影响PD鼠脑病理改变的基因筛选及表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是中老年常见的中枢神经系统(CNS)退行性疾病,多巴胺(Dopamine,DA)能神经细胞移植是治疗PD的有效手段之一,恰当并且充足的细胞供体源则是成功施行脑细胞移植治疗PD的关键。神经干细胞(Neural stemcells,NSCs)作为具有多重分化潜能和自我更新能力的高度未分化细胞,被视为脑细胞移植治疗脑疾病的理想供体细胞。但NSCs的分化非常复杂,正常情况下,其分化为DA神经元的比例不超过0.01%。因此,在细胞移植前必须先诱导NSCs定向分化为DA神经元,才能有效纠正PD的症状。
     研究发现,NSCs的分化受到分化微环境中多种因素的影响。目前,已被证实具有促使NSCs向DA神经元定向分化作用的因子包括:IL-1α,IL-11,白血病抑制因子(Leukemia inhibitory factor,LIF)以及胶质细胞源性神经营养因子(Glial cell-derivedneurotrophic factor,GDNF)。Storch等发现在上述细胞因子混合液的基础上加入纹状体细胞分泌液,人类中脑来源NSCs分化为TH阳性多巴胺能神经元的比例骤升了近6倍,分化细胞具有成熟DA神经元形态。Hitoo等发现,将NSCs移植到以6-羟基多巴胺(6-OHDA)毁损制作的PD模型鼠纹状体内后,DA神经元会更多,细胞更大,突起更长,他们用抗体阻断技术证实,在毁损侧纹状体内GDNF和bFGF的分泌增加,有促DA神经元分化作用。这些研究提示,在纹状体内存在着诱导NSCs向DA神经元定向分化的因子,而以6-OHDA毁损黑质-纹状体通路后,纹状体内这些因子的含量显著增强,或者分泌了新的因子。
     因此本课题拟通过立体定向方法纹状体内注射6-OHDA制备单侧PD模型,利用抑制性消减杂交(Suppression subtractive hybridization,SSH),比较健侧与毁损侧纹状体细胞之间mRNA的表达差异,分析在6-OHDA毁损后,纹状体分泌因子的变化,构建差异cDNA文库,选取相关基因,研究其对神经干细胞增殖、分化的影响。
     在第一部分实验中采用立体定向方法纹状体内注射6-OHDA制备PD模型,通过行为学以及高效液相色谱电化学方法进行检测,以期建立PD实验研究所需的稳定、可靠的理想模型,为在PD中进一步观察影响黑质纹状体病理变化的基因筛选及其表达的研究提供实验平台。实验结果如下:
     1.立体定向纹状体内注射6-OHDA制备的PD模型,其行为学改变呈渐进性过程。于术后两周大鼠出现缓慢旋转,直至术后第4周旋转行为达到7转/分以上,并保持基本稳定至第16周。
     2.高效液相色谱一电化学法(HPLC-EC)组织匀浆检测非注射侧和注射侧黑质中DA含量由0.79nmol/1下降为0.26nmol/1,大约下降了67%,有显著性差异。其代谢产物3,4-二羟基苯乙酸(DOPAC)含量下降62.5%。
     3.TH免疫组织化学染色可见TH阳性神经元分布于黑质和腹侧被盖部,其形态为大多角形或锥形细胞,胞浆棕染。半定量分析结果统计后显示:注射生理盐水组大鼠黑质部位左、右两侧TH免疫阳性产物数量无显著性差异;术后4周,6-OHDA注射组大鼠黑质部位左、右两侧TH免疫阳性产物数量存在显著性差异(P<0.05);6、8、12、16周后,注射组大鼠黑质部位左、右两侧TH免疫阳性产物数量均存在极显著性差异(P<0.01)。
     在第二部分实验中,采用SSH技术比较PD模型健侧与患侧纹状体组织细胞间mRNA的表达差异,结合分子克隆和反向Northern杂交技术,构建了差异表达cDNA文库。初步筛选和分析了6个上调表达克隆和6个下调表达克隆。功能上较明确的有:高亲和谷氨酸转运体(Slclal);转铁蛋白受体(YrfR);REST/NRSF相互作用限制结构域蛋白(RILP);重组胰岛素样生长因子(Mtpn);不均一核糖核酸核蛋白A/B(Hnrpab);岩藻糖-1-磷酸鸟苷酰基转移酶(Fpgt);前列腺雄激素抑制信使1(Ciparl);纤连蛋白5(fibulin 5);D123基因产物;白介素22α2受体(I122Rα2)。
     在第三部分实验中,根据第二部分实验结果,并结合文献报道,构建pEGFP-Slclal真核表达质粒,转染体外培养的神经胶质细胞,提取细胞液,观察细胞提取液对c17.2神经干细胞增殖、分化的影响。实验结果如下:
     1.成功构建了真核表达重组质粒pEGFP-Slclal。
     2.成功转染pEGFP-Slclal重组子进入培养的神经胶质细胞,可见神经胶质细胞有较多绿色荧光蛋白表达;并且转染pEGFP-Slclal重组子的培养神经胶质细胞中Slclal mRNA呈高表达。
     3.转染pEGFP-Slclal重组子的培养神经胶质细胞提取液可以提高TH阳性细胞比例,但是与自然状态分化差异不显著(P>0.05);细胞提取液+细胞因子混合液能明显提高TH阳性细胞含量,与自然状态分化相比具有显著差异(P<0.01)。
     总之,在6-OHDA制各单侧PD大鼠模型中,其患侧与健侧纹状体细胞内确实存在多种mRNA的差异表达。对构建的差异表达cDNA文库进行的初步筛选证实了6个上调表达克隆和6个下调表达克隆。对筛选出的12个克隆分析结果提示,PD的发生可能涉及细胞间信息传递、细胞凋亡、细胞内能量代谢障碍、细胞周期调控等多方面因素。对其中的Slclal的研究发现,其可能通过参与维持干细胞的生长、存活,进而影响NSCs的分化、增殖。对其进一步的深入研究,将有助于更好地理解神经干细胞增殖和诱导分化的分子调控机制。
Parkinson's disease(PD) is a common central nervous system degenerative disease happened in middle and aged people.Transplantation of dopaminergic neuron is one of the effective measures in treating PD,which requires suitable and sufficient dopaminergic neuron cell supply.Because of the multiple differentiation potency and self-renewal ability, neural stem cells(NSCs)-highly nondifferentiated cell-are regarded as ideal donorcells in treating cerebral diseases by cell transplantation.However,normally only less than 0.01% of NSCs were differentiated into dopaminergic neuron cells.Therefore,in order to correct the symptoms of PD effectively,NSCs must be oriently differentiated into dopaminergic neuron cells before transplantation.
