Pistia stratiotes Linn.)和冬牧70(Secale cereale L.)以及低效除磷的漂浮栽培植物水鳖(Hydrocharisdubia)和多花黑麦草(Lolium muitVlorum Lam.)的酸性磷酸酶活性差异与植物去磷效应的相关性,结果发现在不同的供磷水平下(低P供应:0.01mg/L;正常供P:0.50mg/L)这四种植物的酸性磷酸酶活性都会产生不同程度的变化。低磷胁迫能显著增加大漂和水鳖、冬牧70和多花黑麦草的叶片酸性磷酸酶活性;不同植物的叶片酸性磷酸酶活性对低磷胁迫的反应也存在显著的差异,低P胁迫时水鳖和多花黑麦草的叶片酸性磷酸酶活性的增加幅度大于大漂和冬牧70。同样地,低磷胁迫还能够显著增加这四种植物的根系分泌酸性磷酸酶活性,该酶活性的增加可以显著提高磷的生物有效性和植物对磷素的利用效率,由此可见水鳖和多花黑麦草比大漂和冬牧70更适合在低P污染水体中生长。
     4.不同环境因子对漂浮栽培植物去磷效应的影响研究的结果表明:①在低P处理时,大漂和冬牧70产生最高除磷效率的最佳氮磷比(N/P)是7.5:1;而在高P处理时,大漂和冬牧70产生最高除磷效率的最佳氮磷比(N/P)则是2.5:1;②有效微生物(EM菌)具有较好的氮磷去除功能,特别是将其与高等植物联合对污水进行处理时效果更好,大漂和冬牧70在EM菌的作用下迅速大量繁殖,从而更有效地抑制了藻类的生长;③大漂的最适生长温度是25℃,冬牧70的最适生长温度是15℃,此时这两种植物的生长情况最好,且对水体中P素和其他污染物的吸收去除能力也最强;④大漂和冬牧70的最适pH值都为6.7左右,此时这两种植物的生长情况最好,且对水体中P素和其他污染物的吸收去除能力也最强;⑤水生漂浮植物大漂最适合的曝气方式是连续曝气,这种曝气方式较接近水生漂浮植物适合生长的自然流动水体环境,而冬牧70最适合的曝气方式是间歇曝气。在适当的曝气方式下,大漂和冬牧70这两种漂浮栽培植物对水体中P素和其他污染物的去除能力最好。
     5.植物修复富营养化水体过程中P的去除途径主要包括植物吸收(包括微生物降解强化植物吸收部分)、植物根系吸附、底泥吸附(絮凝沉淀)和还原状态下厌氧菌分解产生的P挥发(PH_3)这四个部分。本试验以高效除磷的漂浮栽培植物大漂(Pistia siratiotes Linn.)和冬牧70(Secale cereale L.)为研究对象,通过研究模拟条件下的植物生态修复系统,明确了这四种不同的P去除途径分别对水体中总磷(TP)去除量的贡献率大小。结果表明:在植物修复富营养化水体过程中最主要的P去除途径是植物吸收作用和底泥吸附作用,分别可占水体中TP去除量的23%-58%、27%-51%;其次是植物根系吸附作用,可占水体中TP去除量的13%-28%;贡献率最低的是还原状态下的P挥发(PH_3),一般低于1.5%,这部分的P损耗几乎可以忽略不计,可见还原状态下的P挥发对水体中TP的去除发挥的作用极小。
Water eutrophication has become one of the most important environmental problems all over the world.With occurrence of water eutrophication,the frequency and extentof alga bloom has been increased greatly,especially the harm of toxic alga bloom has seriously embarrassed the normal function of water body,continue development of society and economy.Nitrogen(N)and phosphorus(P)are the two main nutrient pollutants which affect water eutrophication easily,however,P is considered to be the limiting nutrient for water eutrophication.Thus,how to remove P from eutrophic water effectively and at low cost has become the key issue for developing technologies for controlling and remediate water eutrophication.In resent years,ecological remediation methods have become new and hot study point. Ecological remediation of eutrophic water is largely dependent on the ability of the plants used to remove the nutrients.In this paper,different seasonal plant species were compared for their abilities of removing P from eutrophic water,and some mechanisms behind genotypic difference in P uptake and removal from eutrophic water were studied,using indoor and field experimental technic platforms.The main innovative results are summarized as follows:
     1.In order to screen out plant species with highest P removal efficiency,at different seasons(warm season and cool season),six plant species(e.i.Pistia stratiotes Linn, Secale cereale L.,Pistia stratiotes Linn.,,Canna flaccida,Hydrocharis dubia,Lolium multVlorum Lam)were selected to compare their efficiency of P removal and other pollutant removal from eutrophicated water in summer(with high temperature)and in winter(with low temperature).The results showed that Pistia stratiotes Linn.and Secale cereale L.were the two species with highest efficiency for removing P and other pollutants in summer and winter,respectively.After the experiment,total phosphorus(TP)was decreased on average by around 50%,CODMn by 35%,BOD_5 by 55%,and Chla concentration by 40%.Alga bloom in treated eutrophic water was restrained effectively,pH was decreased to around 7.0,and water transparence was improved markedly.When the plants were grown in eutrophic water with low P (0.01mg/L)and high P(0.50 mg/L),Pistia stratiotes Linn.and Secale cereale L.were found to be more suitable for remediating high P-polluted eutrophic water because they showed the highest efficiency for P removal and other pollutant removal,follwed by Canna flaccida and Silphium perfoliatum Linn..Whereas Hydrocharis dubia and Lolium muItVlorum Lam.showed the lowest P removal efficiency,but suitable for growing at low P-polluted eutrophic water.
