高体积分数SiCp/Al复合材料的制备、拉伸变形和发黑处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高体积分数SiCp/Al复合材料具有高热导率、低热膨胀系数、高弹性模量等优异性能,在空间光学及精密仪器构件领域具有广阔的应用前景。针对空间光机结构件应用的需要,本文研究高体积分数SiCp/Al复合材料的浸渗复合制备、拉伸行为和表面发黑处理。
     通过压缩与拉伸试验及扫描电镜观察,研究了氧化预处理和添加偏磷酸铝粘接剂对SiC预制体的抗压强度和复合材料的力学性能及显微组织的影响,并研究了淬火工艺对复合材料坯体淬火开裂的影响。SiC预制体的抗压强度和复合材料的抗拉强度随氧化预处理中SiC颗粒氧化程度的增加和预制体中偏磷酸铝含量的增加而提高;但氧化预处理温度超过1000℃或偏磷酸铝含量超过2%,复合材料的抗拉强度降低。采用油作为淬火介质,适当提高油温,可以解决较大尺寸高体积分数SiCp/Al复合材料淬火开裂问题。
     通过拉伸试验和扫描电镜观察,研究了冷热循环处理、预压处理和预制体中添加偏磷酸铝粘接剂对55%volSiCp/Al-10Si-0.7Mg复合材料拉伸行为及显微组织的影响。热处理和预压处理对复合材料的弹性模量影响很小,但可以提高复合材料的弹性极限。SiC预制体中添加偏磷酸铝粘接剂可提高复合材料的弹性模量和弹性极限。
     通过金相显微镜、扫描电镜和三维视频显微镜观察、XRD分析和反射率测定,研究了高体积分数SiCp/Al复合材料表面硫酸阳极氧化-化学发黑处理。硫酸阳极氧化使复合材料表面形成了Al203阳极氧化多孔膜、裸露的SiC颗粒表面和SiC颗粒周围凹凸不平的粗糙表面三种表面结构。化学发黑过程为:溶液化学反应生成Mn02和C0304的黑色沉淀物,沉积在复合材料经阳极氧化形成的Al203多孔膜内、裸露的SiC颗粒表面上和SiC颗粒周围凹凸不平的粗糙表面上,在复合材料表面形成一层黑色薄膜。通过优化工艺参数,高体积分数SiCp/Al复合材料的发黑表面对波长430-700nm的可见光的吸收率达到90%以上。
There are broad applicating prospects to High volume fraction SiCp/Al composites in the fields of space optics and precision instruments for its high performances as such as high thermal conductivity, low thermal expansion coefficient, higher elastic modulus, et al. To apply the composites to structural components of space optics machines, in this dissertation it is studied that infiltration composite preparation, the tensile behavior and the surface blackening of the composites.
     Compression and tensile test and SEM are made use to investigate the effects on compressive strength of SiCp performs, mechanical performances and microstructure of the composites with preoxidating performs and joining metaphosphoric acid aluminum into performs as binder. It is also studied that the effects on quench cracking of the composites with different quench processes. Compressive strength of SiCp performs and tensile strength of the composites are increasing as both oxidation increatment of SiCp in preoxidation and increased content of metaphosphoric acid aluminum, but tensile strength of the composites will decline when preoxidating temperature exceeds 1000℃or the content of metaphosphoric acid aluminum exceeds 2%. It can be solved that large size of the composites quenched cracking when using oil as a quenching medium and appropriately increasing the oil temperature.
     The effects of thermal cycling, preloading and metaphosphoric acid aluminum joined into SiCp preforms on tensile deformation behavior and microstructure of 55vol% SiCp/AI-10Si-0.7Mg composites prepared by pressure infiltration are studied through tensile testing and SEM. Study shows that heat treatments and preloading have less influence on elastic modulus of the composites, of which the tensile elastic limit can be improve by them. Joining metaphosphoric acid aluminum into SiCp performs is able to improve both elastic modulus and tensile elastic limit of the composites.
     Sulfuric acid anodic oxidation-chemical blackening on the surface of high volume fraction SiCp/Al composites is studied through metallographic microscope, SEM, three-dimensional video microscopy, XRD analysis and measuring reflectivity. Sulfuric acid anodic oxidation makes the surface of the composites form three morphologies and structures:A12O3 porous anodic oxidation film, exposed surface of the SiC particles, rough and uneven surface around SiC. Chemical blackening process is as follows:solution of a chemical reaction to generate the black MnO2 and Co3O4 sediments deposites on the three structures, a layer of black film is formed on the surface of the composites. Optimizing process parameters through the orthogonal experiment, the absorption rate of the blackened surface of high volume fraction SiCp/Al composite material to visible light with 430-700nm wavelength is over 90%.