     Some studies found that the differentiation of NSCs was affected by many factors in the differentiation microenvironment,which included IL-1α,IL-11,Leukemia inhibitory factor(LIF),and Glial cell-derived neurotrophic factor(GDNF) currently.Stoch et.al found that by adding secretory fluid of striatum cells to the mixture of above-mentioned factors, The differentiation proportion of NSCs which were originatied from human mesencephalon into TH positive dopaminergic cells was increased by 6 times,and the differentiated cells demonstrated mature shape of dopaminergic neuron cells.Hitoo et.al showed that NSCs differentiated into dopaminergic neuron cells with much higher number,bigger cell body and longer overshoot if they were transplanted into the striatum of PD rats made by 6-OHDA injection.Furthermore,they confirmed that more GDNF and bFGF were secreted from the damaged striatium compared with the contralateral control striatum using antibody blocked technique.All these studies indicated that some factors which can induce oriented differentiation of NSCs into dopaminergic neurons exist in striatum,and if the substantia nigra pathway was damaged by 6-OHDA,the contents of those factors will increase or some new factors may be released.
     In this study,a mono-side PD model was made by injecting 6-OHDA to the striatum, then the expression difference of mRNAs between health-side and damaged side was compared to analyze the change of secretory factors from the striatum after 6-OHDA damage.A differentially expressed cDNA library was built based on the results,from which several genes were selected to investigate their influence on the differentiation and proliferation of NSCs.
     In the first part of this study,we tried to build a 6-OHDA induced PD rat model and evaluated it using ethological,high performance liquid chromatogram and electrochemical methods(HPLC-EC).The aim was to provide a stable and reliable model for further screening of genes which influences the pathological process of nigra-striatum.The results are as follows:
     1.After injecting of 6-OHDA to the striatum of rats,the ethological changes appeared in a gradual manner.Slow-rotation emerged two weeks after injection and reached 7 turns/min at the fourth week,then kept this condition till the 16~(th) week.
     2.The contents of DA and DOPAC,the metabolite of DA,detected using HPLC-EC methods showed that in the 6-OHDA injected side nigra tissue,DA decreased by 67%,from 0.79nmol/l to 0.26nmol/l,compared with that of the contralateral side,and DOPAC decreased by 62.5%.In the striatum tissue DA decreased by 86%,and DOPAC by 94%.
