饲料脂肪酸调控大黄鱼免疫力和脂肪酸代谢的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以我国重要海水肉食性养殖鱼类大黄鱼(Larmichthys crocea)为研究对象,在海水浮式网箱内进行摄食生长实验,以观测饲料中脂肪酸水平和组成对大黄鱼生长、脂肪酸组成、免疫力、抗病力及相关基因表达的影响,在此基础上探讨饲料脂肪酸调控大黄鱼免疫力和脂肪酸代谢的分子机制。本文的研究内容和主要研究结果如下:
     1.饲料中n-3HUFA对大黄鱼幼鱼生长、非特异性免疫、抗病力以及刺激隐核虫感染后免疫相关基因表达的影响
     以初始体重9.79±0.6g的大黄鱼(Larmichthys crocea)为研究对象,在海水浮式网箱(1.0×1.0×1.5m)内进行为期58d的摄食生长实验,以探讨饲料中n-3HUFA对大黄鱼幼鱼生长、非特异性免疫、TLR22和MyD88相对表达量及抗病力的影响。通过梯度添加DHA油、EPA油和软脂酸配制等氮等脂的六种饲料(粗蛋白41.3%,粗脂肪11.7%),使饲料中n-3HUFA的含量依次为:0.15、0.60、0.98、1.37、1.79和2.25%,并使DHA/EPA固定在2.0左右。实验期间,将六组饲料分别随机投喂三个网箱的实验鱼(60尾/箱),每天两次(05:00和17:00)投喂至表观饱食状态。实验结果表明,适中水平n-3HUFA(0.98%)组特定生长率(SGR)显著高于对照组(P<0.05),高水平n-3HUFA(1.37%、1.79%和2.25%)会对大黄鱼生长产生不利影响,但差异不显著(P>0.05)。头肾白细胞NBT阳性比例、血清超氧化物歧化酶(SOD)和溶菌酶活性随着饲料n-3HUFA水平升高具有先上升后下降的趋势,其中头肾白细胞NBT阳性比例和SOD在0.60%组具有最大值,而溶菌酶在1.37%组活性最高。各组间头肾白细胞的吞噬活性未见明显趋势及显著性差异(P>0.05)。海水刺激隐核虫感染3d后,各处理组肾脏TLR22mRNA相对表达量未见显著性差异(P>0.05),而当饲料中n-3HUFA含量从0.15%增加至0.98%时,MyD88相对表达量显著升高至2.06,之后随n-3HUFA水平进一步升高显著降低至1.36(P<0.05);而感染海水刺激隐核虫13d后,各处理组肾脏MyD88mRNA相对表达量未见显著性差异(P>0.05),而当饲料中n-3HUFA含量从0.15%增加至0.60%时,肾脏TLR22的相对表达量显著升高至2.17;而当n-3HUFA含量从0.60%升高至2.25%时,肾脏TLR22的相对表达量显著降低至1.11(P<0.05)。肝脏TLR22和MyD88mRNA相对表达量在海水刺激隐核虫感染3d和13d随n-3HUFA水平升高均有先升高后下降的趋势,且表达量最高值出现在0.98-1.79%范围内。海水刺激隐核虫感染13d后各处理组累计死亡率具有与非特异性免疫和基因表达相似的趋势,其中0.60%n-3HUFA组累计死亡率最低,显著低于除0.98%组之外的各处理组。实验结果表明,0.60%和0.98%n-3HUFA组大黄鱼具有最佳免疫力和SGR,低水平和适中水平n-3HUFA具有较高非特异性免疫力、TLR22和MyD88mRNA相对表达量,说明n-3HUFA可能通过调控TLR22和MyD88mRNA相对表达量来影响大黄鱼SGR、免疫力及其抗病力。
     2.饲料中DHA/EPA对大黄鱼幼鱼生长、非特异性免疫、抗病力以及刺激隐核虫感染后免疫相关基因表达的影响
     以初始体重9.79±0.6g的大黄鱼(Larmichthys crocea)为研究对象,在海水浮式网箱(1.0×1.0×1.5m)内进行为期58d的摄食生长实验,以探讨饲料中DHA/EPA对大黄鱼幼鱼生长、非特异性免疫、TLR22和MyD88相对表达量及抗病力的影响。以鱼粉、豆粕为主要蛋白源,DHA油、EPA油、ARA油和软脂酸酯为主要脂肪源配制等氮等脂的五种饲料(粗蛋白41.3%,粗脂肪11.7%),使饲料中DHA/EPA依次为0.61、1.54、2.17、3.04和3.88,且DHA和EPA(n-3HUFA)总量固定在1.08%左右。实验期间,将五组饲料分别随机投喂三个网箱的实验鱼(60尾/箱),每天两次(05:00和17:00)投喂至表观饱食状态。结果表明,大黄鱼的特定生长率(SGR)随DHA/EPA增大具有先升高后下降的趋势,当DHA/EPA由0.61升高至2.17时,SGR由2.03%/d显著升至2.26%/d(P<0.05),当该比例进一步增大时,SGR有下降趋势,但差异不显著(P>0.05)。头肾白细胞NBT阳性比例和血清溶菌酶活性随着DHA/EPA升高具有先上升后下降的趋势,其中头肾白细胞NBT阳性比例和血清溶菌酶活性分别在2.17和3.04组具有最大值,且均显著高于对照组和比率为3.88组(P<0.05)。但头肾白细胞吞噬活性和血清SOD活性在各处理组间未见显著性差异(P>0.05)。海水刺激隐核虫感染3d后,各处理组肾脏MyD88mRNA相对表达量未见显著性差异;当饲料中DHA/EPA由0.61升高到2.17时,肾脏TLR22mRNA相对表达量由1.02显著升至2.47(P<0.05),之后随DHA/EPA的增大降至1.73(P>0.05);肝脏MyD88相对表达量随着DHA/EPA的增大具有显著上升的趋势,且DHA/EPA为3.88时具有最高值,显著高于比率为0.61、1.54和2.17处理组(P<0.05);当饲料中DHA/EPA由0.61升高到3.04时,肝脏TLR22mRNA相对表达量由1.00显著升至1.95(P<0.05),之后随DHA/EPA的增大降至1.51(P>0.05)。刺激隐核虫感染13d后,各处理组肾脏TLR22和MyD88mRNA相对表达量均未见显著性差异(P>0.05);肝脏TLR22相对表达量随DHA/EPA升高由1.01显著降低至0.46(P<0.05);当饲料中DHA/EPA由0.61升高到2.17时,肝脏MyD88mRNA相对表达量由1.00显著升至1.64(P<0.05),之后随DHA/EPA的增大降至1.16(P>0.05)。感染刺激隐核虫13d后大黄鱼累计死亡率随DHA/EPA增大具有先降低后下降的趋势,DHA/EPA为1.54、2.17和3.04时累计死亡率较低,显著低于对照组(P<0.05)。实验结果表明,DHA/EPA在2.17-3.04之间时,大黄鱼生长和整体免疫水平最佳,过高DHA/EPA会降低SGR、非特异性免疫及抗病力,这可能是通过影响TLR22和MyD88相对表达量来实现的。
     3.豆油为基础的饲料中添加共轭亚油酸对大黄鱼生长、非特异性免疫力、抗氧化能力、脂肪沉积和相关基因表达的影响
     以初始体重为7.56±0.60g的大黄鱼为研究对象,通过摄食生长实验并利用实时定量PCR技术来探讨饲料中共轭亚油酸对大黄鱼生长、非特异性免疫力、抗氧化能力、脂肪沉积和相关基因表达的影响。通过梯度添加CLA油,使得饲料中CLA含量依次为0(对照组)、0.42%、0.83%和1.70%饲料干物质。实验在海水浮式网箱进行,每天两次投喂,周期为70d。实验结果表明,大黄鱼增重率(WGR)和头肾巨噬细胞吞噬指数随着饲料中CLA的升高呈现先升高后下降的趋势,当饲料中CLA由0升高至0.42%时,WGR由499.30%显著升高至572.52%,之后随着饲料中CLA的进一步升高显著降至444.21%。吞噬指数在饲料CLA含量为0.42%时具有最高值(34.7%),显著高于对照组(17.9%)和最高CLA含量组(24.7%)。当饲料中CLA由0升高至0.83%时,头肾巨噬细胞呼吸爆发、肝脏过氧化氢酶(CAT)活力和肝脏总抗氧化力(T-AOC)显著升高,之后随着CLA的进一步升高显著下降。其中,呼吸爆发在0.83%时最高(0.50),显著高于对照组(0.34)和最高CLA组(0.42)。而肝脏丙二醛(MDA)随着饲料CLA的升高由3.30显著降至1.66nmol/mg protein(P<0.05)。鱼体和肌肉脂肪水平随着饲料中CLA含量的升高而升高(P<0.05)。肝脏和肾脏炎症相关的基因(环氧化酶-2和白细胞介素β)和肾脏脂肪酸氧化相关基因(肉碱脂酰转移酶Ⅰ和乙酰辅酶A氧化酶)的mRNA表达量会随着饲料中CLA含量的升高而显著降低。肝脏PPARα和乙酰辅酶A氧化酶的表达随着饲料中CLA由0.42%升高至1.70%而显著降低(P<0.05)。上述结果表明饲料中CLA能够显著影响大黄鱼的生长、非特异性免疫、抗氧化能力及炎性和脂肪酸氧化相关的基因表达,呈现出较为显著的抗炎、抗氧化效果。这有助于理解CLA在鱼类中的具体生理作用。
     4.饲料中亚麻酸/亚油酸对大黄鱼生长、非特异性免疫、抗氧化能力和相关基因表达的影响
     随着饲料工业的发展,鱼油短缺问题日益突出。研究表明,高摄入量的亚油酸(18:2n-6)会严重影响海水鱼类的生长和免疫性能的发挥。然而,目前仍不清楚亚油酸的这种不利影响是否能够通过适当提高ALA/LA的比例来消除。本实验以初始体重9.56±0.60g的大黄鱼(Larmichthys crocea)为研究对象,在海水浮式网箱(1.0×1.0×1.5m)内进行为期70d的摄食生长实验,以探讨饲料中亚麻酸和亚油酸比例(ALA/LA)对大黄鱼生长、非特异性免疫、抗氧化能力及炎性、脂肪酸氧化和合成相关基因表达的影响。对照组饲料含有30%的鱼粉和9%的鱼油,之后用不同植物油的混合物(亚麻油、葵花油和棕榈油)替代对照组中78%的鱼油,使饲料中ALA/LA的比例依次为:0.03、0.45、0.90和1.51。实验结果表明,与鱼油组相比,高摄入量的亚油酸显著降低了大黄鱼的增重率(WGR)和非特异性免疫力(吞噬指数、呼吸爆发和血清溶菌酶活力),然而这种不利影响随着饲料中ALA/LA的升高至0.45或0.90时得到完全消除。肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活力在比例为0.45时最高,显著高于最低或最高比例组。肝脏丙二醛(MDA)含量呈现与SOD和CAT活力相反的变化趋势,当比例为0.90时鱼体肝脏MDA含量最低,显著低于对照组。肝脏、肾脏和肌肉炎性相关基因(环氧化酶-2(COX-2),白细胞介素1β(IL-1β)和肿瘤坏子因子α(TNF-α))、脂肪酸氧化相关基因(过氧化物酶体增殖激活受体α(PPARα),肉碱脂酰转移酶(CPTⅠ)和脂酰CoA氧化酶(ACO))以及脂肪酸合成相关基因(脂肪酸合酶(FAS),苹果酸脱氢酶(ME)和6磷酸葡萄糖脱氢酶(6GPD))相对mRNA表达量显著高于对照组,但上述基因表达量在ALA/LA比例为0.45时显著降至与对照组相似的水平。上述结果表明饲料中ALA/LA能够显著影响大黄鱼生长、非特异性免疫、肝脏抗氧化能力以及炎性、脂肪酸氧化和合成相关基因表达,比例过高或过低均不利于其生长、免疫和脂肪酸代谢。ALA虽然不是大黄鱼的必需脂肪酸,但在抗炎和抗氧化方面却具有与n-3HUFA极为相似的特性。
     5.大黄鱼脂肪酸Δ6去饱和酶和延长酶5基因的克隆、表征和营养学调控
     通过同源克隆和RACE技术从大黄鱼中获得脂肪酸Δ6去饱和酶和延长酶5的cDNA全长。脂肪酸Δ6去饱和酶全长为2049bp,其中5′-UTR为107bp,3′-UTR为604bp,开放阅读框1338bp,编码445个氨基酸。脂肪酸延长酶5全长1551bp,包括120bp5′-UTR,546bp3′-UTR和885bp的开放阅读框。序列比对发现这两个基因分别属于脂肪酸Δ6去饱和酶和延长酶5家族。组织差异性表达结果显示该基因在肝脏和脑中表达量较高,而在胃、肠、心脏和脾脏中表达量较低。之后通过58d的摄食生长实验观测饲料中n-3HUFA(0.15,0.60,0.98,1.37,1.79和2.25%)及DHA/EPA(0.61,1.54,2.17,3.04和3.88)对肝脏脂肪酸Δ6去饱和酶和延长酶5mRNA表达量的影响.结果发现,脂肪酸Δ6去饱和酶和延长酶5随着饲料中n-3HUFA含量的升高而显著降低。与最高n-3HUFA组(2.25%n-3HUFA)相比,0.15%,0.60%and0.98%n-3HUFA处理组脂肪酸Δ6去饱和酶表达量分别升高了46倍、4.8倍和1.17倍。与最高n-3HUFA组(2.25%n-3HUFA)相比,0.15%,0.60%and0.98%n-3HUFA处理组延长酶5的表达量显著升高了1.77倍,1.41倍和1.41倍。肝脏脂肪酸Δ6去饱和酶表达量随着饲料中DHA/EPA的升高显著降低,肝脏延长酶5的表达量随着饲料中DHA/EPA的升高有增加的趋势,但各处理组间差异不显著(P>0.05).
