罗丹明荧光染料的TICT作用机制及荧光探针的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:有机荧光染料,广泛应用于蛋白质、核酸、脂质、碳水化合物、毒素、激素和其它生物分子的荧光标记,对于生物医学的发展具有重要的意义。据统计,85%以上的荧光染料属于“供体-受体”型染料,其结构中存在着电子供体和电子受体。大部分荧光染料的荧光量子效率(Φ)都低于100%的理想值,关于其荧光淬灭的机理,目前“扭曲的分子内电荷转移理论(TICT理论)”被大家普遍所接受,人们认为TICT激发态的形成是导致荧光淬灭的主要原因。然而,现有的TICT理论还不能对众多的染料分子结构与性能之间的关系做出全面的解释,尚有许多方面需要完善,例如TICT理论中的体积效应、染料分子中供体与受体之间的相互影响等等。因此,深入研究TICT理论,对设计性能优良的荧光染料具有重要的理论意义。
     罗丹明染料是一种典型的“供体-受体”型荧光染料,具有优良的光物理和光化学性能。本论文以罗丹明染料为母体,合成了一系列不同结构的罗丹明荧光染料,并对染料的光物理、光化学性能进行测试。通过实验结果和理论计算,研究荧光染料结构与性能之间的关系,以期加深对TICT理论的理解。
     本论文的研究内容如下:
     1.通过对胺基供体的改造(刚性、柔性以及电负性),合成了7种对称和不对称胺基供体的罗丹明荧光染料,同时测试了染料的荧光性能,并探讨了两个胺基供体之间、胺基供体与受体之间的相互作用对罗丹明荧光染料分子荧光性能的影响。研究结果表明,胺基供体结构的刚性可以有效阻止TICT激发态的形成,进而提高荧光染料的荧光寿命;在TICT激发态时,正电荷主要集中在罗丹明分子的两个胺基上,正电荷的分布与胺基供体的供电能力密切相关,供电能力强的胺基承担正电荷较多,供电能力弱的胺基承担电荷较少。因此,不对称罗丹明荧光染料的荧光寿命与供电能力强的胺基端的刚柔性有着密切的关系,刚性结构能够有效提高染料的荧光寿命,而柔性结构有助于TICT激发态的形成,使染料的荧光寿命下降。
     2.以萘磺酸酐为原料成功合成了7种新型的罗丹明荧光染料,并对其吸收光谱、荧光光谱以及不同溶剂、不同温度下的荧光寿命进行了测试。探讨了以萘磺酸酐和苯磺酸酐为原料合成的两种罗丹明染料荧光性能之间的差异。研究表明,由于萘磺酸基的空间位阻效应和所带负电荷的电子效应,致使TICT激发态不易生成,从而使染料的荧光性能得以改善。新合成的7种染料与以一个苯环为受体的传统罗丹明染料相比,其荧光寿命提升了38%。
     3.设计合成了9种具有不同体积大小的仲胺基为电子供体的罗丹明荧光染料,同时对染料的荧光寿命进行了测试。研究结果表明,仲胺基的体积大小可以有效影响染料分子中TICT激发态的形成,进而影响荧光染料的荧光寿命。在TICT激发态的形成过程中,体积较大的烷基胺旋转慢于体积较小的烷基胺,因此可以有效抑制TICT激发态的形成,提高染料分子的荧光寿命。该研究结果进一步证实了TICT理论中"TICT激发态的形成伴随着供体烷基胺的旋转"这一观点的正确性。
     4.利用TICT理论,设计合成以氮杂环丁烷、二甲胺和吡咯烷作为电子供体的罗丹明染料AZESR、TMSR和PYRSR。通过对染料的吸收光谱,发射光谱,荧光量子产率和荧光寿命进行了测试。研究结果表明,AZESR染料的荧光性能明显优于TMSR和PYRSR罗丹明染料。AZESR染料具有较高的荧光量子产率和荧光寿命,同时其荧光性能不受温度和溶剂的影响。
     5.合成了一种基于ESIPT原理的比率型荧光探针,探针可对亚硫酸钠进行定量和定性检测。当探针溶液中加入亚硫酸钠后,探针的荧光光谱可以红移95nm。利用4-羟基萘酰亚胺的分子内电荷转移(ICT)特性,通过Cu2+催化探针酯基水解,设计合成了一种新型的检测Cu2+的荧光比率型探针。该探针对Cu2+的检测具有专一性且响应迅速。此外,探针可用于细胞内Cu2+的荧光比率成像。
Abstract:Organic fluorescent dyes have been widely used for labeling of proteins, nucleic acids, lipids, carbohydrates, toxins, hormones and other biological molecules. More than85%of fluorophores are "Donor-acceptor" fluorescent dyes, having one or two donors and an accepter. However, the fluorescent quantum yield (0) of most fluorescent dyes is far below100%, which is mainly ascribed to the formation of the twisted intermolecular charge transfer at excited state (TICT theory). However, the TICT theory can not make a full explanation to the molecular structures of a variety of fluorescent dyes and is challenged to some extent. Furthermore, many aspects influencing the TICT mechanism need to be improved, such as the volume effect of amino donors, acceptor and the existence of two donors. Therefore, it is of great significance to further investigate the TICT mechanism, which is dedicated to the design of improved fluorescent dyes with excellent spectral properties and high quantum efficiency.
