全景视场三维显示机理及实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多视图三维显示技术是目前研究最为热门的三维显示技术。随着多视图三维显示技术的发展,人们提出了一种可周视的全景视场三维显示。这是三维显示的一个全新研究方向,它在水平方向具有众多视角数,可以覆盖三维图像水平方向360°的视场。与体三维显示相比,它具有很好的视觉遮挡效果,是一种更符合人们视觉习惯的三维显示技术。
     本文从现有全景视场三维显示系统出发,提出了基于柱体图像空间的全景视场三维显示原理,该理论指出了各种具有水平视差的全景视场三维显示系统显示的图像空间为柱体图像空间,其空间的大小由最边缘显示像素位置和最大扫描角决定。现有的全景视场三维显示有柱面定向式、平面平行定向式和平面会聚定向式三种定向屏。详细分析了三种定向屏的发光特性和显示原理。通过投影视图与显示像素映射关系的研究,对显示图像畸变矫正和图像生成方法的研究起到了指导作用,同时有利于理解三维图像在不同深度平面上不同体空间分辨率的分布。我们研究了三种定向屏的柱体图像空间内的虚体素空间分布,从双眼的体视条件、投影视图分辨率、虚体素分辨率三个方面研究了全景视场三维显示对一周可视视图数要求。
     我们详细讨论了一种基于LED柱面屏的全景视场三维显示系统。在显示原理、图像生成、系统参数设计、电路控制设计四个方面做了详细的分析。全景视场三维显示原理最主要的就是控制每个像素的发光方向和发光角度,计算出了每个视角的中心发光方向和发光角度,推导出了可见视图对应显示像素的视角分布。提出了一种基于360°视图的全景视场三维显示图像生成方法。通过最大扫描角、转速、周像素数的分析,我们设计了一组较为合理的系统参数,通过模拟仿真进一步验证了设计参数的合理性。系统电路设计主要有高速寻址电路和同步显示调试两个方面技术难点。在同步显示调试方面,由于LED显示板的不均匀分布和狭缝光栅的不均匀周期,我们提出了像素同步和视角同步两步调试方法。通过这两种方法的调试,成功实现了三维场景的彩色三维图像显示。
     随着三维显示技术研究的继续深入,评价再现三维图像的显示性能将会成为人们下一步研究的主题。我们主要研究了显示图像的几何特性、亮度特性、色度特性、空间特性。设计了一系列测试图像,分别在实验中探测各种特性的性能指标。再现三维图像的评价,不仅能给出本系统的显示性能指标,实现在不同三维显示系统之间的比较,同时为开发新一代三维显示器件制定了显示性能标准。
     最后详细分析全景视场三维显示系统的发展前景,通过模拟视角数对三维图像体空间分辨率的影响,和根据LED的显示频率、海量数据的传输、LED阵列的排布密度等三方面的技术瓶颈给出了一组高清晰三维图像的全景视场三维显示的系统参数,为今后全景视场三维显示的发展提供了研究方向。
Multi-view three-dimensional (3D) display technique is one of the most popular three-dimensional displays. Nowadays, with the development of multi-view display, omni-directional three-dimensional display is presented, which is a new research direction of 3D display. It has super multi-views in horizontal direction and can display 3D images with high resolution. Compared with volumetric display, it has a good occlusion-capable effect, which is a 3D display technique in line with the human vision.
     In this paper, the theory of omni-directional 3D display with cylindrical image space is presented from some existing omnidirectional 3D displays. This theory indicates that the image space of all omni-directional 3D displays with only horizontal parallax is cylindrical space, the size of which is dependent on the most marginal pixel location and the maximum scanning angle. The existing omni-directional 3D displays mainly contains cylinder direction-selective type, plane parallel direction-selective type and plane converge direction-selective type. With these three kinds of 3D displays, the optical characteristic of direction-selective screens and their display principle are analyzed in detail. The study on the mapping relation between the projecting view and pixels directs the study on the image rendering algorithm and distortion correction. At the same time, the study is also helpful to understand the 3D image distribution in different depth with different spatial resolution. The virtual voxel distribution in the cylindrical space is investigated. The requirement to the number of images all round is studied from stereoscopic vision, projecting view resolution and virtual voxel spatial resolution.