This study was conducted to investigate the effects of dietay fatty acid ongrowth, fatty acid composition, nonspecific immnity, disease resistance and relatedgene expression in large yellow croaker (Larmichthys crocea). Based on thesestudies, it was aimed to investigate mechamisms involved in the regulation of dietaryfatty acid on immunity and fatty acid metabolism of large yellow croaker. The resultsand conclusions are summarized as follows:
     1. Effects of dietary n-3highly unsaturated fatty acids on growth, nonspecificimmunity, expression of some immune related genes and disease resistance oflarge yellow croaker (Larmichthys crocea)
     The study was conducted to investigate the effects of dietary n-3highlyunsaturated fatty acid (n-3HUFA) on growth, nonspecific immunity, gene expressionand disease resistance of juvenile large yellow croaker (Larmichthys crocea). Sixisoproteic and isolipidic diets were formulated with graded levels of n-3HUFAranging from0.15%to2.25%of the dry weight and the DHA/EPA was approximatelyfixed at2.0. Each diet was randomly allocated to triplicate groups of fish in floatingsea cages (1.0×1.0×1.5m), and each cage was stocked with60fish (initial averageweight9.79±0.6g). Fish were fed twice daily (05:00and17:00) to apparent satiationfor58days. Results showed that moderate n-3HUFA level (0.98%) significantlyenhanced growth compared with the control group (P<0.05), while higher n-3HUFAlevels (1.37%,1.79%and2.25%) had detrimental effects on the growth though nosignificance was found (P>0.05). Nitro blue tetrazolium (NBT) positive leucocytespercentage of head kidney and serum superoxide dismutase (SOD) activity increasedwith increasing n-3HUFA from0.15%to0.60%, and decreased with further increaseof n-3HUFA from0.60%to2.25%(P<0.05). Serum lysozyme activity increasedsignificantly as n-3HUFA increased from0.15%to1.37%, and then decreased withn-3HUFA from1.37%to2.25%(P>0.05). There were no significant differences in phagocytosis percentage (PP) of head kidney leucocytes among dietary treatments(P>0.05). The hepatic mRNA expression of Toll-like receptor22(TLR22) andMyeloid differentiation factor88(MyD88) was increased in fish fed the diets withlow or moderate levels, while in kidney this increment was only found at specificsampling time. The cumulative mortality rate after parasite infection test withIchthyophthirius marinus decreased with n-3HUFA increased from0.15%to0.60%(P<0.05), and significantly increased with n-3HUFA from0.60%to2.25%(P<0.05).Results of this study suggested that dietary n-3HUFA could significantly influencefish growth, nonspecific immune responses, immune related gene expression anddisease resistance of large yellow croaker and low n-3HUFA levels (0.60%and0.98%)may benefit the immunity and growth by upregulating the mRNA expression ofcertain immune related genes.
     2. Effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA)on growth, nonspecific immunity, expression of some immune related genes anddisease resistance of large yellow croaker (Larmichthys crocea) following naturalinfestation of parasites (Cryptocaryon irritans)
     The study was conducted to investigate the effects of dietary docosahexaenoic toeicosapentaenoic acid ratio (DHA/EPA) on growth, nonspecific immunity, immunerelated gene expression and disease resistance of juvenile large yellow croaker(Larmichthys crocea) following natural infestation of parasites (Cryptocaryonirritans). Five isoproteic and isolipidic diets were formulated with graded ratios ofDHA/EPA (0.61,1.54,2.17,3.04and3.88) and the total amount of n-3highlyunsaturated fatty acids (n-3HUFA) was approximately fixed at1.0%of the dry weight.Each diet was randomly allocated to triplicate groups of fish in floating sea cages(1.0×1.0×1.5m), and each cage was stocked with60fish (initial average weight9.8±0.6g). Fish were fed twice daily (05:00and17:00) to apparent satiation for58days. Results showed that specific growth rate (SGR) significantly increased from2.03%/d to2.26%/d (P<0.05) and then decreased with no significant differences(P>0.05). Serum lysozyme activity increased with increasing dietary DHA/EPA from0.61to3.04, and decreased with further increase of DHA/EPA from3.04to3.88(P<0.05). Nitro blue tetrazolium (NBT) positive leucocytes percentage of head kidneyshowed a similar changing trend with serum lysozyme activity with the highest value in the ratio of2.17, significantly higher than that in the control and ratio of3.88groups. Hepatic Toll-like receptor22(TLR22) and Myeloid differentiation factor88(MyD88) expression levels were significantly increased in fish fed higher DHA/EPA(3.04or3.88) at the early stage after natural infestation of parasites. At the later stageafter natural infestation of parasites, hepatic TLR22transcription was up-regulated infish fed moderate ratio of DHA/EPA (2.17). In kidney, the expression of TLR22wassignificantly up-regulated in fish fed moderate dietary DHA/EPA (2.17) at the earlystage after natural infestation of parasites. The13d cumulative mortality ratefollowing natural infestation of parasites decreased significantly with DHA/EPAincreased from0.61to3.04(P<0.05), and then increased with DHA/EPA from3.04to3.88(P>0.05). Results of this study suggested that fish fed moderate or higherDHA/EPA had higher growth, nonspecific immunity, immune related gene expressionand disease resistance following natural infestation of parasites and dietary DHA/EPAmay regulate fish immunity and disease resistance by altering the mRNA expressionlevels of TLR22and MyD88.
     3. Effects of conjugated linoleic acid (CLA) on growth, nonspecific immunity,antioxidant capacity, lipid deposition and related gene expression in juvenilelarge yellow croaker (Larmichthys crocea) fed soybean oil based diets
     The effects of conjugated linoleic acid (CLA) on growth performance,nonspecific immunity, antioxidant capacity, lipid deposition and related geneexpression were investigated in large yellow croaker, Larmichthys crocea. Fish (7.56(SEM0.60) g) were fed soybean oil based diets with graded levels of CLA (0,0.42,0.83,1.70%) for70days. Quantitative PCR was used to assess the effects of CLA ontranscription of inflammation and fatty acid oxidation related genes. Results showedthat growth in fish fed the diet with0.42%CLA was significantly higher. Also,phagocytic index and respiratory burst activity were significantly higher in treatmentsof0.42%and0.83%CLA, respectively. Hepatic total anti-oxidative capacity andcatalase activities increased significantly when CLA increased from0%to0.83%, andthen decreased with further increase of CLA. While hepatic maleic dialdehyde contentdecreased significantly as dietary CLA increased. Lipid concentration in whole bodyand muscle increased significantly with increasing dietary CLA. Transcription ofgenes related with inflammation (cyclooxygenase-2and IL-β) in liver and kidney and fatty acid oxidation (carnitine palmitoyl transferase Ⅰ and acyl CoA oxidase) inkidney decreased significantly as dietary CLA increased. PPARα and acyl CoAoxidase expression in liver decreased significantly as CLA increased from0.42%to1.70%. These results strongly suggested that dietary CLA could significantly affectgrowth performance, nonspecific immunity, antioxidant capacity, lipid deposition andtranscription of inflammation and fatty acid oxidation related genes of large yellowcroaker. This may contribute to understanding the mechanisms on the physiologicaleffects of dietary CLA in fish.