     Rhodamine dyes, a typical kinds of donor-acceptor fluorophores, exhibit good photophysical and photochemical properties. In this thesis, a series of Rhodamines having different acceptor or donors were synthesized and their photophyical photochemical properties were investigated. The relationship between the structures and optical properties in Rhodamines is dicussed. The discovery in this study can contribute to the TICT theory, be applied to many kinds of donor-acceptor fluorescent dyes, and useful to develop more efficient fluorescent dyes.
     The main contents are as follows:
     1. Seven novel symmetrical and unsymmetrical Rhodamine fluorescent dyes, having rigid/flexible alkyl and different electronegativities amino groups, were synthesized and studied by UV-vis, fluorescence spectra. The fluorescent quantum yield and lifetimes of the obtained Rhodamines were measured in different solvent at different temperatures. The results indicate that the rigidity of the donors and amino groups can effectively prevent the formation of TICT state and increase fluorescence lifetime. In TICT state, positive chares are mainly located on the two amino groups, and the one with better electron donating ability can sustain more positive charge. For unsymmetrical Rhodamines, there is a close relationship between lifetime and the rigid-flexible characteristics of stronger electron donationg amino group. The rigidity can prevent the TICT formation and make the dye higly fluorescent, whereas the flexibility can favor the TICT formation and decrease the fluorescence lifetime of Rhodamines.
     2. Using naphthalene sulfonic anhydride as raw material, seven naphthalenesulfonic acid Rhodamine fluorescent dyes have been successfully synthesized. The UV-vis absorbance spectra, fluorescence spectra, and the fluorescence lifetime under different solvents and different temperatures were determined. The difference in the fluorescence properties between the Rhodamine fluorescent dyes prepared using naphthalene sulfonic anhydride and benzene sulfonic anhydride as raw materials were discussed. Owing to the steric hindrance effect and the electronic effect of naphthalene sulfonic anhydride, it is not easy for the TICT excited state to form, which results in the improvement in the fluorescence properties. In comparison with the traditional Rhodamine fluorescent dyes in which benzene was used as the accepter, the seven Rhodamine fluorescent dyes synthesized exhibited a promoted fluorescence lifetime of38%.
     3. Nine rhodamines with different-sized dialkylamino groups were synthesized and their fluorescence lifetimes were measured in different solvents and temperatures. The results show that the volume of the amino groups can affect the formation of TICT state, thereby make the difference in the fluorescence lifetimes of fluorescent dyes. In the forming process of TICT excited state, Rhodamines with larger donor exhibit longer lifetimes than the smaller one, indicating the volume of the amino groups can affect the formation of TICT state. This result proved "volume effect in rotation activity" in TICT state, which is question by many researchers.