引文
[1]Kelly A, Zweben C. Comprehensive composite materials[M], Netherland: Elsevier,2000:701-725.
    [2]Zwenben C. Advanced composites and other advanced materials for electronic packing thermal management[C]. International Symposium on Advanced Packaging Materials. USA:Institute of Electrical and Electronics Engineers, 2001:360-365.
    [3]Novich B E, Adams R W. Aluminum/Silicon Carbide (Al/SiC) metal matrix composites for advanced packing application[C]. Proceedings of the 1995 International Electronics Packaging Conference. USA:American Society of Mechanical Engineers,1995:223-227.
    [4]Kelly A, Zweben C. Comprehensive composite materials[M]. Netherland: Elsevier,2000:57-66.
    [5]Chawla N, Chawla K K. Metal-matrix composites in ground transportation[J]. Journal of the Minerals, Metals and Materials Society,2006,58(11):67-70.
    [6]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,32(6):3-6.
    [7]张强,陈国钦,武高辉,等.含高体积分数SiCp的铝基复合材料制备与性能[J].中国有色金属学报,2003,13(5):1180-1183.
    [8]华小珍,李多生,周贤良,等.高比例SiCp/Al复合材料热膨胀系数的研究[J].南昌航空工业学院学报,2003,17(2):13-16.
    [9]黄强,顾明元,金燕萍.电子封装材料的研究现状[J].材料导报,2000,14(9):28-32.
    [10]Elomari S, Skibo M D, Sundarrajan A, et al. Thermal expansion behavior of particulate metal-matrix composites[J]. Composites Science and Technology, 1998,58(3-4):369-376.
    [11]Rawal S. Metal-matrix composites for space applications[J]. Journal of the Minerals, Metals and Materials Society,2001,53(4):14-17.
    [12]向华,曲选辉,肖平安,等.SiCp/Al电子封装复合材料的现状和发展[J].材料导报,2003,17(2):54-57.
    [13]邹祖伟.复合材料的结构与性能[M].北京:科学出版社,1999:151.
    [14]马建平,傅丹鹰,邢绍美.SiCp/Al复材光机结构件及光学反射镜的制造研究[J].航天工艺,2000,25(2):38-41.
    [15]崔岩,张少卿.2000年材料科学与工程进展[M].北京:冶金工业出版社,200l:1591-1594.
    [16]Careeno M E, Curard T, Schaller R. Processing and characterization of aluminum based MMCs produced by gas pressure infiltration[J]. Materials science and engineering A,1998,251(1-2):48-57.
    [17]许富民,齐民,朱世杰,等.SiC颗粒增强铝合金复合材料[J].金属学报,2002,38(9):998.
    [18]Zhang B L, Maclean M X, Baker. Hot deformation behavior of aluminum alloy 6061/SiCp MMCs made by powder metallurgy route[J]. Materials Science and Technology,2000,16(7-8):897-902.
    [19]Yamagata S, Imamura M, Hirose Y, et al. Development of low cost sintered Al-SiC composite[C]. International Symposium on Microelectronics. San Diego: International Microelectronics and Packing Society,1998:675-680.
    [20]Pech-Canul M I, Makhlouf M M. Processing of Al-SiCp metal matrix composites by pressureless infiltration of SiCp performs[J]. Journal of Materials Synthesis Processing,2000,8(1):35-53.
    [21]Hemambar C, Rar B S, Jayaram V. Al-SiC electronic packages with controlled thermal expansion coefficent by a new method of pressureless infiltration [J]. Materials and Manufacturing Process,2001,16(6):779-788.
    [22]任淑彬,曲选辉,何新波,等.电子封装用高体积分数SiCp/Al复合材料的制备[J].中国有色金属学报,2005,15(11):1722-1726.
    [23]王涛,王志华.SiC/A1电子封装材料的制备工艺研究[J].西安科技大学学报,2006,26(2):224-226.
    [24]Zulfia A, Hand R J. Role of Mg and Mg plus Si as external dopents in production of pure Al-SiC metal matrix composites by pressureless infiltration[J]. Materials Science and Technology,2000,16(7-8):867-872.
    [25]Pech-Canul M I, Katz R N, Makhlouf M M. Optimum conditions for pressureless infiltration of SiCp preforms by aluminum alloys[J]. Journal of Materials Processing Technology,2000,108(1):68-77.
    [26]Occhinero M, Adams R, Fennessy K. A new substrate for electronic packaging: aluminum-silicon carbide(AlSiC) composites[C]. Proceedings of the Forth Annual Portable by Design Conference. Santa Clara:Institute of Electrical and Electronics Engineers,1997:398-403.