     4. Effects of dietary ratio of alfa-linolenic to linoleic acid (ALA/LA) on growth,nonspecific immunity, antioxidant capacity and related gene expression injuvenile large yellow croaker (Larmichthys crocea)
     Fish oil has seen a great shortage with the fast development of aquatic feedindustry. High inclusion of linoleic acid rich oils has deleterious effects on growth andhealth of marine fish species. However, it is still unclear whether these negativeeffects could be eliminated by enhancing dietary alfa-linolenic to linoleic acid ratio(ALA/LA). Thus, this study was conducted to investigate the effects of dietaryALA/LA on growth performance, nonspecific immunity, antioxidant capacity, lipiddeposition and related gene expression in juvenile large yellow croaker, Larmichthyscrocea. The control diet (FO) was formulated with30%fish meal and9%fish oil.Then, four other diets were formulated by replacing78%fish oil in the FO withvegetable oil to acquire graded ratios of ALA/LA (0.03,0.45,0.90and1.51), whichwere named R-0.03, R-0.45, R-0.90and R-1.51, respectively. Fish were fed twicedaily (05:00and17:00) for70days. Results showed that experimental fish hadsignificantly lower weight gain rate (WGR) and worse nonspecific immunity after78%fish oil was replaced by sunflower oil. However, the negative effects of LA onWGR and nonspecific immunity could be completely eliminated as dietary ALA/LAincreased to0.45and0.90, respectively. Anti-oxidative capacity in liver was increasedto some extent after78%fish oil was replaced by vegetable oil. Hepatic superoxidedismutase and catalase activities increased significantly when ALA/LA increasedfrom0.03to0.45, and then decreased with further increase of this ratio. While hepaticmaleic dialdehyde content first decreased with dietary ALA/LA increasing from0.03 to0.90, and then increased as this ratio increased to1.51(P>0.05). Transcription ofgenes related with inflammation (cyclooxygenase-2, IL-1β and TNF-α), fatty acidoxidation (carnitine palmitoyl transferase Ⅰ and acyl CoA oxidase), and fatty acidsynthesis (fatty acid synthase and malic enzyme) in liver and kidney was significantlyincreased in R-0.03, and then decreased to comparable levels in FO as dietaryALA/LA reached equal to or above0.45. These results strongly suggested that dietaryALA could exert some similar properties like n-3HUFA at least from the points ofinflammation, fatty acid oxidation and synthesis. This may contribute tounderstanding the mechanisms on the physiological effects of dietary ALA/LA in fish.
     5. Molecular cloning, characterization, and nutritional regulation of fatty acyl Δ6desaturase and elovl5elongase of large yellow croaker, Larmichthys crocea
     In this study, the full-length cDNA of fatty acyl Δ6desaturase and elovl5elongase were first cloned from the large yellow croaker, Larmichthys crocea. Thefatty acyl Δ6desaturase was2049bp, with a107bp5′-UTR, a604bp3′-UTR, and anORF of1338that specified a protein of445amino acids. The fatty acyl elovl5elongase was1551bp, including a5′-terminal untranslated region (UTR) of120bp, a3′-terminal UTR of546bp and an open reading frame (ORF) of885bp encoding apolypeptide of294amino acid residues. Sequence comparison and phylogeneticanalysis showed that the two enzymes belong to the fatty acyl Δ6desaturase andelovl5elongase family, respectively. Tissue distribution analysis revealed that theLcElovl5expression level was higher in liver, brain and gill while lower in stomach,intestine, heart and spleen. Then two58d feeding experiments were conducted toinvestigate the effects of dietary n-3long chain polyunsaturated fatty acid (n-3HUFA)levels (0.15,0.60,0.98,1.37,1.79and2.25%) and docosahexaenoic toeicosapentaenoic acid ratio (DHA/EPA)(0.61,1.54,2.17,3.04and3.88) on thehepatic expression levels of LcElovl5in large yellow croaker juveniles. The resultsshowed that the transcriptional levels of LcElovl5decreased significantly with theincreasing dietary n-3LC-PUFA (P<0.05). The LcElvol5transcript levels wereup-regulated by1.77-fold,1.41-fold, and1.41-fold in the level of0.15%,0.60%and0.98%n-3LC-PUFA treatments compared with the control group (2.25%n-3LC-PUFA), respectively. The hepatic expression levels of LcElovl5transcriptshowed an increasing tendency in response to the increased dietary DHA/EPA though no significance was observed among dietary groups (P>0.05).
引文
艾庆辉,麦康森.鱼类营养免疫的研究进展.水生生物学报2007,31:425-429.
    聂品.鱼类非特异性免疫研究的新进展.水产学报.1997,21:69-73.
    李明珠,马洪明.海水鱼类必需脂肪酸的合成能力.中国海洋大学学报2010,40(Su p.):059-064.
    Abasht, B., Kaiser, M.G., Lamont, S.J. Toll-like receptor gene expression in cecumand spleen of advanced intercross line chicks infected with Salmonella entericaserovar Enteritidis. Vet. Immunol. Immunop.2008,123:314–323.
    Aebi H. Catalase in vitro. Methods Enzymology1984,105:121–127.
    Agaba, M., Tocher, D.R., Dickson, C.A., Dick, J.R., Teale, A.J. Zebrafsh cDNAencoding multifunctional fatty acid elongase involved in production ofeicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Mar.Biotechnol.2004,6:251–261.
    Agaba, M.K., Tocher, D.R., Zheng, X.Z., Dickson, C.A., Dick, J.R., Teale, A.J.Cloning and functional characterisation of polyunsaturated fatty acid elongasesof marine and freshwater teleost fish. Comparative Biochemistry and Physiology,Part B2005,142:342–352.
    Ai, Q.H., Mai, K.S., Tan, B.P., Xu, W., Duan, Q.Y., Ma, H.M., Zhang, L. Replacementof fish meal by meat and bone meal in diets for large yellow croaker,Pseudosciaena crocea. Aquaculture2006,260:255–263.
    Ai, Q.H., Mai, K.S., Zhang, C.X., Xu, W., Duan, Q.Y., Tan, B.P., Liufu, Z.G. Effectsof dietary vitamin C on growth and immune response of Japanese seabass,Lateolabrax japonicus. Aquaculture2004,242:489–500.
    Ai, Q.H., Mai, K.S., Zhang, l., Tan, B.P., Zhang, W.B., Xu, W., Li, H.T. Effects ofdietary β-1,3glucan on innate immune response of large yellow croaker,pseudosciaena croea. Fish and Shellfish Immunology2007,22:394-402.
    Ai, Q.H., Xu, H.G., Mai, K.S., Xu, W., Wang, J., Zhang, W.B. Effects of dietarysupplementation of Bacillus subtilis and fructooligosaccharide on growthperformance, survival, non-specifc immune response and disease resistance ofjuvenile large yellow croaker, Larimichthys crocea. Aquaculture2011,317:155–161.
    Ai, Q.H., Zhao, J.Z., Mai, K.S., Xu, W., Tan, B.P., Ma, H.M., Liufu, Z.G. Optimaldietary lipid level for large yellow croaker (Pseudosciaena crocea) larvae.Aquacult. Nutr.2008,14:515–522.
    Alfano, M., Poli, G. Role of cytokines and chemokines in the regulation of innateimmunity and HIV infection. Mol Immunol2005,42:161–182.
    Alimuddin, Kiron, V., Satoh, S. et al. Cloning and over-expression of a masu salmon(Oncorhynchus masou) fatty acid elongase-like gene in zebrafsh. Aquaculture2008,282:13–18.
    Amar, E.C., Kiron, V., Akutsu, T. et al. Resistance of rainbow trout Oncorhynchusmykiss to infectious hematopoietic necrosis virus (IHNV) experimental infectionfollowing ingestion of natural and synthetic carotenoids. Aquaculture2012,330–333:148–155.
    Anderson, D.P. Immunostimulants, adjuvants, and vaccine carriers in fish:applicationsto aquaculture. J.Ann Rev Fish Dis.1992,2:281-307.
    Appel, L.E., Balena, R., Cortese, M., Opas, E., Rodan, G., Seedor, G., Zentner, G.M.In vitro characterization and in vivo efficacy of a prostaglandin E2/poly (orthoester) implant for bone growth promotion. J. Control. Release1993,26:77–85.
    Aprahamian, C.J., Lorenz, R.G., Harmon, C.M., Dimmit, R.A. Toll-like receptor2isprotective of ischemia–reperfusion-mediated small-bowel injury in a murinemodel. Pediatr Crit Care Med2008,9:105–109.
    Ayalasomayajula, S.P., Amrite, A.C.&Kompella, U.B. Inhibition ofcyclooxygenase-2, but not cyclooxygenase-1, reduces prostaglandin E2secretionfrom diabetic rat retinas. Eur J Pharmacol2004,498:275–278.
    Baetz, A., Frey, M., Heeg, K., Dalpke, A.H. Suppressor of cytokine signaling (SOCS)proteins indirectly regulate toll-like receptor signaling in innate immune cells. JBiol Chem2004,279:54708–54715.
    Bandarra, M., Nunes, M.L., Andrade, A.M. et al. Effect of dietary conjugated linoleicacid on muscle, liver and visceral lipid deposition in rainbow trout juveniles(Oncorhynchus mykiss). Aquaculture2006,254:496–505.
    Barlow, S. Fishmeal and oil: sustainable feed ingredients for aquafeeds. Glob.Aquacult. Adv2000,4:85–88.
    Bell, J.G., Ashton, I., Secombes, C.J., Weitzel, B.R., Dick, J.R., Sargent, J.R. Dietarylipid affects Phospholipid fatty acid compositions, eicosanoid production andimmune functionin Atlantic salmon (Salmo salar). Prostaglandins, Leukot.Essent. Fat. Acids.1996a,54:173-182.
    Bell, J.G., Farndale, B.M., Dick J.R., Sargent J.R. Modification of membrane fattyacid composition, eicosanoid production, and phospholipase-A activity inAtlantic salmon (Salmo salar) gill and kidney by dietary lipid. Lipids1996b,31:1163-71.
    Bell, J.G., Sargent, J.R. Arachidonic acid in aquaculture feeds: current status andfuture opportunities. Aquaculture2003,218:491-499.
    Bell, M.V., Batty, R.S., Dick, J.R., Fretwell, K., Navarro, J.C., Sargent, J.R. Dietarydefciency of docosahexaenoic acid impairs vision at low light intensities injuvenile herring (Clupea harengus L.). Lipids1995,30:443–449.
    Belury, M. Dietary conjugated linoleic acid in health: physiological effects andmechanisms of action. Annu Rev Nutr2002,22:505–531.
    Bergamo, P., Maurano, F., Rossi, M. Phase2enzyme induction by conjugated linoleicacid improves lupus-associated oxidative stress. Free Radical Bio Med2007,43:71–79.
    Blanchard, G., Makombu, J.G.&Kestemont, P. Influence of different dietary18:3n-3/18:2n-6ratio on growth performance, fatty acid composition and hepaticultrastructure in Eurasian perch, Perca fluviatilis. Aquaculture2008,284:144-150.
    Blazer, V.S. Nutrition and disease resistance in fish. J. Ann Rev Fish Dis.1992,2:309-323.
    Bradford, M. A rapid sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein–dye binding. Anal Biochem1976,72:248–254.