     4. Based on the TICT mechamism, Rhodamine dyes (AZESR, TMSR and PYRSR) with azetidine, dimethylamine and pyrrolidine as the electron donors were synthesized. Their absorption and emission spectra, Φ and fluorescence lifetimes were measured. The results showed that the AZESR possessed higher0and longer lifetime which were nearly independent of temperature and solvent.
     5. Based on ESIPT, a novel ratiometric fluorescent probe was synthesized. The probe is suitable for quantitative and qualitative detection of sulfite. With the addition of sodium sulfite, the fluorescence spectra exhibited a95-nm red-shift. By taking advantage of the ICT process inherent in4-hydroxynaphthalimide, a novel ratiometric fluorescence probe was designed. Owing to the hydrolysis of ester catalyzed by Cu2+, the probe showed good specificity and quick response to Cu2+. Most importantly, the probe has been successfully used for monitoring of Cu2+in living cells.
引文
[1]樊美公.光化学基础原理与光子学材料科学.2001,第二版,北京,科学出版社,321-329.
    [2]Stokes G G. On the copmosition and resolution of streams of polarized light from different sources. Transactions of the Cambridge Philosophical Society. 1852,9,399-416.
    [3]Lymperopoulos K; Kiel A; Seefeld A; et al. Fluorescent Probes and Delivery Methods for Single-Molecule Experiments. ChemPhysChem-a European Journal of Chemical Physics and Physical Chemistry.2010,11(1):43-53.
    [4]Xie X S; Choi P J; Li G W; et al. Single-molecule approach to molecular biology in living bacterial cells. Annual Review of Biophysics.2008,37, 417-444.
    [5]Roeffaers M B J; De Cremer G; Uji-i H; et al. Single-molecule fluorescence spectroscopy in (bio)catalysis. Proceedings of the National Academy of Sciences of the United States of America.2007,104(31):12603-12609.
    [6]Moerner W E. New directions in single-molecule imaging and analysis. Proceedings of the National Academy of Sciences of the United States of America.2007,104(31):12596-12602.
    [7]Michalet X; Weiss S; Jaeger M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chemical Reviews.2006,106(5): 1785-1813.
    [8]Tinnefeld P; Sauer M. Branching out of single-molecule fluorescence spectroscopy:Challenges for chemistry and influence on biology. Angewandte Chemie International Edition,2005,44(18):2642-2671.
    [9]Boehmer M; Enderlein J. Fluorescence spectroscopy of single molecules under ambient conditions:Methodology and technology. ChemPhysChem-a European Journal of Chemical Physics and Physical Chemistry,2003,4(8):792-808.
    [10]Ambrose W P; Goodwin P M; Jett J H; et al. Single molecule fluorescence spectroscopy at ambient temperature. Chemical Reviews,1999,99(10): 2929-2956.
    [11]Lu H P; Xun L Y; Xie X S. Single-molecule enzymatic dynamics. Science, 1998,282(5395):1877-1882.
    [12]Siemiarczuk A; Grabowski Z R; Krowczynski A; et al. Two emitting states of excited p-(9-anthryl)-n, n-dimethylaniline derivatives in polar solvents. Chemical physics letters,1977,2(51):315-320.
    [13]Grabowski Z; Rotkiewicz K; Siemiarczuk A; et al. Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation. Nouveau Journal de Chimie,1979,7(3):443-454.
    [14]Jones I G; Bergmark W R; Jackson W R. Products of photodegradtion of coumarin laser dyes. Optics Communications,1984,50,320-324.
    [15]Winters B H; Mandelberg H I; Mohr W B. Photochemical products in coumarin laser dyes. Applied Physics Letters.1974,25,723-724.
    [16]Smith J R L; Masheder D. Amine oxidation:Part IX. The electrochemical oxidation of some tertiary amines:The effect of structure on reactivity. Journal of Chemical Society. Perkins Ⅱ,1976,47-51.
    [17]Nelsen S F. Ionization of nitrogen and oxygen lone pairs:A comparison of trialkylamine, dialkyl ether, tetraalkyhydrazine and dialky peroxide photoelectron spectroscopic ionization potentials. Journal of Organic Chemistry.1984,49,1891-1897.