     2.By comparing the characteristics of P uptake by the four plant species(two efficient ones Pistia stratiotes Linn and SecaIe cereale L,and two inefficient ones Hydrocharis dubia and Lolium multVlorum Lam),we found that Pistia stratiotes Linn.and Secale cereale L.had higher Vmax and Km of phosphate absorption than Hydrocharis dubia and Lolium muitVlorum Lam.indicating that Pistia stratiotes Linn.and Secale cereale L.had higher ability absorbing phosphate.However higher Km indicated lower affinity of the roots,and Pistia stratiotes Linn.and Secale cereale L.were proper to gown in high P-polluted water.In contrast,Hydrocharis dubia and Lolium multVlorum Lam.had lower Km values than Pistia stratiotes Linn.and Secale cereale L.,implying they are suitable to grow in low P-polluted water.The results also showed that the highest P removal efficiency was always observed at the growth stage of 5-20 days of these four different plant species(Pistia stratiotes Linn.,Secale cereale L.,Hydrocharis dubia and Lolium multVlorum Lam.).Secondly period with high P removal efficiency was found at the growth stage of 20-35 days.
     3.The results from the study of P removal with relation to phosphatase activities among the four plant species(Pistia stratiotes Linn.,Secale cereale L.,Hydrocharis dubia,Lolium multVlorum Lam)showed that that acid phosphatase activity(APA) had different response to P supplied levels.At low P supply(0.01mg/L),leaf APA of all the four different plant species were enhanced obviously,but different upon plant species.The extent of increase in leaf APA due to low P stress was greater in Hydrocharis dubia and Lolium multVlorum Lam.than those in Pistia stratiotes Linn. and Secale cereale L..Similarly,root APA of all the four plant species were enhanced obviously when they were subjected to low P stress.The enhancement of root APA could greatly improve P bioavailability and use efficiency.Thus it can be concluded that the two contrast plant species,i.e.Hydrocharis dubia and Lolium multVlorum Lam.,could grow in low P-polluted water better than Pistia stratiotes Linn.and Secale cereale L.
     4.The study of different environmental factors influencing P removal efficiency by the plant species showed that①The best N:P ratio which can induce the highest P removal efficiency was 7.5:1 when Pistia stratiotes Linn.and Secale cereale L.were under low P(0.01 mg/L)treatment,however,the best N:P ratio which can induce the highest P removal efficiency was 2.5:1 when Pistia stratiotes Linn.and Secale cereale L.were under high P(0.50 mg/L)treatment;②EM could remove N and P nutrients from eutrophicated water very effectively especially when it was combined with plants.Pistia stratiotes Linn.and Secale cereale L.could grow and remove P faster, and control alga bloom more effectively when they were combined with EM;③The optimal temperature for growing well and removing P from eutrophic water was 25℃for Pistia stratiotes Linn.while 15℃for Secale cereale L.;④The optimal pH was around 6.7 both for Pistia stratiotes Linn.and Secale cereale L.to grow well and remove P from eutrophic water;⑤Continuous aeration was found to be the optimal aeration mode for the floating hydrophyte Pistia stratiotes Linn.because it was much closer to the natural environment of floating hydrophytes.However,intermittent aeration was observed to be most suitable for Secale cereale L.to effectively remove P from water.The two plant species showed higher P removal efficiency and purifying effectiveness when they were supplied with the optimal aeration mode,respectively.