    Brown, J.M., Boysen, M.S., Chung, S. et al. Conjugated linoleic acid induces humanadipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling byadipocytokines. J Biol Chem2004,279:26735–26747.
    Byrne, C.D. Fatty liver: Role of inflammation and fatty acid nutrition. ProstagLeukotr Ess2010,82:265–271.
    Campa-Córdova, A.I., Hernández-Saavedra, N.Y., Ascencio, F. Superoxide dismutaseas modulator of immune function in American white shrimp (Litopenaeusvannamei). Comp. Biochem. Physiol. C2002,133:557–565.
    Candelario-Jalil, E., Akundi, R.S., Bhatia, H.S. et al. Ascorbic acid enhances theinhibitory effect of aspirin on neuronal cyclooxygenase-2-mediatedprostaglandin E2production. J Neuroimmunol2006,174:39–51.
    Cerezuela, R., Cuesta, A., Meseguer, J., Esteban, M. Effects of dietary vitamin D3administration on innate immune parameters of seabream (Sparus aurata L.),Fish and Shellfish Immunology2009,26:243–248.
    Chabalgoity, J.A., Baz, A., Rial, A. et al. The relevance of cytokines for developmentof protective immunity and rational design of vaccines. Cytokine Growth F R2007,18:195–207.
    Chapkin, R.S., Akoh, C.C., Miller, C.C. Influence of dietary n-3fatty acids onmacrophage glycerophospholipid molecular species and peptidoleukotrienesynthesis. J. Lipid Res.1991,32:1205-1213.
    Chen, C., Wang, Y., Zhang, Z., Wang, C., Peng, M. Toll-like receptor4regulateshemeoxygenase-1expression after hemorrhagic shock induced acute lunginjury in mice: requirement of p38mitogen-activate protein kinase activation.Shock2009,31:486–492.
    Choi, B.D., Kang, S.J., Ha, Y.L. et al. Accumulation of conjugated Linoleic acid(CLA) in tissues of fish fed diets containing various levels of CLA. In: Xiong YL,Ho CT, Shahidi F (Eds.) Quality Attributes of Muscle Foods. Kluwer Academic/Plenum Publishers, New York,1999,61–71.
    Chung, S., Brown, J.M., Provo, J.N. et al. Conjugated linoleic acid promotes humanadipocyte insulin resistance through NFkappaB-dependent cytokine production. JBiol Chem2005,280:38445–38456.
    Cuesta, A., Esteban, M.A., Meseguer, J. Natural cytotoxic activity in seabream(Sparus aurata L.) and its modulation by vitamin C. Fish Shellfish Immunol.2002,13:97-109.
    Dhillon, J.K., Su, X.R.&Liu, Z.M. Effects of RU486on cyclooxygenase-2geneexpression, prostaglandin F2αsynthesis and ovulation in Xenopus laevis. GenComp Endocr2010,165,78–82.
    Diez, A., Menoyo, D., Pérez-Benavente, S. et al. Conjugated linoleic acid affects lipidcomposition, metabolism and gene expression in gilthead sea bream (Sparusaurata L). J Nutr2007,137:1363–1369.
    Dos Santos, L.D., Furuya, W.M., da Silva, L.C.R. et al. Dietary conjugated linoleicacid (CLA) for finishing Nile tilapia. Aquacult Nutr2011,17:70–81.
    Dr ge, W. Aging-related changes in the thiol/disulfde redox state: implications for theuse of thiol antioxidants. Exp. Gerontol.2002,37:1331–1343.
    Ellis, A.E. Lysozyme assays. In: Stolen, J.S., Fletcher, T.C., Anderson, D.P., Robertsen,B.S., Van Muiswinkel, W.B., editors. Techniques in fsh immunology Fair Haven,NJ: SOS Publications;1990,101–103.
    Ellis, A.E. Immunity to bacteria in fish. Fish Shellfish Immunol.1999,9:291-308.
    Ely, E.W., Seeds, M.C., Chilton, F.H., Bass, D.A. Neutrophil release of arachidonicacid, oxidants, and proteinases: causally related or independent. Biochimica etBiophysica Acta.1995,1258:135-144.
    Erdal, J.I., Evensen, O., Kaurstad, O.K., Lillehaug, A., Solbakken, R., Thorud, K.Relationship between diet and immune response in Atlantic salmon (Salmo salarL.) feeding various levels of ascorbic acid and omega-3fatty acids. Aquaculture1991,98:363-79.
    FAO (Food and Agriculture Organization of the United Nations)(2007). State ofWorld Aquaculture2006. FAO Fisheries Technical Paper No.500. FAO FisheriesDepartment; Food and Agriculture Organization of the United Nations, Rome.
    Farndale BM, Bell JG, Bruce MP et al. Dietary lipid composition affects bloodleucocyte fatty acid compositions and plasma eicosanoid concentrations inEuropean sea bass (Dicentrarchus labrax). Aquaculture1999,179:335–350.
    Feng, C.G., Scanga, C.A., Collazo-Custodio, C.M., Cheever, A.W., Hieny, S., Caspar,P. Mice lacking myeloid differentiation factor88display profound defects in hostresistance and immune responses to Mycobacterium avium infection notexhibited by Toll-like receptor2(TLR2)-and TLR4-defcient animals. J.Immunol.2003,171:4758–4764.
    Flintoff-Dye, N.L.&Omaye, S.T. Antioxidant effects of conjugated linoleic acidisomers in isolated human low-density lipoproteins. Nutr Res2005,25:1–12.
    Fountoulaki, E., Vasilaki, A., Hurtado, R., Grigorakis, K., Karacostas, I., Nengas, I.,Rigos,G., Kotzamanis, Y., Venou, B., Alexis, M.N. Fish oil substitution byvegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.);effects on growth performance, flesh quality and fillet fatty acid profle:Recovery of fatty acid profles by a fish oil finishing diet under fluctuating watertemperatures. Aquaculture2009,289:317–326.
    Fowler, K.H., Chapkin, R.S., McMurray, D.N. Effects of purifed dietary n-3ethylesters on murine T lymphocyte function. J. Immunol.1993,151:5186–5197.
    Fracalossi, D.M., Lovell, R.T. Dietary lipid sources influence responses of channelcatfish (Ictalurus punctatus) to challenge with the pathogen Edwardsiella ictaluri.Aquaculture1994,119:287-98.
    Furuita, H., Tanaka, H., Yamamoto, T., Shiraishi, M., Takeuchi, T. Effects ofn-3HUFA levels in broodstock diet on the reproductive performance and egg andlarval quality of the Japanese flounder, Paralichthys olivaceus. Aquaculture2000,187:387–398.
    Furukawa, T., Meydani, S.N.&Blumberg, J.B. Reversal of age-associated decline inimmune responsiveness by dietary glutathione supplementation in mice. MechAgeing Dev1987,38:107–117.
    Gabler, N.K., Spencer, J.D., Webel, D.M., Spurlock, M.E. n-3PUFA attenuatelipopolysaccharide-induced down-regulation of Toll-like receptor4expression inporcine adipose tissue but does not alter the expression of other immunemodulators. J Nutr Biochem2008,19:8–15.
    Ganga, R., Bell, J.G., Montero, D. et al. Effect of dietary lipids on plasma fatty acidprofiles and prostaglandin and leptin production in gilthead seabream (Sparusaurata). Comp Biochem Physiol2005,142B:410–418.
    Gavino, V.C., Miller, J.S., Ikharebha, S.O. et al. Effects of polyunsaturated fatty acidsand antioxidants on lipid peroxidation in tissue cultures. J Lipid Res1981,22:763–769.
    Ghioni, C., Tocher, D.R., Bell, M.V., et al. Low C18to C20fatty acid elongaseactivity and limited conversion of stearidonic acid,18:4n-3, to eicosapentaenoicacid,20:5n-3, in a cell line from the turbot, Scophthalmus maximus. Biochimicaet Biophysica Acta,1999,1437:170-181.
    Gill, R., Tsung, A., Billiar, T. Linking oxidative stress to infammation: Toll-likereceptors. Free Radical Bio. Med.2010,48:1121–1132.
    Gj en, T., Obach, A., R sj, C., Helland, B.G., Rosenlund, G., Hvattum, E., Ruyter, B.Effect of dietary lipids on macrophage function, stress susceptibility and diseaseresistance in Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry2004,30:149-161.
    Glencross, B.D., Smith, D.M., Thomas, M.R., Williams, K.C. Optimising the essentialfatty acids in the diet for weight gain of the prawn, Penaeus monodon.Aquaculture2002,204:89–99.
    Glencross, B.D. Exploring the nutritional demand for essential fatty acids byaquaculture species. Rev. Aquacult.2009,204:89–99.
    Glencross, B.D., Rutherford, N.R., Jones, J.B. The docosahexaenoic acid (DHA)requirements of juvenile barramundi (Lates calcarifer). Aquaculture Nutrition2011,17:536–548.
    González-Rovira, A., Mourente, G., Zheng, X.Z., Tocher, D.R., Pendón, C. Molecularand functional characterization and expression analysis of a Δ6fatty acyldesaturase cDNA of European Sea Bass (Dicentrarchus labrax L.). Aquaculture2009,298:90–100.
    Good, J.E., Bell, J.G., Thompson, K.D., Williams, P.W. Assessment of immuneresponse in Atlantic Salmon (Salmo salar) receiving alternative oil diets. Anabstract and poster presentation at the5thNordic Fish Immunology SymposiumJune2001. Institute of Pharmacy, University of Oslo, Oslo, Norway,2001, p.42.
    Goodwin, J.S.&Webb, D.R. Regulation of the immune response by prostaglandins.Clin Immunol1980,15:106–122.
    Gorj o, R., Azevedo-Martins, A.K., Rodrigues, H.G., Abdulkader, F., Arcisio-Miranda,M., Procopio, J., Curi, R. Comparative effects of DHA and EPA on cell function.Pharmacol. Therapeut.2009,122:56–64.
    Gorj o, R., Verlengia, R., Lima, T.M., Soriano, F.G., Boaventura, M.F., Kanunfre,C.C., Peres, C.M., Sampaio, S.C., Otton, R., Folador, A., Martins, E.F., Curi,T.C., Portiolli, E.P., Newsholme, P., Curi, R. Effect of docosahexaenoic acid-richfish oil supplementation on human leukocyte function. Clin. Nutr.2006,25:923–938.
    Gregory, M.K., See, V.H.L., Gibson, R.A., Schuller, K.A. Cloning and functionalcharacterisation of a fatty acyl elongase from southern bluefn tuna (Thunnusmaccoyii). Comparative Biochemistry and Physiology, Part B2010,155:178–185.