    [18]Magde D; Wong R; Seybold P G. Fluorescence quantum yield and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents:improved absolute standards for quantum yields. Photochemistry and Photobiology.2002, 75(4):327-334.
    [19]Song X; Johnson A; Foley J.7-azabicyclo[2.2.1] heptane as a unique and effective dialklamino auxochrome moiety:demonstration in a fluorescent rhodamine dye. Journal of the American Chemical Society.2008,130, 17653-17653.
    [20]Martin V O G E L; Wolfgang R E T T I G. Structural relaxation of rhodamine dyes with different N-substition patterns:a study of fluorescence decay time and quantum yields. Chemical physics letters.1988,147(5):452-460.
    [21]Lopez Arbeloa F; Urrecha Aguirresacona I; Lopez Arbeloa I. Influence of the molecular structure and the nature of the solvent on the absorption and fluorescence characteristics of rhodamines. Chemical Physics.1989,130, 371-378.
    [22]Lopez Arbeloa F; Lopez Arbeloa T; Gil Lage E; et al. Photophysical properties of rhodamines with monoethylamino groups R19 and R6G in water-ethanol mixtures. Journal of Photochemitry and Photobiology A:Chemistry.1991,56, 313-321.
    [23]Lopez Arbeloa I; Rohatgi-Mukherjee K K. Solvent effect on photophysics of the molecular foems of rhodamine B. solvation models and spectroscopic parameters. Chemical physics letters.1986,128(5-6):474-479.
    [24]Lopez Arbeloa F; Lopez Arbeloa T; Tapia Estevez M J; et al. Photophysics of rhodamines. Molecular structure and solvent effects. The Journl of Physical Chemistry.1991,95,2203-2208.
    [25]Lopez Arbeloa T; Lopez Arbeloa F; Hernandez Bartolome P; et al. On the mechanism of radiationless deactivation of rhodamines. Chemical Physics. 1992,160,123-130.
    [26]Zheng H; Zhan X Q; Bian Q N; et al. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chemical Communications.2013,5(49):429-447.
    [27]Yang Y; Zhao Q; Feng W; et al. Luminescent chemodosimeters for bioimaging. Chemical Reviews.2013,113(1):192-270.
    [28]Kim K; Lee H B; Lee Y M; et al. Rhodamine B isothiocyanate-modified Ag nanoaggregates on dielectric beads:A novel surface-enhanced Raman scattering and fluorescent imaging material. Biosensors and Bioelectronics.2009,7(24): 1864-1869.
    [29]Yu F; Zhang W; Li P; et al. Cu2+-selective naked-eye and fluorescent probe:its crystal structure and application in bioimaging. Analyst.2009,9(134): 1826-1833.
    [30]Wang J; Lin W; Yuan L; et al. Development of a reversible fluorescent gold sensor with high selectivity. Chemical Communications.2011,46(47): 12506-12508.
    [31]Liu C; Peng B; Li S; et al. Reaction based fluorescent probes for hydrogen sulfide. Organic Letters.2012,8(14):2184-2187.
    [32]Chow Y L; Danen W C; Nelsen S F; et al. Nonaromatic aminium radicals. Chemical Reviews.1978,3(78):243-274.
    [33]Kulka M; Manske R. The nitration of some quinoline derivatives. Canadian Journal of Chemistry.1952,9(30):720-724.
    [34]Pauff S M; Miller S C. Synthesis of Near-IR Fluorescent Oxazine Dyes with Esterase-Labile Sulfonate Esters. Organic Letters.2011,23(13):6196-6199.
    [35]Haworth R D; Lamberton A H; Woodcock D. Investigations on the influence of chemical constitution upon toxicity. Part I. Compounds related to "Doryl". Journal of the Chemical Society.1947,176-182.
    [36]Hell S; Belov V N; Boyarskiy V P; et al. Novel photoactivable fluorescent dyes for optical microscopy and image techniques. Interational Bureau.2011, WO 2011/029459 Al.