     5.The fates of P removal from eutrophicated water in the process of phytoremediation included plant absorption,root adsorption,sediment adsorption(mainly including flocculation and deposition)and P volatilization(PH_3)under reductive state.In this study,we took Pistia stratiotes Linn.and Secale cereale L.which had higher P removal efficiency as experiment materials.The contribution ratios of these four fates of P removal in the total phosphorus(TP)removal from eutrophicated water were respectively studied through simulating ideal ecological phytoremediation system. The study results showed that the two main fates of P removal were plant absorption and sediment adsorption whose contribution ratios respectively were 23-58%and 27%-51%in TP removal;Secondly was root adsorption whose contribution ratio was 13%-28%;The lowest contribution ratio was observed in the track of P volatilization under reductive state whose contribution ratio was only lower than 1.5%,thus,this contribution in TP removal was very small and could be neglected.
引文
1. A.M. Philip, Bachand.. Denitrification in constructed free-water surface wetlands: II Effect of vegetation and temperature. Ecological Engineering, 2000,14:17-32.
    
    2. Ascencio J.. Growth strategies and utilization of phosphorus in Cajanus cajan (L.) Millsp and Desmodium tortuosum (Sw.) DC under deficiency; Commun Soil Sci Plant Anal., 1996,27:1971-1993.
    
    3. Asmar F, Gahoonia TS, Nielsen NE.. Barley differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil. Plant and Soil, 1995,172:117-122.
    
    4. Bieleski R L. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiology, 1973. 24:215-252.
    
    5. Bortone G., Saltarelli R., Alonso V.. Biological anoxic phosphorus removal: The DEPHANOX process. Water Sci. Technol., 1996,34 (1/2): 119-128.
    
    6. B.Picot et al. Using Diumal Variations in a High Rate Algae Pond for Management pattern.Wat. Sci.Tech., 1992,28(10): 169-175.
    
    7. B. Sundby, C. Gobeil, N. Silverberg, A. Mucci.. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography, 1992, 37:1129-1145.
    
    8. Chapin FS.. In Genetic Aspect of Plant Nutrition. Saric MR, Lougliman BC (Ed.). Maartinus Nijhoff Publishers. 1983,217-221.
    
    9. Chauhahan VS et al.. Eucalyptus kraft black liquor enchances growth and productivity of spirulina in out-door cultures.Biotech.Prog. 1995, 457-460.
    
    10. Chen CR, Condron LM, Davis MR, Sherlock RR.. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium Perenne L.) and radiate pine (Pinus radiate D. Don.). Soil Biology and Biochemistry, 2002,34: 487-499.
    11. Chung P et al.. Production and nutritive value of arthrospira platensis:A spirval blue-green alga grown on swine waters. J Anim Sci, 1978, 47: 319-330.
    12. Coneley L. M., Dick R. Lion L.W. & I.. An assessment of the root zone method of wastewater treatment. Res JWPCF, 1991, 63: 239-247.
    13. Cooke G.D., Welch E.B., Peterson S.A. & Newroth P.R.. Restoration and Management of Lakes and Reservoirs. Lewis Publishers, Boca Raton. 1993, Fl.
    14. Dalai RC. Soil organic phosphorus. Advances in Agronomy, 1977, 29: 83-117.
    15. David T C. Factors affecting mineral nutrition acquisition by plants; Annu Rev Plant Physiol, 1985,36:77-115.
    16. Dechassa N, Schenk MK, Claassen N, Steingrobe B.. Phosphorus efficiency of cabbage (Brassica oleraceae L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L). Plant and Soil, 2003,250: 215-224.
    17. Duff, SMG, Sarath G, Plaxton WC.. The role of acid phosphatase in plant phosphorus metabolism. Physiologia Plantarum, 1994, 90:791-800.