    Grimble, R.F., Howell, W.M., O Reilly, W., Turner, S.J., Markovic, O., Hirrell, S. Theability of fish oil to suppress tumor necrosis factor production by peripheralblood mononuclear cells in healthy men is associated with polymorphisms ingenes that influence tumor necrosis factor production. Am. J. Clin. Nutr.2002,76:454–459.
    Harel, M., Gavasso, S., Leshin, J., Gubernatis, A., Place, A.R. The effect of tissuedocosahexaenoic and arachidonicacids levels on hypersaline tolerance andleucocyte composition in striped bass (Morone saxatilis) larvae. Fish physillogyand biochemistry2001,24:113-123.
    Hastings, N., Agaba, M.K., Tocher, D.R., Zheng, X., Dickson, C.A., Dick, J.R., Teale,A.J. Molecular cloning and functional characterization of fatty acyl desaturaseand elongase cDNAs involved in the production of eicosapentaenoic acid anddocosahexaenoic acids from α-linolenic acid in Atlantic salmon (Salmo salar).Mar. Biotechnol.2005,6:463–474.
    Hayek, M.G., Han, S.N., Wu, D.Y. et al. Dietary conjugated linoleic acid influencesthe immune response of young and old C57BL/6NCrlBR mice. J Nutr1999,129:32–38.
    Holmblad, T., S derh ll, K. Cell adhesionmolecules and antioxidative enzymes in acrustacean, possible role in immunity. Aquaculture1999,172:111–123.
    Ibeas, C., Cejas, J.R., Fores, R., Badía, P., Gómez, T., Lorenzo Hernández, A.Influence of eicosapentaenoic to docosahexaenoic acid ratio(EPA/DHA) of dietary lipids on growth and fatty acid compositionof gilthead seabream (Sparus aurata) juveniles. Aquaculture1997,150:91-102.
    Ishak, S.D., Tan, S.H., Khong, H.K., Jaya-Ram, A., Enyu, Y.L., Kuah, M.K.,Shu-Chien, A.C. Upregulated mRNA expression of desaturase and elongase, twoenzymes involved in highly unsaturated fatty acids biosynthesis pathways duringfollicle maturation in zebrafish. Reproductive Biology and Endocrinology2008,6:1–10.
    Izquierdo, M.S., Fernandez-Palacios, H., Tacon, A.G.J. Effect of broodstock nutritionon reproductive performance of fish. Aquaculture2001,197,25–42.
    Jaya-Ram, A., Ishak, S.D., Enyu, Y.L., Kuah, M.K., Wong, K.L., Shu-Chien, A.C.Molecular cloning and ontogenic mRNA expression of fatty acid desaturase inthe carnivorous striped snakehead fsh (Channa striata). ComparativeBiochemistry and Physiology, Part A2011,158:415–422.
    Jaya-Ram, A., Kuah, M.K., Lim, P.S., Kolkovski, S., Shu-Chien, A.C. Infuence ofdietary LC-PUFA levels on reproductive performance, tissue fatty acid profleand desaturase and elongase mRNAs expression in female zebrafsh Danio rerio.Aquaculture2008,277:275–281.
    Jorgensen, J.B., Lunde, H., Jensen, L., Whitehead, A.S., Robertsen, B. Serum amyloidA transcription in Atlantic salmon (Salmo salar L.) hepatocytes is enhanced byStimulation with macrophage factors, recombinant human IL-1beta, IL-6andTNF alpha or bacterial lipopolysaccharide. Developmental and ComparativeImmunology2000,24:553-63.
    Kalogeropoulos, N., Alexis, M.N.&Henderson, R.J. Effects of dietary soybean andcod-liver oil levels on growth and body composition of gilthead seabream(Sparus aurata). Aquaculture1992,104:293–308.
    Kanazawa, A., Teshima, S., Ono, K. Relationship between essential fatty acidrequirements of aquatic animals and the capacity for bioconversion of linolenicacid to highly unsaturated fatty acids. Comp Biochem Physiol1979,63B:295–298.
    Kawai, T., Adachi, O., Oqawa, T., Takeda, K., Akira, S. Unresponsiveness ofMyD88-defcient mice to endotoxin. Immunity1999,11:115–122.
    Kelley, D.S., Rudolph, I.L. Effect of individual fatty acids of omega-6and omega-3type on human immune status and role of eicosanoids. Nutrition2000,16:143–145.
    Kennedy, S.R., Campbell, P.J., Porter, A. et al. Influence of dietary conjugated linoleicacid (CLA) on lipid and fatty acid composition in liver and flesh of Atlanticsalmon (Salmo salar). Comp Biochem Physiol2005,141:168–178.
    Kennedy, S. R., Leaver, M. J., Campbell, P. J., Zheng, X., Dick, J. R., Tocher, D. R.Infuence of dietary oil content and conjugated linoleic acid (CLA) on lipidmetabolism enzyme activities and gene expression in tissues of Atlantic salmon(Salmo salar L.). Lipids2006,41:423–436.
    Kew, S., Mesa, M.D., Tricon, S., Buckley, R., Minihane, A.M., Yaqoob, P. Effects ofoils rich in eicosapentaenoic and docosahexaenoic acids on immune cellcomposition and function in healthy humans, Am. J. Clin. Nutr.2004,79:674-681.
    Khozin-Goldberg, I., Cohen, Z., Pimenta-Leibowitz, M., Nechev, J., Zilberg, D.Feeding with arachidonic acid-rich triacylglycerols from the microalgaParietochloris incisa improved recovery of guppies from infection withTetrahymena sp. Aquaculture2006,255:142-150.
    Kilic, U., Kilic, E., Matter, C.M., Bassetti, C.L., Hermann, D.M. TLR-4deficiencyprotects against focal cerebral ischemia and axotomy-inducedneurodegeneration. Neurobiol. Dis.2008,31:33–40.
    Kim, K.H., Park, H.S. Dietary supplementation of conjugated Linoleic acid reducescolon tumor incidence in DMH-treated rats by increasing apoptosis withmodulation of biomarkers. Nutrition2003,19:772–777.
    Kim, K.D., Lee, S.M. Requirement of dietary n-3highly unsaturated fatty acids forjuvenile flounder (Paralichthys olivaceus). Aquaculture2004,229:315–323.
    Kinsella, J.E., Lokesh, B. Dietary lipids, eicosanoids and the immune system. CareMed.1990,18:94-113.
    Kiron, V., Fukuda, H., Takeuchi, T., Watanabe, T. Essential fatty acid nutrition anddefence mechanisms in rainbow trout Oncorhynchus mykiss. Comp. Biochem.Physiol. A1995,111:361-367.
    Kono, T., Fujiki, K., Nakao, M. The immune responses of common carp, Cyprinuscarpio L, injected with carp interleukin-1beta gene. J. Interferon Cytokine Res.2002,2:4l3-4l9.
    Korver, D.R., Klasing, K.C. Dietary fish oil alters specific and inflammatory immuneresponses in chicks. Nutrition1997,127:39-46.
    Koven, W., van Anholt, R., Lutzky, S., Ben Atia, I., Nixon, O., Ron, B., Tandler, A.The effect of dietary arachidonic acid on growth, survival, and cortisol levels indifferent-age gilthead seabream larvae (Sparus auratus) exposed to handling ordaily salinity change. Aquaculture2003,228:307-320.
    Lavens, P., Lebegue, E., Jaunet, H., Brunel, A., Dhert, P., Sorgeloos, P. Effect ofdietary essential fatty acids and vitamins on egg quality in turbot broodstocks.Aquacult. Int.1999,7:225–240.
    Lee, S.M. Review of the lipid and essential fatty acid requirements of rockfish(Sebastes schlegeli). Aquac. Res.2001,32(Suppl.1):8–17.
    Lee, S.M., Cho, S.H. Influences of dietary fatty acid profile on growth, bodycomposition and blood chemistry in juvenile fat cod (Hexagrammous otakiiJordan et Starks). Aquacult. Nutr.2009,15:19–28.
    Leifert, W.R., McMurchie, E.J., Saint, D.A. Inhibition of cardiac sodium currents inadult rat myocytes by n-3polyunsaturated fatty acids. J Physiol.1999,520-671.
    Li, Y.&Watkins, B.A. Conjugated linoleic acids alter bone fatty acid compositionand reduce ex vivo prostaglandin E2biosynthesis in rats fed n-6or n-3fatty acids.Lipids1998,33:417–425.
    Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J.R., You, C., Tocher, D.R.Vertebrate fatty acid desaturase with Δ4activity. Proc. Natl. Acad. Sci. U.S.A.2010,107:16840–16845.
    Li, Y.Y., Chen, W.Z., Sun, Z.W., Chen, J.H., Wu, K.G. Effects of n-3HUFA content inbroodstock diet on spawning performance and fatty acid composition of eggs andlarvae in Plectorhynchus cinctus. Aquaculture2005,245:263–272.
    Li, Y.Y., Hu, C.B., Zheng, Y.J., Xia, X.A., Xu, W.J., Wang, S.Q., Chen, W.Z., Sun,Z.W., Huang, J.H. The effects of dietary fatty acids on liver fatty acidcomposition and Δ6-desaturase expression differ with ambient salinities inSiganus canaliculatus. Comparative Biochemistry and Physiology, Part B2008,151:183–190.
    Lin, Y.H.&Shiau, S.Y. Dietary vitamin E requirement of grouper, Epinephelusmalabaricus, at two lipid levels, and their effects on immune responses.Aquaculture2005,248:235–244.
    Ling, S., Kuah, M.K., Sifzizul, T., Muhammad, T.S.T., Kolkovski, S., Shu-Chien, A.C.Effect of dietary LC-PUFA on reproductive performance, tissue fatty acid profileand desaturase and elongase mRNAs in female swordtail Xiphophorus helleri.Aquaculture2006,261:204–214.
    Liu, X.W., Tan, B.P., Mai, K.S., Ai, Q.H., Zhou, Q.C. Effects of dietary highlyunsaturated fatty acids on growth and fatty acid composition of juvenile cobia(Rachycentron Canadum). Acta Hydrobiologica Sinica2007,31:190–195.
    Lo, C.J., Chiu, K.C., Fu, M.J., Lo, R., Helton, S. Fish oil augments macrophagecyclooxygenase II (COX-2) gene expression induced by endotoxin. J. Surg. Res.1999,86:103–107.
    Makol, A., Torrecillas, S., Fernandez-Vaquero, A. et al. Effect of conjugated linoleicacid on dietary lipids utilization, liver morphology and selected immuneparameters in sea bass juveniles (Dicentrarchus labrax). Comp Biochem Physiol2009,154B:179–187.
    Manning, B.B., Li, M.H., Robinson, E.H. et al. Enrichment of channel catfish(Ictalurus punctatus) fillets with conjugated linoleic acid and omega–3fattyacids by dietary manipulation. Aquaculture2006,261:337–342.