     3.The TH immunohistochemistry results showed that TH positive neurons distributed in the nigra and ventro-tegmentum area,which was in big polygon or cone shape,and the kytoplasm was brown.The semi-quantitative statistical results showed that the TH positive substance demonstrated no significant change between left and right nigra in the saline treated rats,but changed significantly 4 weeks after 6-OHDA injection in the 6-OHDA treated rats(P<0.05),and this difference became more significant after 6,8,12 and 16 weeks(P<0.01).
     In the second part the expression change of mRNA between health side and damaged-side of striatum was compared using SSH technique,and in combination of molecular clone and northern blot techniques a variant cDNA library was built.6 up-regulated and 6 down-regulated gene clones were selected and functionally analyzed, and genes with definite function included TrfR,RILP,Slclal and Mtpn,Hnrpab,Fpgt, Cipar1,fibulin 5,Il22Rα2.
     In the third part of this study,a pEGFP-Slcla1 eukaryotic expression plasmid was constructed,and transfected to the glial cells cultured in vitro,then the cell sap was extracted to analyze its influence on the differentiation of C17.2 neuronal stem cells.The results were as follows:
     1.The recombinant pEGFP-Slcla1 plasmid was constructed successfully.
     2.The recombinant pEGFP-Slcla1 plasmid was transfected to the cultured glial cells successfully,because after transfection a strong green fluorescent protein was observed. Furthermore,the expression of Slcla1 mRNA was very high.
     3.The cell sap from glial cells transfected with recombinant pEGFP-Slcla1 could enhance the numbers of TH positive cells,but this showed no difference with natural differentiated cells.In comparison with the normal differentiated cells,adding cell sap and cytokine to the culture medium could increase TH positive numbers by 1.5 times.
     In conclusion,a host of mRNAs expressed differently between damaged striatum cells and normal striatum cells in the 6-OHDA induced unilateral PD rats.6 up-regulated and 6 down-regulated clones were confirmed by screening and analyzing the differential expression cDNA library which was constructed based on the first-part results,and the down-regulated gene-Slclal could enhance cytokine induced differentiation of C17.2 stem cells into dopaminergic neuron cells.Further studies are required to have a better understanding of the molecular modulating mechanism of the proliferation and differentiation of neuronal stem cells.
引文
1. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nature Neurosci. 2000,3: 537-544.
    2. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992(5052), 255: 1707-1709.
    3. Gage FH. Mammalian neural stem cells. Science. 2000,287(5457): 1433-8.
    4. Carvey PM, Ling ZD, Sortwell CE, et al. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson's disease. Exp Neurol. 2001,171: 98-108.
    5. Storch A, Paul G, Csete M, et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol. 2001,170: 317-325.
    6. Yang M, Stull ND, Berk MA, et al. Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine-lesioned rat. Exp Neurol. 2002,177(1): 50-60.
    7. Hitoo N, Hideki H, Norie T, et al. Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol. 2000,164: 209-214.
    8. Olds ME, Jacques DB, Kopyov O. Subthalamic responses to amphetamine and apomorphine in the behaving rat with unilateral 6-OHDA lesion in the substantia nigra [J].Synapse, 1999, 34(3):228-240.
    9. Lundblad M, Andersson M, Winkler C, et al. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease [J].Eur J Neurosci, 2002,15(1): 120-132.
    10. Barneoud P, Descombris E, Aubin N, et al. Evaluation of simple and complex sensorimotor behaviours in rats with a partial lesion of the dopamincrgic nigrostriatal system[J].EurJ Ncurosci,2000,12(1):322-336.
    11. Oiwa Y, Sanchez-Pernaute R, Harvey-White J, et al. Progressive and extensive dopaminergic degeneration induced by convection-enhanced delivery of 6-hydroxydopamine into the rat striatum:a novel rodent model of Parkinson disease[J].J Neurosurg,2003,98(1): 136-144.
    12.Yuan H,Sarre S,Ebinger G et al.Neuroprotective and neurotrophic effect of apomorphine in the striatal 6-OHDA-lesion rat model of Parkinson's disease.Brain Res,2004,1026(1):95-107.
    13.Yoshida D,Watanabe K,Noha M,etal.Anti-invasive effect of an anti-matrix metalloproteinase agent in a murine brain slice model using the serial monitoring of green fluorescent protein-labeled glioma cells.J.Neurosurgery,2003,52(1):187-197.