    [27]Chien C W, Lee S L, Lin J C, et al. Effect of Sip size and volume fraction on properties of Al/Sip composites[J]. Materials Letter,2002,52(4-5):334-341.
    [28]Michael K A, Clarence A A, Robert J W, et al. High reinforcement content metal matrix composites[J]. Automotive Engineering,1995, (6):83-85.
    [29]徐志锋,余欢,蔡长春,等.真空变压力浸渗法制备高体积分数SiCp/Al复合材料[J].中国有色金属学报,2006,16(9):1551-1558.
    [30]熊德赣,程辉,刘希从,等.AlSiC电子封装材料及构件研究进展[J].材料导报,2006,20(3):111-115.
    [31]刘君武,郑治祥,吴玉程,等.近净成形制备SiC/Al复合材料Ⅰ:SiC预成形坯的制备[J].中国有色金属学报,2007,17(11):1833-1837.
    [32]熊德赣,赵恂,姜翼湘,等.高体积分数颗粒预制件及其复合材料的制备[J].宇航材料工艺,2000,18(4):30-34.
    [33]熊德赣,刘希从,堵永国,等.铝碳化硅复合材料T/R组件封装外壳的研制[J].电子元件与材料,2003,22(2):17-19.
    [34]张少卿,崔岩,等.碳化硅颗粒增强铝基复合材料的无压浸渗反应机理探讨[J].材料工程,2001,31(12):8-11.
    [35]黄强.高体积分数铝基复合材料的制备及性能研究:[博士学位论文].上海:上海交通大学,2002:1l-17.
    [36]叶斌,何新波,任淑彬,等.无压浸渗法制备高体分比SiCp/Al复合材料[J].北京科技大学学报,2006,28(3):269-273.
    [37]褚克,贾成厂,尹法章,等.高体积分数SiCp/Al复合材料电子封装盒体的制备[J].复合材料学报,2006,23(6):108-112.
    [38]张淑英,孟繁琴,陈玉勇,等.颗粒增强金属基复合材料的研究进展[J].材料导报,1996,32(2):66-71.
    [39]Chen C Y, Chao C G. Effect of particle-size distribution on the properties of high-volume-fraction SiCp-Al-based composites[J]. Metallurgical and Materials Transactions A,2000,31(9):2351-2359.
    [40]Arsenault R J, Shi N, Feng C R, et al. Localized deformation of SiC/Al composites[J]. Materials Science and Engineering A,1991,131(1):55-68.
    [41]Hasselman D P H, Donaldson K Y, Giger A L. Effect of reinforcement particle size on the thermal conductivity of particulate-silicon carbide-reinforced Al matrix composite[J]. Journal of the American Ceramic Society,1992,75(11): 3137-3140.
    [42]Giger A L, Hasselman D P H, Donaldson K Y. Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite[J]. Journal of Materials Science Letters,1993,12(6): 420-423.
    [43]Ma Y, Bi J, Liu Y X, et al. Effect of SiC particulate size on the properties and fracture behavior of SiCp/2024Al composites[C]. Proceedings of the Ninth International Conference of Composite Materials. Madrid:Society for the Advancement of Material and Process,1993:448-453.
    [44]张帆,孙鹏飞,张国定.SiCp/Al复合材料热膨胀系数的研究[J].金属热处理,2000,28(8):5-7.
    [45]Hahn T A, Armstrong R W. Thermal expansion propansion properties of 6061 Al alloy reinforced with SiC particles or short fibers[J]. International Journal of Thermal Sciences,1988,9(5):861-871.
    [46]Elomari S, Bpukhili R, Marchi C S, et al. Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites [J]. Journal of Materials Science,1997,32(8):2131-2140.
    [47]Kim B G, Dong S L, Park S D. Effects of thermal processing on the thermal expansion of a 50vol% SiCp/Al composite[J]. Materials Chemistry and Physics, 2001,72(1):42-47.
    [48]Shen Y L, Needleman A, Suresh S. Coefficients of thermal expansion of metal-matrix composites for electronic packaging[J]. Metallurgical and Materials Transactions A,1994,25(4):839-850.
    [49]Shen Y L. Combined effects of microvoids and phase contiguity on the thermal expansion of metal-ceramic composites[J]. Material Science and Engineering A, 1997,237(1):102-108.
    [50]耿林,温丙先,姚忠凯.压铸SiCw/Al复合材料的热物理性能研究[J].复合材料学报,1996,13(3):48-52.
    [51]樊建中,姚忠凯,杜善义.SiC颗粒增强金属基复合材料弹性模量与界面结合状况关系研究[J].复合材料学报,1998,15(2):1-5.
    [52]樊建中,肖伯律,左涛,等.热处理对SiCp/Al复合材料强度和塑性的影响[J].中国有色金属学报,2006,16(2):228-234.