    Martins, M.L., Xu, D.H., Shoemaker, C.A., Klesius, P.H. Temperature effects onimmune response and hematological parameters of channel catfsh Ictaluruspunctatus vaccinated with live theronts of Ichthyophthirius multifliis, FishShellfsh Immunol2011,31:774–780.
    Mateos, H.T., Lewandowski, P.A., Su, X.Q. The effect of replacing dietary fsh oilwith canola oil on fatty acid composition and expression of desaturase andelongase genes in Jade Tiger hybrid abalone. Food Chemistry2012,131:1217–1222.
    McCord, J.M.&Fridovich, I. Superoxide dismutase: an enzymatic function forerythrocuprein. J Biol Chem1969,244:6049–6055.
    Metcalf, R.G., Sanders, P., James, M.J., Cleland, L.G., Young, G.D. Effect of dietaryn-3polyunsaturated fatty acids on the inducibility of ventricular tachycardia inpatients with ischemic cardiomyopathy. Am. J. Cardiol.2008,101:758–761.
    Metcalfe, L.D., Schmitz, A.A.&Pelka, J.R. Rapid preparation of fatty acid estersfrom lipids for gas chromatographic analysis. Anal Chem1966,38:514–515.
    Meydani, S.N., Barklund, M.P., Liu, S. et al. Vitamin E supplementation enhancescell-mediated immunity in healthy elderly subjects. Am J Clin Nutr1990,52:557–563.
    Meyer, A., Kirsch, H., Domergue, F., Abbadi, A., Sperling, P., Bauer, J., Cirpus, P.,Zank, T.K., Moreau, H., Roscoe, T.J., Zahringer, U., Heinz, E. Novel fatty acidelongases and their use for the reconstitution of docosahexaenoic acidbiosynthesis. J. Lipid Res.2004,45:1899–1909.
    Miles, E.A., Banerjee, T., Dooper, M.M., M'Rabet, L., Graus, Y.M., Calder, P.C. Theinfuence of different combinations of gamma-linolenic acid, stearidonic acid andEPA on immune function in healthy young male subjects. Br. J. Nutr.2004,91:893903.
    Montero, D., Kalinowski, T., Obach, A. et al. Vegetable lipid sources for giltheadseabream (Sparus aurata): effects on fish health. Aquaculture2003,225:353–370.
    Montero, D., Grasso, V., Izquierdo, M.S., Ganga, R., Real, F., Tort, L., Caballero, M.J.,Acosta, F. Total substitution of fsh oil by vegetable oils in gilthead sea bream(Sparus aurata) diets: Effects on hepatic Mx expression and some immuneparameters. Fish Shellfish Immunol.2008,24:147–155.
    Montero, D., Mathlouthi, F., Tort, L., Afonso, J.M., Torrecillas, S.,Fernández-Vaquero, A., Negrin, D., Izquierdo, M.S. Replacement of dietary fishoil by vegetable oils affects humoral immunity and expression ofpro-inflammatory cytokines genes in gilthead sea bream Sparus aurata. Fish&Shellfsh Immunology2010,29:1073–1081.
    Montero, D., Socorro, J., Tort, L., Caballero, M.J., Robaina, L.E., Vergara, J.M.Glomerulonephritis and immunosuppression associated with dietary essentialfatty acid deficiency in gilthead sea bream, Sparus aurata L., juveniles. J FishDis.2004,27:297-306.
    Montero, D., Tort, L., Izquierdo, M.S., Robaina, L., Vergara, J.M. Depletion of serumalternative complement pathway activity in gilthead sea bream caused byalpha-tocopherol and n-3HUFA dietary deficiencies. Fish Physiol Biochem.1998,18:399-407.
    Morais, S., Castanheira, F., Martinez-Rubio, L., Concei o, L.E.C., Tocher, D.R.Long chain polyunsaturated fatty acid synthesis in a marine vertebrate:Ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4activity,Biochim. Biophys. Acta2012,1821:660–671.
    Morais, S., Monroig, O., Zheng, X., Leaver, M.J., Tocher, D.R. Highly unsaturatedfatty acid synthesis in Atlantic salmon: characterization of ELOVL5-andELOVL2-like elongases. Mar. Biotechnol.2009,11:627–639.
    Morais, S., Mourente, G., Ortega, A., Tocher, J.A., Tocher, D.R. Expression of fattyacyl desaturase and elongase genes, and evolution of DHA:EPA ratio duringdevelopment of unfed larvae of Atlantic bluefn tuna (Thunnus thynnus L.).Aquaculture2011,313:129–139.
    Mourente, G., Bell, J.G. Partial replacement of dietary fish oil with blends ofvegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass(Dicentrarchus labrax L.) over a long term growth study: Effects on muscle andliver fatty acid composition and effectiveness of a fish oil finishing diet.Comparative Biochemistry and Physiology, Part B2006,145:389–399.
    Mourente, G., Rodríguez, A., Tocher, D.R., Sargent, J.R. Effects of dietarydocosahexaenoic acid (DHA;22:6n-3) on lipid and fatty acid compositions andgrowth in gilthead seabream (Spurus aurata) larvae during first feeding.Aquaculture1993a,112:79–98.
    Mourente, G., Tocher, D.R. Incorporation and metabolism of14C-labelledpolyunsaturated fatty acids by juvenile gilthead sea bream Sparus aurata L. invivo. Fish Physiol. Biochem.1993b,10:443–453.
    Mourente, G., Tocher, D.R. Tuna nutrition and feeds: current status and futureperspectives. Rev. Fish. Sci.2009,17:374–391.
    Mullen, A., Loscher, C.E., Roche, H.M. Anti-inflammatory effects of EPA and DHAare dependent upon time and dose-response elements associated with LPSstimulation in THP-1-derived macrophages. J. Nutr. Biochem.2010,21:444–450.
    Nano, J.L., Nobili, C. Effects of fatty acids on the growth of Caco-2cells.Prostaglandins Leukot Essent Fatty Acids2003,69:207-215.
    Nematipour, G.R., Gatlin III, D.M. Effects of different kinds of dietary lipid ongrowth and fatty acid composition of juvenile sunshine bass, Morone chrysops×M. saxatilis.Aquaculture1993,114:141–154.
    Neuringer, M., Anderson, G.J., Connor, W.E. The essentiality of n-3fatty acids for thedevelopment and function of the retina and brain. Annu. Rev. Nutr.1988,8:517–541.
    Neuringer, M., Connor, W.E., van Petten, C., Bastad, L. Dietary omega-3fatty aciddeficiency and visual loss in infant rhesus monkeys. J. Clin. Invest.1984,73:272–276.
    Nutrient requirements of fish and shrimp. Committee on the nutrient requirement offish and shrimp, Board on Agricultural and natural resources, Division on Earthand Life studies, National Research Council of the National Academies.Washington, D,C.2011,108.
    Oarada, M., Tsuduki, T., Suzuki, T., Miyazawa, T., Nikawa, T., Hong-quan, G. Dietarysupplementation with docosahexaenoic acid, but not with eicosapentaenoic acid,reduces host resistance to fungal infection in mice. Biochim. Biophys. Acta2003,1622:151160.
    Ortuno, J., Esteban, A., Meseguer, J. Effects of high dietary intake of vitamin C onnon-specific immune response of gilthead seabream (Sparus aurata L.). Fish andShellfish Immunology1999,9:429-443.
    Ortuno, J., Esteban, A., Meseguer, J. High dietary intake of α-tocopherol acetateenhances the non-specific immune response of gilthead seabream (Sparus aurataL.). Fish and Shellfish Immunology2000,10:293-307.
    Park, Y., Pariza, M.W. Mechanisms of body fat modulation by conjugated linoleicacid (CLA). Food Res Int2007,40:311–323.
    Peng, S.M., Chen, L.Q., Qin, J.G., Hou, J.L., Yu, N., Long, Z.Q., Ye, J.Y., Sun, X.J.Effects of replacement of dietary fish oil by soybean oil on growth performanceand liver biochemical composition in juvenile black seabream, Acanthopagrusschlegeli. Aquaculture2008,276:154–161.
    Pereira, S.L., Leonard, A.E., Mukerji, P. Recent advances in the study of fatty aciddesaturases from animals and lower eucaryotes. Prostag Leukotr Ess2003,68:97–106.
    Peterson, B.C., Manning, B., Li, M. CLA-enriched diets for channel catfish. GlobAquac Advocate2003,6:48–50.
    Peterson, L.D., Jeffery, N.M., Thies, F., Sanderson, P., Newsholme, E.A., Calder, P.C.Eicosapentaenoic and docosahexaenoicacids alter rat spleen leukocyte fatty acidcomposition and prostaglandin E2Production but have different effects onlymphocyte functions and cell-mediated immunity. Lipids1998,33:171-180.
    Piedecausa, M.A., Mazón, M.J., García García, B., Hernández, M.D. Effects of totalreplacement of fish oil by vegetable oils in the diets of sharpsnout seabream(Diplodus puntazzo). Aquaculture2007,263:211–219.
    Pisani, L.F., Lecchi, C., Invernizzi, G., Sartorelli, P., Savoini, G., Ceciliani, F. In vitromodulatory effect of ω-3polyunsaturated fatty acid (EPA and DHA) onphagocytosis and ROS production of goat neutrophils. Vet. Immunol. Immunop.2009,131:79–85.
    Proudman, S.M., Cleland, L.G., James, M.J. Dietary omega-3fats for treatment ofinfammatory joint disease: effcacy and utility. Rheum. Dis. Clin. North Am.2008,34:469–479.
    Pulsford, A.L., Crampe, M., Langston, A., Glynn, P.J. Modulatory effects of disease,stress, copper, TBT and vitamin E on the immune system of fatfsh. FishShellfsh Immunol.1995,5:631–643.
    Rebl, A., Goldammer, T., Seyfert, H.M. Toll-like receptor signaling in bony fsh.Veterinary Immunology and Immunopathology2010,134:139–150.
    Remer, K.A., Brcic, M., Jungi, T.W. Toll-like receptor-4is involved in eliciting anLPS-induced oxidative burst in neutrophils. Immunol. Lett.2003,85:75–80.
    Risérus, U., Smedman, A., Basu, S. et al. CLA and body weight regulation in humans.Lipids2003,38:133–137.
    Rivers, J.P.W., Sinclair, A.J., Crawford, M.A. Nature1975,258:171–173.
    Robaina, L., Izquierdo, M.S., Moyano, F.J. et al. Increase of the dietary n-3/n-6fattyacid ratio and addition of phosphorus improves liver histological alterationsinduced by feeding diets containing soybean meal to gilthead seabream, Sparusaurata. Aquaculture1998,161:281–293.
    Robertsen, B. The interferon system of teleost fish. Fish Shellfish Immunology2006,20:172-191.
    Rodríguez, A., Cuesta, A., Esteban, M.á. et al. The effect of dietary administration ofthe fungus Mucor circinelloides on non-specific immune responses of giltheadseabream. Fish Shellfish Immunol2004,16:241–249.