     The color omnidirectional 3D display system based on cylindrical LED screen is discussed in detail. The display principle, image rendering, system parameter design and simulation, and circuit control design are analyzed. The key to this display principle is to control the each pixel's light emitting direction and angle. The center light direction and emitting angle in each view and the pixels'view distribution in the observed view are calculated. An image rendering method based on omni-directional views of a 3D scene is proposed. Through analysis of maximum scanning angle, rotation speed and pixels'number in one revolution, a set of reasonable system parameters is designed, which has been validated via simulation. The circuit design mainly has two technical difficulties:high-speed addressing and display synchronicity. In debugging display synchronicity, owing to the LED asymmetrical distribution and parallax barrier's pitch ununiformity, the debugging method has two steps:pixel synchronization and view synchronization. With this debugging method, color 3D display is completed successfully.
     With the development of 3D display, display image evaluation is gradually focused on. We have investigated the geometry, bright, color, space characteristic of display 3D image with quantitative indeces. We have designed a series of test imag es for these characteristic, and detect all characteristics in experiment.3D image evaluation can show performance of 3D display system, which can be used for comparing among different 3D display systems, but also give higher display performance-for next-generation 3D display.
     At last, we have discussed the development of the omnidirectional-view 3D display. The relation between view number and 3D image resolution is investigated. We obtain system parameters of omnidirectional-view 3D display with better 3D image according the LED display frequence, massive data transmission, and LED arrangement pitch, which shows us a research direction of future development.
引文
1. Favalora, G.E., Volumetric 3D Displays and Application Infrastructure, Computer-IEEE,2005,38 (8):37-44.
    2. Ralph Zito, Jr.,Rate Analysis of Multiple-Step Excitation in Mercury Vapor, Journal of Applied Physics, 1963,34 (5):pp.1535-1543.
    3. J. D. Lewis, C. M. Verber, and R. B. McGhee, A true three-dimensional display, IEEE Trans. Electron Devices,1971,18(9), pp.724-732.
    4. Isaac I. Kim, Eric Korevaar, Harel Hakakha. Three-dimensional volumetric display in rubidium vapor. SPIE 2650, pp.274-284.
    5. T. Honda, T. Doumuki, A. Akella, et al, One-color one-beam pumping of Er3+-doped ZBLAN glasses for a three-dimensional two-step excitation display, Optics Letters,1998,23 (14):1108-1110.
    6. X. B. Chen, M. X. Li, Z. Charles Ying, et al, The physics basis of one-beam pumping upconversion three dimension volumetric display based on erbium doped glass, SPIE 4712 (2002).
    7. J. Cao, U. Parasuraman, J. Liu, et al, Design and implementation of an advanced three-dimensional volumetric display based on up-conversion phosphors, Proc. of SPIE 5801(2005),278-286.
    8. Martin S. Leung, Neil A Ives, Genghmun. Three-Dimensional real-image volumetric display system and method. Pub. No.:5,745,197. Pub. Date:Apr.28,1998.
    9. Alan Sullivan. DepthCube solid-state 3D volumetric display. Proc. of SPIE-IS&T Electronic Imaging, SPIE 5291 (2004), pp.279-284.
    10. Parviz Soltan, John Trias, Waldo Robinson, et al. Laser Based 3D Volumetric Display System. SPIE 1664 (1992), pp.177-192.
    11. DetlefBahr, Knut Langhans, Martin Gerken, Carsten Vogt, Daniel Bezecny, and Dennis Homann, FELIX A volumetric 3D laser display, SPIE 2650(1996),265-273.
    12. Detlef Bahr, Knut Langhans, Daniel Bezecny, Dennis Homann, Carsten Vogt, FELIX:a volumetric 3D imaging technique, SPIE 3101 (1997) P202-210.
    13. Knut Langhans, Daniel Bezecny, Dennis Homann, et al, New portable FELIX 3D display, SPIE 3296 (1998),p204-216
    14. Knut Langhans, Detlef Bahr, Daniel Bezecny, et al. FELIX 3D Display:An Interactive Tool for Volumetric Imaging. Proceedings of SPIE 4660 (2002), pp.176-190.
    15. Gregg E. Favalora, Joshua Napoli, Deirdre M. Hall, et al.100 Million-voxel volumetric display. Proc. of SPIE 4712 (2002), pp.300-312.