    14.徐仁佃.帕金森病发病与部分必需金属元素含量变化可能有关.国外医学老年医学分册,2005,26(6):251255.
    15.Thomas J,Wang J,Takubo H,etal.A 6-hydroxydopamine-induced selective parkinsonian rat model:further biochemical and bahavioural characterization.Exp Neurol,1994,126(2):159.
    16.Ichitani Y,Okamura H,Nakahara D,etal.Biochemical and immunocytochemical change induced by intrastriatal 6-hydroxydopamine injection in the rat nigrostriatal dopamine neuron system:evidence for cell death in the substantia nigra J.Exp Neurol,1994,130(2):269-279.
    17.Carman LS,Gage FH,Shults CW.Partial lesion of the substantia nigra:relation between extent of lesion and rotational behavior.Brain Res 1991,553(2):275-283.
    18.Tolwani RJ,Jakowec MW,Petzinger GM,et al.Experimental models of Parkinson's disease:insights from many models[J].Lab Anim Sci,1999,49(4):363-371.
    19.张培林.神经解剖学[M].北京:人民卫生出版社,1991.278-280.
    20.Robertson GS,Robertson HA.Evidence that L-dopa-induced rotational behavior is dependent on both striatal and nigral mechanisms[J].J Neurosci,1989,9(9):3326-3331.
    21.Chen XD,Jiang LX,Zhou CM,et al.Comparison of behavior after stereotaxic 6-hydroxydopamine injection into striatum and into substantia nigra of rats[J].Chinese Journal of Neuroanatomy,1999,15(3):181-284.
    22.Kirik D,Rosenblad C,Bjorklund A.Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat.Exp Neurol 1998,152(2):259-277.
    23.Deumens R,Blokland A,Prickaerts J.Modeling Parkinson's Disease in Rats:An Evaluation of 6-OHDA Lesions of the Nigrostriatal Pathway. Exp Neurol, 2002, 175(2):303-317.
    24. Winkler C, Kirik D, Bjorklund A, etal. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxy dopamine model of parkinson's disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis, 2002 Jul,10(2): 165-186.
    25. Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine:a combined retrograde tracing and immunocytochemical study in the rat[J].Neuroscience, 1994, 59: 401-415.
    26. Lee CS, Sauer H, Bjorklund A, et al. Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat[J]. Neuroscience, 1996, 72:641-653.
    27. Hudson JL, Van Home CG, Stromberg I, etal. Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res, 1993, 626: 167-174.
    28. Ryoo HL, Pierrotti D, Joyce JN. Dopaimine D3 receptor is decresed and D2 receptor is elevated in striatum of Parkinson's disease. MOV Discord, 1998, 13:788-797.
    29. Kozian DH, Kirschbaum BJ. Comparative gene-expression analysis. Trends Biotechnol 1999,17(2):73-78.
    30. Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res 1997, 25(13):2598-2602.
    31. Kuang WW, Thompson DA, Hoch RV, et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids Res 1998, 26(4): 1116-1123.
    32. Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 1996,93(12):6025-6030.
    33. Girard JP, Baekkevold ES, Yamanaka T, et al. Heterogeneity of endothelial cells: the specialized phenotype of human high endothelial venules characterized by suppression subtractive hybridization. Am J Pathol 1999,155(6):2043-2055.
    34. 奥斯玻 F, 金斯顿 RE, 塞德曼 jg 等. 精编分子生物学实验指南. 北京; 科学出版社; 1999.
    35.萨母布鲁克F,弗里奇EF,曼尼阿蒂斯T等.分子克隆实验指南.北京:科学出版社:1999.
    36.李永明,赵玉琪主编.实用分子生物方法手册.北京:科学出版社;1999.
    37.Kawai J,Shinagawa A,Shibata K,et al.Functional annotation of a full-length mouse cDNA collection.Nature 2001,409(6821):685-690.
    38.Shibata K,Itoh M,Aizawa K,et al.RIKEN integrated sequence analysis(RISA)system—384-format sequencing pipeline with 384 multicapillary sequencer.Genome Res 2000,10(11):1757-1771.
    39.Walker AP,Wallace DE Partridge J,et al.Atypical haemochromatosis:phenotypic spectrum and beta2-microglobulin candidate gene analysis.J Med Genet 1999,36(7):537-541.
    40.Thorup TA,Tanyolac B,Livingstone KD,et al.Candidate gene analysis of organ pigmentation loci in the Solanaceae.Proc Natl Acad Sci USA.2000,97(21):11192-11197.