    [37]Liu Q H; Yan X L; Guo J C; et al. Spectrofluorimetric determination of trace nitrite with a novel fluorescent probe. Spectrocheinica Acta Part A.2009,73, 789-793.
    [38]Belov V N; Wurm C A; Boyarskiy V P; et al. Rhodamines NN:a novel class of caged fluorescent dyes. Angewandte Chemie International Edition.2010, 20(49):3520-3523.
    [39]Shibata A; Furukawa K; Abe H; et al. Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorganic & medicinal chemistry letters.2008,7(18): 2246-2249.
    [40]McDaniel D H; Brown H C. An extended table of Hammett substitutent constants based on the ionization of substituted benzoic acids. The Journal of Organic Chemistry.1958,23(3):420-427.
    [41]Sheppard W A; Sharts C. Organic Fluorine Chemistry. W. A. Benjamin:New York.1969,348.
    [42]Hansch C; Leo A; Taft R W. Asurvey of hammett substitunet constants and resonance and field parameters. Chemical Reviews.1991,97,165-195.
    [43]Hara K; Rettig W. Effect of pressure on the fluorescence of TICT states in (N, N-dimethylamino) benzonitrile and related compounds. The Journal of Physical Chemistry.1992,21(96):8307-8309.
    [44]Bailey R J; Card P; Shechter H. Chemistry of 8-substituted 1-naphthylmethylenes and 2-substituted benzylidenes. a simple entry to 1H-cyclobuta[de]naphthalenes. Journal of the American Chemical Society. 1983,105,6096-6103.
    [45]Newman M S; Hussain N S. Synthesis of nuclear monobromobenz [a] anthracenes. The Journal of Organic Chemistry.1982,15(47):2837-2840.
    [46]Rule H G; Turner H M. Reactivity of peri-substituted naphthalenes. Part III. Further synthetic reactions of 8-halogeno-l-naphthoic acids. Journal of the Chemical Society.1935,317-319.
    [47]Song X; Foley J W. Dyes, compositions and related methods of use. Interational Bureau.2010, WO 2010/054183 A2.
    [48]邹友思;林静.钝化萘衍生物的磺化反应研究.有机化学.1995,15,433-440.
    [49]Wang X; Song M; Long Y. Synthesis, characterization, and crystal structure of the lactone form of rhodamine B. Journal of Solid State Chemistry.2001, 2(156):325-330.
    [50]Casey K G; Quitevis E L. Effect of solvent polarity on nonradiative processes in xanthene dyes:rhodamine B in normal alcohols.The Journal of Physical Chemistry.1988,92,6590-6594.
    [51]Demas J N; Crosby G A. The measurement of photoluminescence quantum yields. The Journal of Physical Chemistry.1971,75(8):991-1024.
    [52]Kubin R F; Fletcher A N. Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence.1982,27,455-462.
    [53]Weiss S. Fluorescence spectroscopy of single biomolecules. Science.1999, 5408(283):1676-1683.
    [54]Grabowski Z R; Rotkiewicz K; Rettig W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews.2003,10(103):3899-4031.
    [55]Kubin R; Fletcher A. Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence.1983,4(27):455-462.
    [56]Tarasenko N A; Tishenkov A A; Zaikin V G; et al. Adiabatic ionization energy of methylenimine. Russian Chemical Bulletin.1986,10(35):2196.
    [57]Cherkasov A R; Jonsson M; Galkin V. A novel approach to the analysis of substituent effects:quantitative description of ionization energies amines. Journal of Molecular Graphics and Modelling.1999,1(17):28-42.
    [58]Moore F. Contributions of the Chemist to the Pulp and Paper Industry. Industrial & Engineering Chemistry.1915,4(7):292-293.
    [59]Pereira C F. Application of ion chromatography to the determination of inorganic anions in foodstuffs. Journal of chromatography.1992,1-2(624): 457-470.
    [60]Cardwell T J; Christophersen M J. Determination of sulfur dioxide and ascorbic acid in beverages using a dual channel flow injection electrochemical detection system. Analytica chimica acta.2000,1(416):105-110.
    [61]McFeeters R. Use and removal of sulfite by conversion to sulfate in the preservation of salt-free cucumbers. Journal of Food Protection.1998,7(61): 885-890.