    18. Fan Chengxin et al.. Preliminary study on the evaluation of sludge-dredging work in Lake-Kasumigaura using large-size core sample. Proceedings of 6th International Conference on the Conversation and Management of Lakes-Kasumigaura'95,1995, 3:1890-1893.
    19. Fan M-S, Zhang F-S. The variation in plant phosphorus acquisition efficiency and its physiological mechanisml Chinese Bulletin of Life Science, 2001, 13(3): 128-131.
    20. George CE, Lauchli A.. Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in leaves of maize (Zea mays L). Journal of Plant, 1986, 9: 1469-1477.
    21. Glindemann D, Bergmann A. Spontaneous Emission of Phosphine from Animals Slurry Treatment Processing. Zbl. Hyg, 1995,198: 49-56.
    22. Glindemann D, Stottmeister U, Bergmann A.. Free phosphine from the anaerobic biosphere. Environmental Science& Pollution Research, 1996, 3(1): 17-19.
    23. Goldstein AH, Danon A, Baertlen DA, McDaniel RG.. Phosphate starvation inducible metabolism in Lycopersicon esculentum I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiology, 1988a: 87: 711-715.
    24. Goldstein AH, Danon A, Baertlen DA, McDaniel RG.. Phosphate starvation inducible metabolism in Lycopersicon esculentum II. Characterization of the phosphate inducible-excreted acid phosphatase. Plant Physiology, 1988b, 87: 716-720.
    25. Halsted M, Lynch JP.. Phosphorus responses of C3 and C4 species. Journal of Experimental Botany, 1996,47: 497-505.
    26. Hans W. Paerl, Julianne Dyble, Pia H. Moisander, Rachel T. Noble, Michael F. Piehler, James L. Pinckney, Timothy F. Steppe, Luke Twomey, Lexia M. Valdes.. Microbial indicators of aquatic ecosystem change current applications to eutrophication studies. FEMS Microbiology Ecology, 2003,46: 233-246.
    27. Hatano K, Trettin C C, House C H, Wollum A G.,. Microbial population and decomposition activity in three subsurvace flow constructed wetlands. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, FL. 1993,541-547.
    28. Hawes L, Smith R.. Influence of environmental factors on the growth in culture of a New Zealand strain of the fast-spreading algae Hydeodictyon reticulatum (water net). J.Appl.Phycol, 1993, 5: 437-445.
    29. Jan E. Vermaat and M. Khalid Hanif. Performance of common duckweed species (lemnaceae) and the waterfern azolla filiculoides on different types of waste water. Water Reseach, 1998, 32(9): 2569-2576.
    30. Janse J H, Van Donk E, Aldenberg T.. A model study on the stability of the macrophyte-dominated state as affected by biological factors. Water Research, 1998, 32(9): 2696-2706.
    31. J.A., Stand. The development of submerged macrophytes in Lake Ringsjonafter bio-manipulation. Hydrobiologia, 1999,404: 113-121.
    32. Jenkins R O, Morris T A, Craig P J.. Phosphine generation by mixed and monoseptic cultures of anaerobic bacteria. The Science of the Total Environment, 2000,250: 73-81.
    33. Jorgensen S E.. Fundamentals of Ecological Modelling. 2~(nd) Edition. London: 1994, Elsever.
    34. Julio A. Camargo, Alvaro Alonso and Marcos de la Puente.. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Research, 2005, 39(14): 3376-3384.
    35. Jungk A, Asher CJ, Edwards DG, Meyer D.. Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max). Plant and Soil, 1990,124:175-182.
    36. Kerrn-Jespersen J. P., Henze M.. Biological phosphorus uptake under anoxic and oxic conditions. Water Res, 1993, 27 (4): 617-624.
    37. Liu G-D, Li Z-S, Li J-Y. Principles and methods to establish controlled release system of P source in liquid phase for screening wheat genotypes for efficient utilization of phosphate; Scientia Agricultura Sinica, 1997, 30 (2): 70 -76.
    38. Mann R A, Garor H J.. Phosphorus removal in constructed wetlands using gravel and industrial waste substrate. Water Science and Technology, 1993,27(1): 107-113.