    41.Hoehe MR,Kopke K,Wendel B,et al.Sequence variability and candidate gene analysis in complex disease:association of mu opioid receptor gene variation with substance dependence.Hum Mol Genet 2000,9(19):2895-2908.
    42.Graf D,Fisher AG,Merkenschlager M.Rational primer design greatly improves differential display-PCR(DD-PCR).Nucleic Acids Res 1997,25(11):2239-2240.
    43.Jurecic R,Nachtman RG,Colicos SM,et al.Identification and cloning of differentially expressed genes by long-distance differential display.Anal Biochem 1998,259(2):235-244.
    44.Zhao Z,Huang X,Li N,et al.Direct cloning of cell differential expression genes with full-length by a new strategy based on the multiple rounds of 'long distance' polymerase chain reaction and magnetic beads mediated subtraction.J Biotechnol 1999,73(1):35-41.
    45.Lisitsyn N,Wiglet M.Cloning the differences between two complex genomes.Science 1993,259(5097):946-951.
    46.Hubank M,Schatz DG.Identifying differences in mRNA expression by representational difference analysis of cDNA.Nucleic Acids Res 1994,22(25):5640-5648.
    47.Sargent TD,Dawid IB.Differential gene expression in the gastrula of Xenopus laevis.Science 1983,222(4620):135-139.
    48. Holton TA, Graham MW. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res 1991,19(5): 1156-1160.
    49. Marchuk D, Drumm M, Saulino A, et al. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 1991,19(5):1154-1156.
    50. Paul P. Lau, Hui-Jia Zhu, Makoto Nakamuta, et al. Cloning of an Apobec-1 -binding Protein That Also Interacts with Apolipoprotein B mRNA and Evidence for Its Involvement in RNA Editing. Biol. Chem., 1997, 272(3): 1452.
    51. Mattila P, Rabina J, Hortling S, et al. Functional expression of Escherichia coli enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in Saccharomyces cerevisiae. Glycobiology. 2000, 10(10):1041.
    52. Cornet AM, Hanon E, Reiter ER, et al. Prostatic androgen repressed message-1 (PARM-1) may play a role in prostatic cell immortalisation. Prostate. 2003, 56(3):220.
    53. Allan R. Albig, Jason R. Neil and William P. Schiemann Fibulins 3 and 5 Antagonize Tumor Angiogenesis In vivo. Cancer Research, March 1, 2006,66(5):2621
    54. Okuda A, Kimura G. An amino acid change in novel protein D123 is responsible for temperature-sensitive G1-phase arrest in a mutant of rat fibroblast line 3Y1. Exp Cell Res. 1996, 223(2):242.
    55. Xu W, Presnell SR, Parrish-Novak J, et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc Natl Acad Sci U S A. 2001, 98(17):9511.
    56. Joanne E. Levy, Ou Jin, Yuko Fujiwara, et al. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nature Genetics 1999,21(4): 396-397.
    57. KATOH M, KATOH M. Identification and characterization of human PRICKLE1 and PRICKLE2 genes as well as mouse Pricklel and Prickle2 genes homologous to Drosophila tissue polarity gene prickle. Mol Med, 2003, 11(2): 249-251.
    58. Masahito Shimojo, Louis B. Hersh. Characterization of the REST/NESF-interacting LIM domain protein (RILP): localization and interaction with REST/NRSF. Neurochemistry, 2006, 96:1130-1132.
    59. J. Li, J. Fei, F. Huang, et al. Functional significance of N- and C-terminus of the amino acid transporters EAAC1 and ASCT1: characterization of chimeric transporters. Biochimica et Biophysica Acta (BBA) - Biomembranes 25 August 2000, 1467(2): 338 -340.
    60. Taoka M, Isobe T, Okuyama T, et al. Murine cerebellar neurons express a novel gene encoding a protein related to cell cycle control and cell fate determination proteins. Biol Chem. 1994, 269(13):9946-9950.
    61. Halliday GM, Li YW, Blumbergs PC, et al. Neuropathology of immunohistochemically identified brain stem neurons in Parkinson's disease. Ann Neurol, 1990, 27:373-385.
    62. Urushitani M, Nakamizo T, Inoue R. N-methyl-D-aspartate receptor-mediated mitochondrial Ca~(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca~(2+) influx. J.J Neurosci Res, 2001, 63(5):377-387.
    63. Poitry-Yamate CL, Vutskits L, Rauen T. Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function J. J Neurochem, 2002, 82(4):987-997.