    [62]Kuratli M; Badertscher M; Rusterholz B; et al. Bisulfite addition reaction as the basis for a hydrogensulfite bulk optode. Analytical Chemistry.1993,23(65): 3473-3479.
    [63]Silva K R B; Raimundo Jr I M; Gimenez I F; et al. Optical sensor for sulfur dioxide determination in wines. Journal of agricultural and food chemistry. 2006,23,(54),8697-8701.
    [64]Araujo A N; Couto C M C M; Lima J L F C; et al. Determination of SO2 in wines using a flow injection analysis system with potentiometric detection. Journal of agricultural and food chemistry.1998,1(46):168-172.
    [65]Pizzoferrato L; Di Lullo G; Quattrucci E. Determination of free, bound and total sulphites in foods by indirect photometry-HPLC. Food chemistry.1998, 2(63:275-279.
    [66]Lowinsohn D; Bertotti M. Determination of sulphite in wine by coulometric titration. Food additives and contaminants.2001,9(18):773-777.
    [67]Ensafi A A; Karimi-Maleh H. Ferrocenedicarboxylic Acid Modified Multiwall Carbon Nanotubes Paste Electrode for Voltammetric Determination of Sulfite. International Journal of Electrochemical Science.2010,5,392-406.
    [68]Smith V J. Determination of sulfite using a sulfite oxidase enzyme electrode. Analytical Chemistry.1987,18(59):2256-2259.
    [69]Theisen S; Hansch R; Kothe L; et al. A fast and sensitive HPLC method for sulfite analysis in food based on a plant sulfite oxidase biosensor. Biosensors and Bioelectronics.2010,1(26):175-181.
    [70]Huang Y; Zhang C; Zhang X; et al. Chemiluminescence of sulfite based on auto-oxidation sensitized by rhodamine 6G. Analytica chimica acta.1999, 1(391):95-100.
    [71]Paulls D A; Townshend A. Sensitized determination of sulfite using flow injection with chemiluminescent detection. Analyst.1995,2(120):467-469.
    [72]De Silva A P; Gunaratne H Q N; Gunnlaugsson T; et al. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews.1997,5(97): 1515-1566.
    [73]Martinez-Manez R; Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews.2003,11(103):4419-4476.
    [74]Jun M E; Roy B; Ahn K H. "Turn-on" fluorescent sensing with "reactive" probes. Chemical Communications.2011,27(47):7583-7601.
    [75]Choi M G; Hwang J; Eor S; et al. Chromogenic and Fluorogenic Signaling of Sulfite by Selective Deprotection of Resorufin Levulinate. Organic Letters. 2010,12(24):5624-5627.
    [76]Yuan L; Lin W; Song J. Ratiometric fluorescent detection of intracellular hydroxyl radicals based on a hybrid coumarin-cyanine platform. Chemical Communications.2010,42(46):7930-7932.
    [77]Bao Y; Liu B; Wang H; et al. A "naked eye" and ratiometric fluorescent chemosensor for rapid detection of F-based on combination of desilylation reaction and excited-state proton transfer. Chemical Communications.2011,47, 3957-3959.
    [78]Zhang J F; Lim C S; Bhuniya S; et al. A Highly Selective Colorimetric and Ratiometric Two-Photon Fluorescent Probe for Fluoride Ion Detection. Organic Letters.2011,13(5):1190-1193.
    [79]Xu Z; Baek K H; Kim H N; et al. Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. Journal of the American Chemical Society.2009,2(132):601-610.
    [80]Lin W; Long L; Yuan L; et al. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Organic Letters.2008,24(10): 5577-5580.
    [81]Jiang J; Jiang H; Liu W; et al. A Colorimetric and Ratiometric Fluorescent Probe for Palladium. Organic Letters.2011,13(18):4922-4925.
    [82]Sarma R; Nath B; Ghritlahre A; et al. Study on changes in optical properties of phenylbenzothiazole derivatives on metal ion binding. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,1(77):126-129.