    39. McLachlan KD.. Effects of drought, aging and phosphorus status on leaf acid phosphatase activity in wheat. Australian Journal of Agricultural Research, 1984, 35:777-787.
    40. Mitsch W J.. Ecological engineering-the 7-year itch. Ecological Engineering, 1998,10:119-130.
    41. Moss B.. The influence of environmental factors on the distritubtion of freshwater algae:an expeprimental study.II.The role of pH and the carbon-bicarbonate system. J.Ecol, 1972,61:157-177.
    42. Mosisch T.D., Bunn S. and Davies P.M.. The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology, 2001,46: 1269-1278.
    43. N. Holmboe, E.Kristensen, F. O.Andersen. Anoxic decomposition in sediments from a tropical mangrove forest and the temperate wadden sea: implication of N and P addition experiments. Estuarine Coastal and Shelf Science, 2001, 53:125-140.
    44. Ni JJ, Wu P, Lou AC, Zhang YS, Tao QN.. Low phosphorus effects on the metabolism on rice seedlings. Communications in Soil Science and Plant Analysis, 1996,27: 3073-3084.
    45. Oswald W J et al. Large scale production of algae Single-cell proton.MIT press: Cambridge MA, 1968,271-305.
    46. Paul J. A.W. and Eunice I. L.. Agricultural nutrient inputs to rivers and groundwater in the UK: policy, environmental management and research needs. The Science of the Total Environment. 2002,282-283,9-24
    47. Phillips G.L., Eminson D., Moss B.. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat Bot., 1978, 4(2):103-126.
    48. Pickering A.D.. Windermere: Restoring the Health of England's Largest Lake. Freshwater Biological Association, Ambleside, 2001, Special Publication 11.
    49. Pionke H. B., Gburek W. J., Sharpley A. M.. Hydrological and chemical controls on phosphorus loss from catchments. In: Tunney H, Carton O T, Brookes P C and Johnston A E (Eds.). Phosphorus loss from soil to water. CAB International, Wallingford, 1997, 77-93.
    50. Raghothama KG.. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 665-693.
    51. Riis T., Sand-Jensen K.. Historical changes in species composition and richness accompanying perturbation and eutrophication of Danish lowland streams over 100 years. Freshwater Biology. 2001,46(2): 269-280.
    52. Roels J, Verstraete W. Biological formation of volatile phosphorus compounds. Bioresource Technology, 2001, 79(3): 243-250.
    53. Sabine Gusewell. High nitrogen : phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologist, 2005,166: 537-550.
    54. S. Korner and J. E. Vermaat. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Water Research, 1998, 32(12): 3651-3661.
    55. Sorm R., Bortone G., Saltarelli R.. Phosphorus uptake under anoxic conditions and fixed film nitrification in nutrient removal activated sludge system. Water Res., 1996,30(9):1573-1584.
    56. Spencer C P.. On the use of antibiotics for isolating bacteria-free cultures of marine phytophlankton organisms. J.Mar.Biol.Assoc, 1952, 31: 97-106.
    57. Stary J, Zeman A, Kratzer K.. The uptake of phosphate ions by the algae Hydeodictyon reticulatum.Acta hydrochim hydrobiol, 1987,15(3): 275-280.
    58. Sun H-G, Zhang F-S. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots; Chinese Appli Ecol., 2002,13 (3): 379-381.
    59. Tarafdar JC, Jungk A.. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils, 1987, 3: 199-204.
    60. T Honjo et al. A relationship between winter temperature and the timing of Summer G. n.Redtides in Gokasho Bay. Nippon Suisan Gakkaishi, 1991, 57(7): 1678-1682.
    61. Thomas A. DeBusk, James E. Peterson, K. Ramesh Reddy. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewater. Ecological Engineering, 1995, 5(2-3): 371-390.
    62. Van der Does J et al. Lake restoration with and without dredging of phosphorous-enriched upper sediment layers. Hydrobiologia, 1992, 233: 197-210.
    63. Vance CP, LJhde-Stone C, Allan DL.. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003,157:423-447.
    64. Vance CP, LJhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003,157: 423-447.
    65. Van Liere L et al.. Working group water quality research Loosdreht Lakes: its history, structure, research programme and some results. Hydrobiologia, 1992, 233:1-9.