    64. Lauderback CM, Hackett JM, Huang FF. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of Abeta1-42 J.J Neurochem, 2001, 78(2):413-416.
    65. Gegelashvivi G, Schousboe A. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull, 1998, 45:233-238.
    66. Okamoto T, Katada T, Murayama Y, et al. A simple structure encodes Gprotein-activating function of the IGF Ⅱ /mannose 6-phosphate receptor. Cell, 1990, 62 : 709-717.
    67. Wu D, Jiang H, Simon MI. Different α1-adrenergic receptor sequences required for activating different Gα subunits of Gq class of Gproteins. J Biol Chem, 1995, 270 : 9828-9832.
    68. Aoyama K, Suh SW, Hamby AM, et al. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 2006, 9:119-126.
    69. Sian J, Dexteerd T, Leesa J, et al. Alterations in glutathuone levels in Parkinson's disease and other nuerodegenerative disorders affecting basal ganglia [J]. Ann Neurol, 1994, 36(3):348-352.
    1.Dauer W,Przedborski S.Parkinson's disease:mechanisms and models.[J].Neuron,2003,39:889-909.
    2.Payami H,Larsen K,Bernard S,etal.Increased risk of Parkinson's disease in parents and siblings of patients.Ann Neurol,1994,36:659-661.
    3.Tanner CM,Ottman R,Ellenkerg JH,etal.Parkinson's disease concordance in elderly male monozygotic and dizygotic twins.Neurology,1997,48:A3-33.
    4.Tang B,Xiong H,Sun P,etal.Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease.Hum Mol Genet,2006,15:1816-1825.
    5.Polymeropoulos MH,Higgins JJ,Golbe LI,et al.Mapping of a gene for Parkinson's disease to chromosome 4q21-q23.Science,1996,274:1197-1199.
    6.Polymeropoulos MH,Lavedan C,Leroy E,et al.Mutation in the alpha-synuclein gene identified in families with Parkinson's disease[J].Science,1997,276:2045-2047.
    7.Matsumine H,Saito M,Shimoda-Matsubayashi S,et al.Localization of a gene for an autosomal recessive form of juvenile parkinsonism to chromosome 6q25.2-27.AmJ Hum Genet,1997,60:588-596.
    8.Kitada T,Asakawa S,Hattori N,et al.Mutation in the parkin gene cause autosomal recessive juvenile parkinsonism.Nature,1998,392:605-608.
    9.Abbas N,Lucking CB,Ricard S,et al.A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe.French Parkinson's disease genetics study group and the european consortium on genetic susceptibility in Parkinson's disease.Hum Mol Genet,1999,8:567-574.
    10. Zhang Y, Gao J, Chung KK, etal. Parkin function as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA, 2000,97:13354-13359.
    11. Leroy E, Boyer R, Auburger G, etal. The ubiquitin pathway in Parkinson's disease. Nature, 1998,395:451-452.
    12. Valente EM, Bentivoglio AR, Dixon PH, etal. Localication of a noval locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome1 p35-36. Am JHum Genet, 2001,68:895-900.
    13. Valente EM, Abou-Sleiman PM, Caputo V, etal. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004, 304:1158-1160.
    14. van Duijn CM, Dekker MC, Bonifati V, etal. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet, 2001,69:629-634.
    15. Bonifati V, Rizzu P, van Baren MJ, etal. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003,299:256-259.
    16. Eriksen JL, Dawson TM, Dickson DW, etal. Caught in the act: α-synuclein is the culprit in Parkinson's disease [J]. Neuron, 2003,40:453-456.
    17. Funayama M, Hasegawa K, Kowa H, etal. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol, 2002,51:296-301.
    18. Zimprich A, Biskup S, Leitner P, etal. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44:601 607.
    19. Paisan-Ruiz C, Jain S, Evans EW, etal. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron, 2004, 44:595 600.
    20. Gloeckner CJ, Kinkl N, Schumacher A, etal. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet, 2006,15:223 232.
    21. Le WD, Xu P, Jankovic J, etal. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet, 2003,33:85 89.
    22. Pankratz N, Foroud T. Genetics of Parkinson disease[J]. Neuro Rx, 2004, 1: 235-242.
    23. Yoshino H, Hattori Y, Imai H, et al. Sparteine oxidation by hepatic cytochrome P450 in patients with Parkinson's disease [J]. Rinsho Shinkeigaku, 1993,33(3):261-265.