    16. Oliver S. Cossairt, Joshua Napoli. Radial multiview three-dimensional displays. Pub. No.:US 2005/0180007 A1. Pub. Date:Aug.18,2005.
    17. W, Chun, J. Napoli, O. S. Cossairt, et al. Spatial 3D Infrastructure:Display-Independent Software Framework, High-Speed Rendering Electronics, and Several New Displays. SPIE 5664(2005),302-312.
    18. Favalora, G.E., Volumetric 3D Displays and Application Infrastructure, Computer-IEEE,2005,38,(8), 37-44.
    19. E. P. Berlin. Three-dimensional display. U.S. Patent 4160973,1979
    20.林远芳,刘向东,刘旭.基于二维旋转屏的体三维显示系统像素属性分析.光子学报,2004,33(4):476-480.
    21.林远芳,刘旭,刘向东.利用旋转发光屏再现三维图像原理及偏差分析.光电工程,2004,31(5):64-67.
    22.林远芳,张晓洁,徐韡.体显示中点阵扫描模式对体像素方位的影响.浙江大学学报(工学版),2005,39(8):1273-1276.
    23.林远芳,刘旭,刘向东.基于旋转二维发光二极管阵列的体三维显示系统.光子学报,2003,23(10): 1158-1162.
    24.林远芳.基于二维LED屏旋转的体显示系统及其特性研究.[博士学位论文].杭州,浙江大学,2005.
    25.谢小燕,刘旭,林远芳.体显示系统的插值和扫描线段映射法.浙大学报(工学版),2008,42(12),pp.2156-2160.
    26.谢小燕,刘旭,林远芳.彩色体三维显示系统中的体素绘制与仿真处理.浙大学报(工学版),2010,44(6),1086-1090.
    27.陆海霞,郑文庭,陈为.彩色体三维显示系统上基于GPU的实时均匀体素化算法.计算机辅助设计与图形学学报,2010,22(3):373-381.
    28.陆海霞.裸眼可周视立体显示设备上的三维图像生成.[硕士学位论文].杭州,浙江大学,2010.
    29.谢小燕.彩色LED体显示系统的建立及性能研究.[博士学位论文].杭州,浙江大学,2009.
    30.姜文锋,刘旭,谢小燕.体三维显示中屏幕机械运动误差对显示的影响.浙大学报(工学版)2010,44(5),1038-1042.
    31. Xiaoyan Xie, Xu Liu, Yuanfang Lin. Three-Dimensional Volumetric Display System Based on a Rotating Two-Dimensional LED Array, SID 2008 International Symposium Digest, pp.1610-1613.
    32. H. Li, J. Wu, X. Liu, C. Yan, and Z. Zheng, Color Volumetric 3D Display System based on a Rotating LED Screen,9th International Meeting on Information Display, Oct.12-16,2009, Seoul, Korea.
    33. C. van Berkel and J.A. Clarke, Characterisation and Optimisation of 3D-LCD Module Design, Proc.SPIE 3012(1997), pp.179-186.
    34. http://www.business-sites.philips.com/3dsolutions/home/index.page.
    35. Yasuhiro Takaki, Takeshi Dairiki,72-directional display having VGA resolution for high-appearance image generation, SPIE 6055 (2005).
    36. Yasuhiro Takaki. A Novel 3D Display Using an Array of LCD Panels. SPIE-IS&T Electronic Imaging, SPIE 5003 (2003).
    37. Yasuhiro Takaki. Thin-type Natural Three-dimensional Display with 72 Directional Image. SPIE 5664 (2005), pp.56-63.
    38. T. BALOGH, Method and apparatus for displaying three-dimensional images, U.S. Patent 6,201,565, EP 0900501, Feb 04,1997.
    39. T. BALOGH, Method and apparatus for displaying 3D images, U.S. Patent Appl.20030156077, EP 1 285304, May 19,2000.
    40. T. Balogh, T. Forgacs, T. Agocs, et al, A Large Scale InteractiveHolographic Display. IEEE VR2006 Conference, March 25-29, Alexandria, Virginia, USA.