    [83]Hsieh C C; Jiang C M; Chou P T. Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of chemical research.2010,43(10):1364-1374.
    [84]Hu R; Feng J; Hu D; et al. A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angewandte Chemie.2010,29(122):5035-5038.
    [85]Santra M; Roy B; Ahn K H. A "Reactive" Ratiometric Fluorescent Probe for Mercury Species. Organic Letters.2011,13(13):3422-3425.
    [86]Xu Y; Liu Q; Dou B; et al. Zn2+ Binding-Enabled Excited State Intramolecular Proton Transfer:A Step toward New Near-Infrared Fluorescent Probes for Imaging Applications. Advanced healthcare materials.2012,4(1):485-492.
    [87]Chu Q; Medvetz D A; Pang Y. A polymeric colorimetric sensor with excited-state intramolecular proton transfer for anionic species. Chemistry of Materials.2007,26(19):6421-6429.
    [88]Chen W H; Xing Y; Pang Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water. Organic Letters.2011,13(6):1362-1365.
    [89]Kim T I; Kang H J; Han G; et al. A highly selective fluorescent ESIPT probe for the dual specificity phosphatase MKP-6. Chemical Communications.2009, 39,5895-5897.
    [90]Guo H Y; Li J C; Shang Y L. A simple and efficient synthesis of 2-substituted benzothiazoles catalyzed by H2O2/HCI. Chinese Chemical Letters.2009,12(20): 1408-1410.
    [91]Langlois D P; Wolff H. Pseudo Esters of Levulinic Acid. Journal of the American Chemical Society.1948,8(70):2624-2626.
    [92]Goyal R; Kambale K; Nene S; et al. Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites. Materials Chemistry and Physics.2011,128(1-2):114-120.
    [93]Tapiero H; Townsend D; Tew K. Trace elements in human physiology and pathology. Copper. Biomedicine & pharmacotherapy.2003,9(57):386-398.
    [94]Uauy R; Olivares M; Gonzalez M. Essentiality of copper in humans. The American journal of clinical nutrition.1998,5(67):952S-959S.
    [95]Que E L; Domaille D W; Chang C J. Metals in neurobiology:probing their chemistry and biology with molecular imaging. Chemical Reviews.2008, 5(108):1517-1549.
    [96]Linder M C; Wooten L; Cerveza P; et al. Copper transport. The American journal of clinical nutrition.1998,5(67):965S-971S.
    [97]Trumbo P; Yates A A; Schlicker S; et al. Dietary Reference Intakes Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Journal of the American Dietetic Association.2001,3(101):294-301.
    [98]Crisponi G; Nurchi V M; Fanni D; et al. Copper-related diseases:from chemistry to molecular pathology. Coordination chemistry reviews.2010, 7-8(254):876-889.
    [99]Shim H; Harris Z L. Genetic defects in copper metabolism. The Journal of nutrition.2003,5(133):1527S-1531S.
    [100]Formica M; Fusi V; Giorgi L; et al. New fluorescent chemosensors for metal ions in solution. Coordination chemistry reviews.2011,256(1-2):170-192.
    [101]Chen X; Pradhan T; Wang F; et al. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chemical Reviews. 2012,112(3):1910-1956.
    [102]Yuan L; Lin W; Chen B; et al. Development of FRET-Based Ratiometric Fluorescent Cu2+Chemodosimeters and the Applications for Living Cell Imaging. Organic Letters.2012,14(2):432-435.
    [103]Wang D; Shiraishi Y; Hirai T. A BODIPY-based fluorescent chemodosimeter for Cu (Ⅱ) driven by an oxidative dehydrogenation mechanism. Chemical Communications.2011,9(47):2673-2675.
    [104]Basu A; Das G. Oxidative cyclization of thiosemicarbazone:an optical and turn-on fluorescent chemodosimeter for Cu (Ⅱ). Dalton Transactions.2011, 12(40):2837-2843.
    [105]Liu J; Li C; Li F. Fluorescence turn-on chemodosimeter-functionalized mesoporous silica nanoparticles and their application in cell imaging. Journal of Materials Chemistry.2011,20(21):7175-7181.