    [53]Zhang F, Sun P F, Li X C, et al. An experimental study on deformation behavior below 0.2% offset yield stress in some SiCp/Al composites and their unreinforced matrix alloys [J]. Materials Science and Engineering A,2001, 300(1-2):12-21.
    [54]康炘蒙,程小全,张纪奎,等.高体积分数SiCp/A1复合材料的拉伸、压缩 与弯曲特性[J].复合材料学报,2008,25(3):127-131.
    [55]刘文亮,朱祖芳.铝及铝合金电解着色机理[J].电镀与环保,1995,15(6):17-19.
    [56]罗一帆,许旋,陈学文,等.铝合金硫酸阳极氧化工艺[J].电镀与涂饰,2004,23(1):33-35.
    [57]方北龙.常温和低温下铝的阳极氧化研究[J].表面处理技术,2006,35(2):51-52.
    [58]文斯雄.改进铝和铝合金阳极氧化的工艺[J].腐蚀与防护,2004,25(1):46-47.
    [59]Kumar C S, Mayanna S M, Mahendra K N, et al. Studies on white anodizing on aluminum alloy for space applications[J]. Applied Surface Science,1999, 151(3-4):280-286.
    [60]Paez M A, Zagal J H, Bustos O, et al. Effect of benzotriazole on the efficiency of anodizing of Al-Cu alloys[J]. Electrochimica Acta,1997,42(23-24):3453-3459.
    [61]Takenaka T, Habazaki H, Konno H. Formation of black anodic films on aluminum in acid electrolytes containing titanium complex anion[J]. Surface and Coatings Technology,2003,169-170(8):155-159.
    [62]李国英.表面工程手册[M].北京:机械工业出版社,1997:345.
    [63]程蔚,陈日耀,郑曦,等.铝合金表面着亮黑色的研究[J].电镀与精饰,2000,22(6):5-7.
    [64]郑乃贞,郑旦亮.1235铝合金二步电解法着黑色工艺研究[J].福建工程学院学报,2004,2(4):402-405.
    [65]周和荣,杜楠,李真楷,等.LYl2铝合金电解着黑色方法及机理的研究[J].材料保护,2004,37(10):29-31.
    [66]Shaffei M F, Abd EI-Rehim S S, Shaaban N A, et al. Electrolytic coloring of anodic aluminum for selective solar absorbing films:use of additives promoting color depth and rate[J]. Renewable Energy,2001,23(3-4):489-495.
    [67]孙春文,唐致远,郭鹤桐,等.铝件黑色处理新工艺[J].新技术新工艺,1999,19(4):39-40.
    [68]方玲,陈康华.SiCp的氧化行为及其对SiCp/Al复合材料力学性能的影响[J].材料研究与应用,2007,1(1):19-22.
    [69]崔岩,耿林,姚忠凯.SiCp/6061Al复合材料的界面优化与控制[J].中国有色金属学报,1997,7(4):159-162.
    [70]王新坤,汪定江,祝长春,等.偏磷酸铝粘接剂在真空液相浸渗制备Cf/Al 复合材料中的应用研究[J].材料科学与工程学报,2004,22(5):693-696.
    [71]Arsenault R J, Wang L and Feng C R. Proceedings of the International Conference on Advance in Composite Materials[M]. India:Bombay,1991:359.
    [72]Lai S W. Chung D D L. Superior high-temperature resistance of aluminum nitride particle-reinforced aluminum compared to silicon carbide or aluminum particle-reinforced aluminum[J]. Journal of Materials Science,1994,29(23): 6181-6198.
    [73]张强,孙东立,武高辉.SiCp/4032Al基复合材料的微观组织与力学性能[C].2004年材料科学与工程新进展论文集.北京:冶金工业出版社,2004:1093-1096.
    [74]Arsenault R J. Strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide[J]. Materials Science and Engineering,1984,64(6):171-181.
    [75]Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Materials Science and Engineering,1986, 81(9):175-187.
    [76]Shi N, Wilner B, Arsenault R J. FEM study of the plastic deformation process of whisker reinforced SiC/Al composites[J]. Acta Metallurgica et Materialia,1992, 40(11):2841-2854.
    [77]Arsenault R J, Taya M. Thermal residual stress in metal matrix composite[J]. Acta Metallurgica et Materialia,1987,35(3):651-659.
    [78]Barlow C Y, Hansen N. Deformation structures and flow stress in aluminum containing short whiskers[J]. Acta Metallurgica et Materialia,1991,39(8): 1971-1979.
    [79]李义春,樊建中,张奎,等.冷热循环对颗粒增强铝基复合材料微屈服行为的影响[J].中国有色金属学报,1998,8(3):399-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700