    1.Takagi Y,Takahashi J,Saiki H,et al.Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson's primate model[J].J Clin Invest,2005,115(1):102-109.
    2.Perrier AL,Tabar V,Barberi T,et al.Derivation of midbrain dopamine neurons from human embryonic stem cells[J].Proc Natl Acad Sci USA,2004,10(34):12543-12548.
    3.夏鹰,江澄川.细胞移植治疗帕金森病的临床研究进展[J].立体定向和功能性神经外科杂志,2004,17(6):378-380.
    4.Freed CR,Greene PE,Breeze RE,et al.Transplantation of embryonic dopamine neurons for severe Parkinson's disease.[J].N Engl J Med,2001,344(10):710-719.
    5.Olanow CW,Goetz CG,Kordower JH,et al.A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease.[J].Ann Neurol,2003,54(3):403-414.
    6.Clarke DJ,Branton IZL.A role for tumor necrosis factor in death of dopaminergic neurons following neural transplantation[J].Exp Neurol,2002,176(1):I54-162.
    7.Piccini P.Dyskinesias after transplantation in Parkinson's disease.[J].Lancet Neurol,2002,1(8):472.
    8.Isacson O,Bjorklund L,Pernaute RS.Parkinson,s disease:interpretations of transplantation study are erroneous[J].Nat Neurosci,2001,4(6):553.
    9.Piccini P,Brooks DJ,Bjorklund A,et al.Dopamine release from nigral transplants visualized in vivo in a Parkinson,s patient[J].Nat Neurosci,1999,2(12):1137-1140.
    10.Riaz SS,Bradford HF.Factors involved in the determination of the neurotransmitter phenotype of developing neurons of the CNS:applications in cell replacement treatment for Parkinson's disease[J].Prog Neurobiol,2005,76(4)257-278.
    11.Svendsen CN,Clarke DJ,Rosser AE,et al.Survival and differentiation if rat and human epidermal growth factor-responsive precursor following grafting into the lesioned adult central nervous system[J].Exp Neurol,1996,137(2):376-388.
    12.Bjorklund LM,Sanchez PR,Chung S,et al.Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model[J].Proc Nat Acad Sci USA,2002,99(4):2344-2349.
    13. Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin[J].Nat Cell Biol,2001,3(9):778-784.
    14. Bain G, Kitchens D, Yao M,et al. Embryonic stem cells express neuronal properties in vitro[J].DevBiol,1995,168(2):342-357.
    15. Okabe S, Forsberg-Nilsson K, Spiro AC, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro[J]. Mech Dev1996,59(1):89-102.
    16. Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. [J]. Nat Biotechnol, 2001,19 (12): 1129-1133.
    17. Yan Y,Yang D, Zarnowska ED, et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells[J].Stem Cells, 2005, 23(6):781-790.
    18. Kim JH, Auerbach JM, Rodriguez—Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. [J].Nature,2002,418(6893):50-56.
    19. Lee SH,Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells [JJ.Nat Biotechnol, 2000, 18(6): 675-679.
    20. Lu L, Zhao C, Liu Y, et al. Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson's disease[J]. Brain Res Brain Res Protoc,2005, 15(1):46-51.
    21. Langston JW. The promise of stem cells in Parkinson disease. [J]. J Clin Invest, 2005, 115(1): 23-25.
    22. Harrower TP, Tyers P, Hooks Y, et al. Long-term survival and integration of porcine expanded neural precursor cell grafts in a rat model of Parkinson's dissease[J].Exp Neurol,2006,197(1):56-69.
    23. Gash DM, Zhang Z, Ovadia A, et al. Functional recovery in Parkinson monkeys treated with GDNF[J].Nature,1996,380(6571):252-255.
    24. Lin LF, Doherty DH, Lile JD, et al.GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. [J].Science,1993,260(5111):1130-1132.
    25. Akerud P, Canals JM, Snyder EY, et al. Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease[J]. J Neurosci,2001,21(20):8108-8118.
    26. Behrstock S, Ebert A, Mc Hugh J, et al. Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates[J].Gene Ther,2006,13(5):379-388.
    27. Ostenfeld T, Tai YT, Martin P, et al. Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. [J]. J Neurosci Res, 2002,69(6):955-965.
    28. Tai YT, Svendsen CN. Stem cells as a potential treatment of neurological disorders. [J]. Curr Opin Pharmacol,2004,4(1):98-104.
    29. Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson's disease: how can we make it work. [J] Trends Neurosci,2005,28(2):86-92.