    Rodríguez, C., Pérez, J.A., Díaz, M., Izquierdo, M.S., Fernández-Palacios, H.,Lorenzo, A. Influence of the EPA/DHA ratio in rotifers on gilthead seabream(Sparus aurata) larval development. Aquaculture1997,150:77–89.
    Sakai, M. Current research status of fish immunostimulants. Aquaculture1999,172:63-92.
    Sargent, J.R., Tacon, A. Development of farmed fsh: a nutritionally necessaryalternative to meat. Proc. Nutr. Soc.1999,58:377–383.
    Sargent, J.R., Tocher, D.R., Bell, J.G. The lipids. In: Halver, J.E., Hardy, R.W.,(Eds)Fish Nutrition, Academic Press, Elsevier, San Diego.2002,181–257.
    Scapigliati, G., Costantini, S., Colonna, G., Facchiano, A., Buonocore, F., Bossu, P.Modelling of fish interleukin-1and its receptor. Developmental and ComparativeImmunology2004,28:429-41.
    Schuligoi, R., Ulcar, R., Peskar, B.A. et al. Effect of endotoxin treatment on theexpression on cyclooxygenase-2and prostaglandin synthesis in spinal corddorsal root ganglia, and skin of rats. Neuroscience2003,116:1043–1052.
    Sealey, W.M., Gatlin Ⅲ, D.M. In vitro manipulations of vitamin C and vitamin Econcentrations alter intracellular production of hybrid striped bass (Moronechrysops×Morone saxatillis) head-kidney cells. Fish Shellfish Immunol.2002,12:131-140.
    Secombes, C.J. Isolation of salmonid macrophages and analysis of their killingactivity. In: Stolen JS, Fletcher TC, Anderson DP, Robertsen BS, VanMuiswinkel WB, editors. Techniques in fish immunology Fair Haven, NJ: SOSPublications;1990. p.137–154.
    Secombes, C.J., Bird, S., Cunningham, C., Zou, J. Interleukin-1in fish. Fish andShellfish Immunology1999,9:335-43.
    Secombes, C.J., Hardie, L.J., Daniels, G. Cytokines in fish:an update. Fish Shellfishlmmuno1.1996,6:291-304.
    Seki, E., Tsutsui, H., Tsuji, N.M., Hayashi, N., Adachi, K., Nakano, H. Critical rolesof myeloid differentiation factor88-dependent proinfammatory cytokine releasein early phase clearance of Listeria monocytogenes in mice. J. Immunol.2002,169:3863–3868.
    Sharp, G.J.E., Nagelkeke, L.A.J., Secombes, C.J. Generation of reactive oxygenspecies from fish macrophages and their role in the killing of fish bacterialpathogens. Dev. Comp. Immunol.1991,15:70–75.
    Sharp, G.J.E., Secombes, C.J. The role of reactive oxygen species in the killing of thebacterial fish pathogen Aeromonas salmonicida by rainbow trout macrophages.Fish Shellfish Immunol.1993,3:119–129.
    Shigeoka, A.A., Holscher, T.D., King, A.J., Hall, F.W., Kiosses,W.B., Tobias, P.S.TLR2is constitutively expressed within the kidney and participates in ischemicrenal injury through both MyD88-dependent and–independent pathways. J.Immunol.2007,178:6252–6258.
    Shishido, T., Nozaki, N., Takahashi, H., Arimoto, T., Niizeki, T., Koyama, Y., Abe, J.,Takeishi, Y., Kubota, I. Central role of endogenous Toll-like receptor-2activationin regulating infammation, reactive oxygen species production, and subsequentneointimal formation after vascular injury. Biochem. Bioph. Res. Co.2006,345:1446–1453.
    Sitjà-Bobadilla, A., Calduch-Giner, J., Saera-Vila, A., Palenzuela, O.,álvarez-Pellitero, P., Pérez-Sánchez, J. Chronic exposure to the parasiteEnteromyxum leei (Myxozoa: Myxosporea) modulates the immune response andthe expression of growth, redox and immune relevant genes in gilthead seabream, Sparus aurata L. Fish Shellfish Immunol.2008,24:610–619.
    Skalli, A., Robin, J.H. Requirement of n-3long chain polyunsaturated fatty acids forEuropean sea bass (Dicentrarchus labrax) juveniles: growth and fatty acidcomposition. Aquaculture2004,240:399–415.
    Smithers, L.G., Gibson, R.A., McPhee, A., Makrides, M. Effect of long-chainpolyunsaturated fatty acid supplementation of preterm infants on disease rick andneurodevelopment: a systematic review of randomized controlled trials. Am. J.Clin. Nutr.2008,87:912–920.
    Sougat, M., Sahu, N.P., Pal, A.K., Xavier, B., Kumar, S., Mukherjee, S.C. Pre-andpost-challenge immuno-haematological changes in Labeo rohita juveniles fedgelatinised or non-gelatinised carbohydrate with n-3PUFA. Fish ShellfishImmunology2006,21:346-356.
    Sun, H.Y., Zhu, X.Q., Xie, M.Q., Wu, X.Y., Li, A.X., Lin, R.Q., Song, H.Q.Characterization of Cryptocaryon irritans isolates from marine fishes inMainland China by ITS ribosomal DNA sequences. Parasitol Res2006,99:160–166.
    Sun, Z.Y., Zheng, C.F., Wu, X.Y., Guo, G.W., Wang, Y.Y., Huang, X.H. The Strain andLife-cycle of Cryptocaryon irritans Isolated from Pseudosciaena croceaCultured in Xiapu, Fujian. J Fujian Normal University2011,27:101–108.(InChinese with an English abstract)
    Takagi, H., Sanada, T., Minoda, Y., Yoshimura, A. Regulation of cytokine and toll-likereceptor signaling by SOCS family genes. Nippon Rinsho2004,62:2189–2196.
    Takeuchi, O., Hoshino, K., Akira, S. Cutting edge: TLR2-defcient andMyD88-defcient mice are highly susceptible to Staphylococcus aureus infection.J. Immunol.2000,165:5392–5396.
    Takeuchi, T., Toyota, M., Satoh, S., Watanabe, T. Requirement of juvenile redseabream Pagrus major for eicosapentaenoic and docosahexaenoic acids.Nippon Suisan Gakk.1990,56:1263–1269(in Japanese with English abstract).
    Tamura, K., Dudley, J., Nei, M., Kumar, S. MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Mol Biol Evol2007,24(8):1596–1599.
    Tan, X.Y., Luo, Z., Xie, P. et al. Effect of dietary conjugated linoleic acid (CLA) ongrowth performance, body composition and hepatic intermediary metabolism injuvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture2010,310:186–191.
    Tan, X.Y., Luo, Z., Xie, P. et al. Effect of dietary linolenic acid/linoleic acid ratio ongrowth performance, hepatic fatty acid profiles and intermediary metabolism ofjuvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture2009,296:96–101.
    Tan, S.H., Chung, H.H., Shu-Chien, A.C. Distinct developmental expression of twoelongase family members in zebrafsh. Biochemical and Biophysical ResearchCommunications2010,393:397–403.
    Terpstra, A.H.M. Differences between humans and mice in efficacy of the body fatlowering effect of conjugated linoleic acid: role of metabolic rate. J Nutr2001,131:2067–2068.
    Thompson, K.D., Tatner, M.F., Henderson, R.J. Effects of dietary (n-3) and (n-6)polyunsaturated fatty acid ratio on the immune response of Atlantic salmon,Salmo salar L. Aquacult. Nutr.1996,2:21-32.
    Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura,M.J.,1992. A novel heterodimeric cysteine protease is required forinterleukin-1-beta processing in monocytes. Nature356,768-74.
    Tocher, D.R., Carr, J., Sargent, J.R. Polyunsaturated fatty acid metabolism in fish cells:differential metabolism of n-3and n-6siries acids by cultured cells originatingfrom a freshwater teleost fish and form a marine teleost fish. ComparativeBiochemistry and Physiology B,1989,94:367-374.
    Tocher, D.R., Zheng, X.Z., Schlechtriem, C., Hastings, N., Dick, J.R., Teale, A.J.Highly Unsaturated Fatty Acid Synthesis in Marine Fish: Cloning, FunctionalCharacterization, and Nutritional Regulation of Fatty Acyl6Desaturase ofAtlantic Cod (Gadus morhua L.). Lipids2006,41:1003–1016.
    Torstensen, B.E., Bell, J.G., Rosenlund, G., Henderson, R.J., Graff, I.E., Tocher, D.R.et al. Tailoring of Atlantic salmon (Salmo salar L.) fesh lipid composition andsensory quality by replacing fish oil with a vegetable oil blend. Journal ofAgricultural Food Chemistry2005,53:10166–10178.
    Tsung, A., Hoffman, R.A., Izuishi, K., Critchlow, N.D., Nakao, A., Chan, M.H.Hepatic ischemia/reperfusion injury involves functional TLR4signaling innonparenchymal cells. J. Immunol.2005,175:7661–7668.
    Turchini, G.M. and Francis, D.S. Fatty acid metabolism (desaturation, elongation andβ-oxidation) in rainbow trout fed fsh oil-or linseed oil-based diets. BritishJournal of Nutrition2009,102:69–81.
    Turchini, G.M., Francis, D.S., Silva, S.S.D. Fatty acid metabolism in the freshwaterfish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fattyacid balance method. Comparative Biochemistry and Physiology, Part B2006,144:110–118.
    Turchini, G.M., Torstensen, B.E., Ng, W.K. Fish oil replacement in fnfsh nutrition.Reviews in Aquaculture2009,1:10–57.
    Twibell, R.G., Watkins, B.A., Rogers, L. et al. Effects of dietary conjugated linoleicacids on hepatic and muscle lipids in hybrid striped bass. Lipids2000,35:155–161.
    Twibell RG, Wilson RP. Effects of dietary conjugated linoleic acids and total dietarylipid concentrations on growth responses of juvenile channel catfish, Ictaluruspunctatus. Aquaculture2003,221:621–628.
    Twibell, RG, Watkins BA, Brown PB. Dietary conjugated linoleic acids and lipidsource alter fatty acid composition of juvenile yellow perch, Perca favescens. JNutr2001,131:2322–2328.
    Ueno, K., Haba, T., Woodbury, D., Price, P., Anderson, R., Jee, W.S.S. The effects ofprostaglandin E2in rapidly growing rats: Depressed longitudinal and radialgrowth and increased metaphyseal hard tissue mass. Bone1985,6:79–86.
    Vagner, M., Santigosa, E. Characterization and modulation of gene expression andenzymatic activity of delta-6desaturase in teleosts: A review. Aquaculture2011,315:131–143.