    66. Wasaki J, Yamamura T, Shinano T, Osaki M.. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil, 2003,248: 129-136.
    67. W. F. Debusk and K. R. Reddy. Growth and nutrient uptake potential of Azolla caroliniana willd. and Salvinia rotundifolia willd. as a function of temperature. Environmental and Experimental Botany, 1987,27(2): 215-221.
    68. WentzelM. C, Dold P. L, Ekama G. A.. Kinetics of biological phosphorus release. Water Sci. Technol., 1985,17(11/12): 57-71.
    69. Wilhelm R., Lutz EL Harald S.. Influence of cultivar and phosphorus application on P concentration and acid phosphatase activity in wheat and barley contribution to the diagnosis of P supply of plants. J. Plant Nutri &Soil Sci, 1995,158: 3-8.
    70. Wolstenholme R, Bayes C D.. An evaluation of nutrient removal by the reed bed treatment system at Valleyfield, Fife, Scotland. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford,1990,139-148.
    71. Xu Q-Z. Study on the activity of acid phosphatase of wheat leaf and affection by P deficiency. Plant Phsiology Communication, 1989, 6: 20-23.
    72. Yan XL, Liao H, Trull MC, Beebe SE, Lynch JP.. Introduction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiology, 2001,125: 1901-1911.
    73. Yun SJ, Kaeppler SM.. Induction of maize acid phosphatase activities under phosphorus starvation. Plant and Soil, 2001,237: 109-115.
    74. Yu-sheng Liu.. Influence of light Intensity, Temperature and Nutrients on the growth of Microcystisin water of Dianchi Lake. Research of Environmental Science, 1995, 8:7-11.
    75. Zaheer A, Maqsood AG, Riaz HQ.. Genotypic variations of phosphorus utilization efficiency of crops.Journal of Plant Nutrition,2001,24:1149-1171.
    76.Zhang F-S.New Developments of Soil and Plant;Beijing:Beijing Agricultural University Press(in Chinese),1992,Vol.1.
    77.比嘉照夫著.救世自然农法与EM技术.自然农法国际研究开发,1992.
    78.比嘉照夫著.冯玉润译.拯救地球大变革[M].中国农业大学出版,1997.10-30.
    79.陈国祥,刘双,王娜.磷对水生植物菱及睡莲叶生理活性的影响.南京师大学报(自然科学版),2002,25(1):71-76.
    80.陈荷生,宋祥甫,邹国燕.利用生态浮床技术治理污染水体.中国水利(水污染防治),2005,5:50-53.
    81.成水平.人工湿地废水处理系统的生物学基础研究进展.湖泊科学,1996,8(3):268-73.
    82.成水平,夏宜睁.香蒲、灯心草人工湿地的研究-Ⅲ.净化污水的机理.湖泊科学,1998,10(2):66-71.
    83.程树培,丁树荣,胡志明.利用人工基质无土栽培水蕹菜净化巢丝废水研究.环境科学,1991,124:47-51.
    84.丁长春,王兆群.水体富营养化污染现状及防治.黑龙江环境通报,2001,25(3):23-24.
    85.豆俊蜂,邹振扬.主成份分析法在大气环境质量综合评价中的作用.重庆环境科学,2001,25(2):32-33.
    86.杜宝汉等.用灰色关联度模型评价湖泊富营养化.四川环境,1999,18(4):48-52.
    87.方正,孙迎霞,程晓如.多级模糊模式识别方法用于湖泊水质评价.重庆环境科学,2003,25(10):39-41.
    88.高吉喜,叶春,杜娟,孟裕芳,闰自申.水生植物对面源污水净化效率研究.中国环境科学,1997,17(3):247-251.
    89.郭蔚华,张智,何冰,邓晓莉,林艳.高等水生植物修复双龙湖水体叶绿素a变化实验研究.重庆环境科学,2002,24(3):45-48.
    90.金相灿.湖泊富营养化调查规范.北京:中国环境科学出版社,1987,271-280.
    91.金相灿主编.湖泊富营养化控制和管理技术.化学工业出版社,2001.
    92.况琪军,夏宜(王争),吴振斌,邱东茹.人工模拟生态系统中水生植物与藻类的相关性研究.水生生物学报,1997,21(1):90-93.