    41. Tibor Balogh, The HoloVizio System,SPIE 6055 (2006),60550U.
    42. Ingo Relke, Bernd Riemann, Three-dimensional Multiview Large Projection System, SPIE 5664(2005), 167-173.
    43. Kenji Tanaka, Soko Aoki. A method for the real-time construction of a full parallax light field. SPIE 6055 (2006).
    44. Oliver S. Cossairt, Joshua Napoli, Samuel L. Hill, et al. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics,2007,46(8):1244-1250..
    45. Rieko Otsuka, Takeshi Hoshino, Youichi Horry. Transpost:All-Around Three-Dimensional Display System. Proc. of SPIE 5599 (2004), pp.56-65.
    46. A. Jones, I. McDowall, H. Yamada, et al, Rendering for an interactive 360° light field display, ACM SIGGRAPH 2007 emerging technologies, August 05-09,2007, San Diego, California.
    47. A. Jones, M. Lang, G. Fyffe, et al, Achieving Eye Contact in a One-to-Many 3D Video Teleconferencing System, ACM Transactions on Graphics,28(3), Proceedings of ACM SIGGRAPH 2009.
    48. Caijie Yan, Xu Liu, Haifeng Li, et al. Color three-dimensional display with omnidirectional view based on a light-emitting diode projector. Applied Optics,2009,48 (22), pp.4490-4495.
    49. Xinxing Xia, Zhenrong Zheng, Xu Liu, et al, Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen, Appl. Opt.,2010,49 (26):4915-4920.
    50. Susumu Tachi, Tomohiro Endo. Naoki Kawakami.3D Image Display Method. Pub. No.:US 2008/0043014 Al. Pub. Date:Feb.21,2008.
    51. Tomohiro Endo, Yoshihiro Kajiki, Toshio Honda, et al, Cylindrical 3-D Video Display Observable from All Directions, Computer Graphics and Applications,2000. Proceedings,300-306.
    52. Tomohiro Yendo, Toshiaki Fujii, Masayuki Tanimoto, et al. The Seelinder:Cylindrical 3D display viewable from 360 degrees. J. Vis. Commun. Image R.,2010,21:586-594.
    53.刘旭、李海峰、刘向东、林远芳,实现全视场空间三维显示的屏幕装置,申请号:200810060768.2,专利号:ZL 2008 10060768.2,授权日:2010年3月24日.
    54. Caijie Yan, Xu Liu, Di Liu, et al, Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array, Optical Engineering,2011,50(3),034003.
    55.刘旭、夏新星、李海峰,同时具有水平与俯仰多视场的全景空间三维显示装置,申请日:2010年1月8日,申请号:201010039604.9.
    56.刘旭、李海峰、柳迪、李帅、颜才杰、夏新星,基于俯仰多视角的全景视场三维显示装置,申请号:201010101198,申请日:2010年1月22日.
    57. Hwi Kim, Joonku Hahn, Byoungho Lee. Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays. Opt. Express,2009,17(17):pp.6389-6396.
    58.谢小燕,刘旭,林远芳,彩色体显示系统中基于几何近似法的灰度偏差分析.光学学报,2009,29(6):1086-1090.
    59. Xiaoyan Xie, Xu Liu and Yuanfang Lin, The investigation of data voxelization for a three-dimensional volumetric display system, Journal of Optics A:Pure and Applied Optics,2009,11(4):1-5.
    60. Q. Fan, L. Li, C. Shen, et al, Research of Dead Zones of Static Imaging Technology in Volumetric 3D Display System, Opto-Electronic Engineering,2009,36(5):pp56-61.
    61. J. Wu, C. Yan, X. Xia, et al, An Analysis of Image Uniformity of Three-dimensional Image Based on Rotating LED Array Volumetric Display System, SID 2010 International Symposium Digest, pp 657-660
    62. Jiang Wu, Xu Liu, Caijie Yan, et al, The analysis of colour uniformity for a volumetric display based on a rotating LED array, Journal of Optics,2011,13,055501.
    63.徐海松,颜色信息工程,杭州:浙江大学出版社,2005,84-90.
    64.汤顺清,色度学,北京:北京理工大学出版社,1990,82-100.
    65. Andrew E. Moe, Steve Marx, Naureen Banani, et al. Improvements in LED-based fluorescence analysis systems. Sensors and Actuators B 111-112 (2005), pp.230-241.
    66. http://china.xilinx.com/products/ipcenter/V6PCIExpress_Block.htm.
    67. http://www.princetel.com.cn/forj_rjn.asp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700