    Valente, L.M.P., Bandarra, N.M., Figueiredo-Silva, A. et al. Conjugated linoleic acidin diets for large size rainbow trout (Oncorhynchus mykiss): effects on growth,chemical composition and sensory attributes. Br J Nutr2007,97:289–297.
    Waagb, R. The impact of nutritional factors on the immune system in Atlanticsalmon, Salmo salar L.: a review. Aquacult Res1994,25:175–197.
    Walters, T.R., Narasimha Reddy, B. Sickle cell anaemia and the NBT test. J. clin.Pathol.1974,27:783–785.
    Wang, J., Ai, Q.H., Mai, K.S., Xu, W., Xu, H.G., Zhang, W.B., Wang, X.J., Liufu, Z.G.Effects of dietary ethoxyquin on growth performance and body composition oflarge yellow croaker Pseudosciaena crocea. Aquaculture2010,306:80–84.
    Wang, Z.L., Mai, K.S., Liufu, Z.G. et al. Effect of high dietary intakes of vitamin Eand n-3HUFA on immune responses and resistance to Edwardsiella tardachallenge in Japanese founder (Paralichthys olivaceus, Temminck and Schlegel).Aquacult Res2006,37:681–692.
    Wang, X., Cheng, X.H. Molecular characterization and expression analysis ofinterferon-inducible protein56gene in large yellow croaker Pseudosciaenacrocea. Journal of Experimental Marine Biology and Ecology2008,364:91-98.
    Watanabe, T. Importance of docosahexaenoic acid in marine larval fish. J WorldAquacult Soc1993,24:152–161.
    Watanabe, T. Lipid nutrition in fsh. Comp Biochem Physiol1982,73B:3–15.
    Watanabe, T., Izquierdo, M.S., Takeuchi, T., Satoh, S., Kitajima, C. Comparisonbetween eicosapentaenoic and docosahexaenoic acids in terms of essential fattyacid efficacy in larval red seabream. Nippon Suisan Gakk.1989a,55:1635–1640(in Japanese with English abstract).
    Watanabe, T., Takeuchi, T., Arakawa, T., Imaizumi, K., Sekiya, S., Kitajima, C.Requirement of juvenile striped jack, Longirostris delicutissimus, for n-3highlyunsaturated fatty acid. Nippon Suisan Gakk.1989b,55:1111–1117(in Japanesewith English abstract).
    Watts, M., Munday, B.L., Burke, C.M. Immune responses of teleost fsh. Aust Vet J2001,79:570–574.
    Weatherill, A.R., Lee, J.Y., Zhao, L., Lemay, D.G., Youn, H.S., Hwang, D.H.Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cellfunctions mediated through TLR4. J. Immunol.2005,174:5390–5397.
    Weldon, S.M., Mullen, A.C., Loscher, C.E., Hurley, L.A., Roche, H.M.Docosahexaenoic acid induces an anti-infammatory profle inlipopolysaccharide-stimulated human THP-1macrophages more effectively thaneicosapentaenoic acid. J. Nutr. Biochem.2007,18:250258.
    Whalen, K.S., Brown, J.A., Parrish, C.C., Lall, S.P., Goddard, J.S. Bull. Aquacult.Assoc. Can.1999,98,21.
    Wu, F.C., Ting, Y.Y., Chen, H.Y. Dietary docosahexaenoic acid is more optimal thaneicosapentaenoic acid affecting the level of cellular defence responses of thejuvenile grouper Epinephelus malabaricus. Fish Shellfsh Immunol.2003,14:223–238.
    Wu, F.C., Ting, Y.Y., Chen, H.Y. Docosahexaenoic acid is superior to eicosahexaenoicacid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J.Nutr.2002,132:72–79.
    Wu, H., Chen, G., Wyburn, K.R., Yin, J., Bertolino, P., Eris, J.M. TLR4activationmediates kidney ischemia/reperfusion injury. J. Clin. Invest.2007,117:2847–2859.
    Wun, T., McKnight, H.&Tuscano, J.M. Increased cyclooxygenase-2(COX-2): apotential role in the pathogenesis of lymphoma. Leukemia Res2004,28:179–190.
    Xiao, X.Q., Qin, Q.W., Chen, X.G. Molecular characterization of a Toll-like receptor22homologue in large yellow croaker (Pseudosciaena crocea) and promoteractivity analysis of its5-fanking sequence. Fish Shellfsh Immunol.2011,1:224–233.
    Xie FJ, Zhang ZP, Lin P et al. Cloning and infection response of tumour-necrosisfactor alpha in large yellow croaker Pseudosciaena crocea (Richardson). Journalof Fish Biology2008,73:1149–1160.
    Xu, H.G., Ai, Q.H., Mai, K.S., Xu, W., Wang, J., Ma, H.M., Zhang, W.B., Wang, X.j.,Liufu, Z.G. Effects of dietary arachidonic acid on growth performance, survival,immune response and tissue fatty acid composition of juvenile Japanese seabass,Lateolabrax japonicus. Aquaculture2010,307:75–82.
    Yang, J.H. Perfluorooctanoic acid induces peroxisomal fatty acid oxidation andcytokine expression in the liver of male Japanese medaka (Oryzias latipes).Chemosphere2010,81:548–552.
    Yano. The nonspecific immune system: HumoraldefenseA. In: Iwama G, Nakanishi T(Eds.), The Fish Immune System: Organism, Pathogen and Environment C. SanDiego: Academic Press.1996,105-107.
    Yao, C.L., Kong, P., Wang, Z.Y., Ji, P.F., Cai, M.Y., Liu, X.D., Han, X.Z. Molecularcloning and expression of MyD88in large yellow croaker, Pseudosciaena crocea.Fish Shellfsh Immunol.2009,26:249–255.
    Yao, C.L., Kong, P., Wang, Z.Y., Ji, P.F., Cai, M.Y., Liu, X.D., Han, X.Z. Cloning andexpression analysis of two alternative splicing toll-like receptor9isoforms A andB in large yellow croaker, Pseudosciaena crocea. Fish Shellfsh Immunol.2008,25:648–656.
    Yaqoob, P., Calder, P.C. Effects of dietary lipid manipulation upon inflammatorymediator production by murine macrophages. Cell Immunol.1995,163:120-128.
    Yaqoob, P., Pala, H.S., Cortina-Borja, M., Newsholme, E.A., Calder, P.C.Encapsulated fish oil enriched in α-tocopherol alters plasma phospholipid andmononuclear cell fatty acid compositions but not mononuclear cell functions, Eur.J. Clin. Invest.2000,30:260-274.
    Yasmin, A.&Takeuchi, T. Influence of various dietary levels of conjugated Linoleicacid (CLA) on juvenile tilapia Oreochromis niloticus. Fish Sci2002,68, suppl:991–992.
    Yasmin, A., Takeuchi, T., Hayashi, M. et al. Effect of conjugated linoleic acid anddocosahexanoic acids on growth of juvenile Oreochromis niloticus. Fish Sci2004,70:473–481.
    Yeh, S.P., Chang, C.A., Chang, C.Y., Liu, C.H., Cheng, W. Dietary sodium alginateadministration affects fingerling growth and resistance to Streptococcus sp. andiridovirus, and juvenile non-specific immune responses of the orange-spottedgrouper, Epinephelus coioides. Fish and Shellfish Immunology2008,25:19-27.
    Zhai, Y., Shen, X.D., O'Connell, R., Gao, F., Lassman, C., Busuttil, R.W. Cutting edge:TLR4activation mediates liver ischemia/reperfusion infammatory response viaIFN regulatory factor3-dependentMyD88-independent pathway. J. Immunol.2004,173:7115–7119.
    Zhang, C.X., Ai, Q.H., Mai, K.S., Tan, B.P., Li, H.T., Zhang, L. Dietary lysinerequirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture2008,283:123–127.
    Zhao, Z.Y., Wu, T.X., Tang, H.G. et al. Effect of conjugated Linoleic acid on growth,lipid metabolism and liver peroxisome proliferators-activated receptorexpression of large yellow croaker (Pseudosciaena crocea). J Food Lipids2008,15:534–554.
    Zhao, X.C., Lam, S., Jass, J., Ding, Z.F. Scanning electrochemical microscopy ofsingle human urinary bladder cells using reactive oxygen species as probe ofinfammatory response. Electrochem. Commun.2010,12:773–776.
    Zheng, X., Seiliez, I., Hastings, N., Tocher, D.R., Panserat, S., Dickson, C.A., Bergot,P., Teale, A.J. Characterization and comparison of fatty acyl Δ6desaturasecDNAs from freshwater and marine teleost fish species. ComparativeBiochemistry and Physiology, Part B2004a,139:269–279.
    Zheng, X., Tocher, D.R., Dickson, C.A., Bell, J.G., Teale, A.J. Effects of dietscontaining vegetable oil on expression of genes involved in polyunsaturated fattyacid biosynthesis in liver of Atlantic salmon (Salmo salar). Aquaculture2004b,236:467–483.
    Zheng, X.Z., Ding, Z.K., Xu, Y.Q., Monroig, O., Morais, S., Tocher, D.R.Physiological roles of fatty acyl desaturases and elongases in marine fsh:Characterisation of cDNAs of fatty acyl Δ6desaturase and elovl5elongase ofcobia (Rachycentron canadum). Aquaculture2009a,290:122–131.
    Zheng, X.Z., Leaver, M.J., Tocher, D.R. Long-chain polyunsaturated fatty acidsynthesis in fsh: Comparative analysis of Atlantic salmon (Salmo salar L.) andAtlantic cod (Gadus morhua L.) Δ6fatty acyl desaturase gene promoters.Comparative Biochemistry and Physiology, Part B2009b,154:255–263.
    Zheng, X.Z., Torstensen, B.E., Tocher, D.R., Dick, J.R., Henderson, R.J., Bell, J.G.Environmental and dietary influences on highly unsaturated fatty acidbiosynthesis and expression of fatty acyl desaturase and elongase genes in liverof Atlantic salmon (Salmo salar). Biochimica et Biophysica Acta2005,1734:13–24.
    Zhong WJ, Zhang SP, Li JF et al. Effects of dietary replacement of fish oil byconjugated linoleic acid on some meat quality traits of Pacific white shrimpLitopenaeus vannamei. Food Chem2011,127:1739–1743.
    Zhou, J., Wang, Y.H., Chu, J., Luo, L.Z. Improvement of innate immune responsesand defense activity in mitten crab (Eriocheir sinensis) by oral administration ofβ-glucan. Biotechnology Letters2008,30:1721-1725.
    Zuo RT, Ai QH, Mai KS et al. Effects of dietary n-3highly unsaturated fatty acids ongrowth, nonspecific immunity, expression of some immune related genes anddisease resistance of large yellow croaker (Larmichthys crocea) followingnatural infestation of parasites (Cryptocaryon irritans). Fish Shellfish Immunol2012,32:249–258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700