    93.况琪军等.韩国南汉河的浮游植物及营养水平.长江流域资源与环境,1999,8(2):221-226.
    94.李锋民,胡洪营.生物化感作用在水处理中的应用.中国给水排水,2003,19(7):38-40.
    95.李建平,吴立波,戴永康,王启山,王嵩,张丽彬.不同氮磷比对淡水藻类生长的影响及水环境因子的变化.生态环境,2007.16(2):342-346.
    96.李金平,马小玉.浅谈水体富营养化对环境的危害.中国地理,2002,5:29-29.
    97.李锦秀,廖文根.富营养化综合防治调控指标探讨.水资源保护,2002,2:4-5.
    98.李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能.华中农业大学学报,1994,13(5):511-517.
    99.李文朝.东太湖沉积物中氮的积累与水生植物沉积.中国环境科学,1997,17(5):418-421.
    100.李文朝.富营养水体中常绿水生植被组建及净化效果研究.中国环境科学,1997,17(1):43-57.
    101.李雪梅等.有效微生物群控制富营养化湖泊蓝藻的效应.中山大学学报(自然科学版),2000,39(3):81-85.
    102.李止正,黄国宏,倪晋山.太湖大水面无土栽培高等陆生植物研究.植物学报,1991,33(8):614-620.
    103.林昱等.海洋围隔生态系中无机氮对浮游植物演替的影响.生态学报,1994,14(3):324-326.
    104.廖新弟,骆世明.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究.应用生态学报,2002,13(6):719-722.
    105.梁威等.人工湿地对污水中氮磷的去除机制研究进展.环境科学动态,2000,3:32-37.
    106.刘春光,邱金泉,王雯等.富营养化湖泊治理中的生物操纵理论.农业环境科学学报,2004,23(1):198-201.
    107.刘德启,顾均.利用菌-藻体系高效快速脱除生活污水中氮、磷的技术研究. 苏州工业大学学报(工科版),2002,22(1):29-33.
    108.刘永定,范晓,胡征宇主编.中国藻类学研究.科学出版社,2001.
    109.刘雯,崔理华.人工湿地在处理污水中的应用研究进展.嘉应大学学报(自然科学),2002,20(3):29-32.
    110.卢文喜,祝廷成.应用人工神经网络评价湖泊的富营养化.应用生态学报,1998,9(6):645-650.
    111.罗固源等.三峡库区水环境富营养化污染及其控制对策的思考.重庆建筑大学学报,1999,21(3):1-3.
    112.马立珊,骆永明,吴龙华,吴胜春.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究.土壤,2000,2:99-101.
    113.马玖兰.西湖引水前后氮、磷、叶绿素A含量的年周期变化.湖泊科学,1996,8(2):144-150.
    114.缪绅裕,陈桂珠.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环.生态学报,1999,19(2):236-241.
    115.倪乐意.武汉东湖水生植被结构和生物量现状及其长期变化.刘建康主编-东湖生态学研究(二).北京:科学出版社,1995,287-301.
    116.濮培民,黄宜凯,张圣照.太湖人工生态系统中氮循环细菌分布.中国环境科学,1998,18(5):410-414.
    117.邱东茹,吴振斌.富营养化浅水湖泊沉水植被的衰退与恢复.湖泊科学,1997,9(1):82-88.
    118.邱东茹,吴振斌.武汉东湖水生植物生态学研究-Ⅲ沉水植被重建的可行性研究.长江流域资源与环境,1998,7(1):42-48.
    119.邱化蛟,贺明荣,常欣,许秀美,韩祥明,冷寿慈.不同基因型冬小麦叶片酸性磷酸酯酶活性的差异.作物学报,2004,30(8):7 39-744.
    120.曲格平.中国环境问题及对策.北京:环境科学出版社,1990.
    121.饶群,芮孝芳.富营养化机理及数学模拟研究进展.水文,2001,21(2):15-24.
    122.任炳相,黄有璋,蒋澄宇.江苏省太湖污染防治概述.环境导报,1998,1:23-26.
    123.任黎,董增川,李少华.人工神经网络模型在太湖富营养化评价中的应用.河 海大学学报,2004,32(2):147-1 50.
    124.史晓新,夏军.环境影响综合评价灰色层次模型研究.上海环境科学,1996,15(10):9-12.