    30. Maries E, Kordower JH, Chu Y, et al. Focal not widespread grafts induce novel dyskinetic behavior in parkinsonian rats. [J].Neurobiol Dis,2006,21(1): 165-180.
    31. Chung CY, Seo H, Sonntag KC, et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection[J].HumMol Genet,2005,14(13): 1709-1725.
    32. Thompson L, Barraud P, Andersson E, et al. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections.[J]. J Neurosci, 2005, 25(27):6467-6477.
    33. Cadelli DS, Schwab Me. Myelin-associated inhibitors of neurite outgrowth and their role in CNS regeneration[J].Ann N Y Acad Sci, 1991,633:234-240.
    34. Mukhida K, Baker KA, Sadi D, et al. Enhancement of sensorimenotor behavioral recovery in hemiparkinsonian rats with intrastriatal,intranigral, and intrasubthalamic nucleus dopaminergic transplants[J].Neurosci,2001,21(10):3521-3530.
    35. Mendez I, Dagher A, Hong M, et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. [J]. J Neurosurg, 2002,96(3):589-596.
    36. Lindvall O, Hagell P. Cell replacement therapy in human neurodegenerative disorders[J].Clin Neurosci Res,2002,2(1-2):86-92.
    37. Freed CR,Greene PE,Breeze RE,et al. Transplantation of embryonic dopamine neurons for severe parkinson's disease[J].N Engl J Med,2001,344(10):710-719.
    38. Olanow CW, Kordower JH, Freeman TB, et al. Fetal nigral transplantation as a therapy for Parkinson's disease[J].Trends Neurosci,1996,19(3):102-109.
    39. Nikkhan G, Bentlage C,Cunningham MG, et al. Intranigral Fetal dopamine grafts induce behavioral compensation in the rat Parkinson mode[J].J Neurosci, 1994,14(6):3449-3461.
    40. Barkay RA, Boyer KL, Freed CR, et al. Immunological responses to injury and grafting in the central nervous system of nonhuman primates[J]. Cell Transplant, 1998, 7(2): 109-120.
    41. Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. [J].Ann Neurol,2003,54(3):403-414.
    42. Munoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. [J]. Nat Rev Neurosci, 2002, 3(4):271-280.
    43. Hynes M, Rosenthal A, Embryonic stem cells go dopaminergic. [J]. Neuron, 2000,28(1):11-14.
    44. Deacon T, Dinsmore J, Costantini LC, et al. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. [J]. Exp Neurol, 1998, 149(1):28-41.
    45. Blandina P, Goldfarb J, Craddock-Royal B, et al. Release of endogenous dopamine by stimulation of 5-hydroxytryptamine 3 receptors in rat striatum[J]. J Pharmacol Exp Ther, 1989,251(3):803-809.
    46. De Deurwaerdere P, Bonhomme N, Lucas G, et al. Serotonin enhances striatal dopamine outflow in vivo through dopamine uptake sites. [J]. J Neurochem, 1996, 66(1):210-215.
    47. Beck KD, Valverde J, Alexi T, et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. [J] Nature, 1995, 373(6512):339-341.
    48. Yasuhara T, Shingo T, Muraoka K, et al. Early transplantation of an encapsulated GDNF-producing cell demonstrating strong neuroprotective effects in a rat model of PD. [J] J Neurosurg, 2005, 102(1):80-89.
    49. Ourednik J, Ourednik V, Lynch WP, et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. [J]. Nat Biotechnol, 2002, 20(11): 1103-1110.
    50. Rafuse VF, Soundararajan P, Leopold C, et al. Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. [J]. Neuroscience, 2005, 131(4):899-916.
    51. Torres EM, Monville C, Lowenstein PR, et al. Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson's disease using adenoviral vectors increased yield of dopamine cells is dependent on embryonic donor age. [J]. Brain Res Bull, 2005, 68(1-2):31-41.
    52. Shan X, Chi L, Bishop M, et al. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of MPTP-induced Parkinson's disease-like mice. [J] Stem Cells, 2006.
    53. Yasuhara T, Shingo T, Muraoka K, et al. Neurorescue effects of VEGF on a rat model of Pakinson's disease. [J]. Brain Res, 2005, 1053(1-2): 10-18.
    54. Uchida S, Inanaga Y, Kobayashi M, et al. Neurotrophic function of conditioned medium from human amniotic epithelial cells.[J]. J Neurosci Res, 2000, 62(4):585-590.
    55. Kakishita K, Elwan MA, Nakao N, et al. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy[J]. Exp Neurol, 2000, 165(1):27-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700