    125.孙亚敏,董曼玲,汪家权.内源污染对湖泊富营养化的作用及对策.合肥工业大学学报(自然科学版),2000,2 3(2):210-213.
    126.宋祥甫,应火冬,朱敏等.自然水域无土栽培水稻的研究.中国农业科学,1991,24(4):8-13.
    127.宋祥甫等.浮床水稻对富营养化水体中氮磷的去除效果及规律研究.环境科学学报,1998,18(5):489-494.
    128.孙勇,王小梅,刘春梅.富营养化的影响及解决办法.化学工程师,1998,66:-F003-F003.
    129.唐志坚,张平,左社强,查吕应.植物修复技术在地表水处理中的应用.中国给水排水,2003,19(7):27-29.
    130.王朝晖等.环境条件对水网藻生长的影响.应用生态学报,1999,10(3):345-349.
    131.王国祥,楼霄,夏忠林等.洪涝对玄武湖生态的影响.河海大学学报(海洋湖沼专辑5),1993,21(专辑):70-74.
    132.王国祥等.人工复合生态系统对太湖局部水域水质的净化作用.中国环境科学,1998,18(5):410-414.
    133.王国祥,濮培民,黄宜凯.氮循环菌在太湖-人工系统的分布.湖泊科学,1999,11(2):160-164.
    134.王国祥,濮培民,张圣照.冬季水生高等植物对富营养化湖水的净化作用.中国环境科学,1999,19(2):106-109.
    135.王国祥,濮培民.人工控制对于富营养化藻类种群动态的影响.环境科学,1999,20(2):71-71.
    136.王国祥等.若干人工调控措施对富营养化湖泊藻类种群的影响.环境科学,1999,20(2):71-74.
    137.汪家权,孙亚敏等.巢湖底泥磷的释放模拟试验研究.环境科学学报,2002,22(6):738-742.
    138.沃沙克(VonshakA)著.张大宏等译.生物生产力和光合作用测定技术.北京: 科学出版社,1985.
    139.王正方等.氮.磷、维生素和微量金属对赤潮生物海洋原甲藻的增殖效应.东海海洋,1996,14(3):33-38.
    140.席金平,马小玉.浅谈水体富营养化对环境的危害.中学地理教学参考·高中地理,2002,5:29-29.
    141.谢宏斌.南湖富营养化的人工神经网络评价.广西科学院学报,1999,15(1):29-32.
    142.熊德琪.一种新的海水富营养化模糊评价方法.海洋通报,1993,12(6):30-35.
    143.许光辉,郑洪元.土墩微生物分析方法手册.农业出版社,1986.
    144.许航,陈焕壮,熊启权.水生植物塘脱氮除磷的效能及机理研究.哈尔滨建筑大学学报,1999,32(4):69-73.
    145.徐丽花,周琪.暴雨径流人工湿地处理系统设计的几个问题.给水排水,2001.27(8):32-34.
    146.严煦世.水和废水技术研究.北京.中国建筑工业出版社,1992.
    147.杨柳春,郑明辉,刘文彬等.有机物污染环境的植物修复研究进展.环境污染治理技术与设备,2002,3(6):1-7.
    148.由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体的研究.华东师范大学学报(自然科学版),2001,1:99-102.
    149.于虹漫,冷云.浅谈蓝藻水华的危害与防治.北京水产,2004,2:29-30.
    150.袁峻峰,章宗涉.金鱼藻(Celatophyllum demersum Kom.)对藻类的生化干预作用.生态学报,1993,13(1):45-50.
    151.张琛,陈宇炜.浅水湖泊悬浮物与短时间尺度磷循环.海洋与湖沼.2000.
    152.张志良.植物生物化学技术与方法.北京:农业出版社,1986.
    153.张志勇,王刚卫,田晓丽.棉花钾吸收动力学的初步研究和应用.棉花科学,2005,17(3):165-170.
    154.张亚丽,董园园,沈其荣,段英华.不同水稻品种对铵态氮和硝态氮吸收特性的研究.土壤学报,2004,41(6):918-923.
    155.章宗涉.水生高等植物-浮游植物关系和湖泊营养状态.湖泊科学,1998,10(4):83-86.
    156.种云霄,胡洪英,钱易.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,2003,4(2):36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700