    [106]Ding J; Yuan L; Gao L; et al. Fluorescence quenching of a rhodamine derivative: selectively sensing Cu2+ in acidic aqueous media. Journal of Luminescence. 2012,132(8):1987-1993.
    [107]Li P; Duan X; Chen Z; et al. A near-infrared fluorescent probe for detecting copper (II) with high selectivity and sensitivity and its biological imaging applications. Chemical Communications.2011,47,7755-7757.
    [108]Dujols V; Ford F; Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu (II) ion in water. Journal of the American Chemical Society. 1997,31(119):7386-7387.
    [109]Wu C; Bian Q N; Zhang B G; et al. Ring Expansion of Spiro-thiolactam in Rhodamine Scaffold:Switching the Recognition Preference by Adding One Atom. Organic Letters.2012,16(14):4198-4201.
    [110]Kovacs J; Mokhir A. Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2+detection. Inorganic chemistry.2008,6(47):1880-1882.
    [111]Qi X; Jun E J; Xu L; et al. New BODIPY derivatives as off-on fluorescent chemosensor and fluorescent chemodosimeter for Cu2+:cooperative selectivity enhancement toward Cu+. The Journal of Organic Chemistry.2006,7(71): 2881-2884.
    [112]Li N; Xiang Y; Tong A. Highly sensitive and selective "turn-on" fluorescent chemodosimeter for Cu2+in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chemical Communications.2010,19(46):3363-3365.
    [113]Kim M H; Jang H H; Yi S; et al. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ions. Chemical Communications.2009,32, 4838-4840.
    [114]Xu Z; Xiao Y; Qian X; et al. Ratiometric and selective fluorescent sensor for Cu(II) based on internal charge transfer (ICT). Organic Letters.2005,5(7): 889-892.
    [115]Xu Z; Qian X; Cui J. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission:Cu (Ⅱ)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore. Organic Letters.2005,14(7):3029-3032.
    [116]Zhang X; Shiraishi Y; Hirai T. Cu (Ⅱ)-selective green fluorescence of a rhodamine-diacetic acid conjugate. Organic Letters.2007,24(9):5039-5042.
    [117]Dong M; Ma T H; Zhang A J; et al. A series of highly sensitive and selective fluorescent and colorimetric "off-on" chemosensors for Cu (Ⅱ) based on rhodamine derivatives. Dyes and Pigments.2010,2(87):164-172.
    [118]Kierat R M; Kramer R. A fluorogenic and chromogenic probe that detects the esterase activity of trace copper (Ⅱ). Bioorganic & medicinal chemistry letters. 2005,21(15):4824-4827.
    [119]Zhou Z; Li N; Tong A. A new coumarin-based fluorescence turn-on chemodosimeter for Cu2+in water. Analytica chimica acta.2011,1(702):81-86.
    [120]Zhao C; Feng P; Cao J; et al. Borondipyrromethene-derived Cu2+sensing chemodosimeter for fast and selective detection. Organic & Biomolecular Chemistry.2012,15(10):3104-3109.
    [121]Yuan L; Lin W; Song J. Ratiometric fluorescent detection of intracellular hydroxyl radicals based on a hybrid coumarin-cyanine platform. Chemical Communications.2010,42 (46):7930-7932.
    [122]Bao Y; Liu B; Wang H; et al. A "naked eye" and ratiometric fluorescent chemosensor for rapid detection of F-based on combination of desilylation reaction and excited-state proton transfer. Chemical Communications.2011, 13(47):3957-3959.
    [123]Zheng H; Zhang X J; Cai X; et al. Ratiometric Fluorescent Chemosensor for Hg2+ Based on Heptamethine Cyanine Containing a Thymine Moiety. Organic Letters.2012,8(14):1986-1989.
    [124]Yu F; Li P; Song P; et al. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chemical communications.2012,48,2852-2854.
    [125]Lv X; Liu J; Liu Y; et al. Ratiometric fluorescence detection of cyanide based on a hybrid coumarin-hemicyanine dye:the large emission shift and the high selectivity. Chemical Communications.2011,47,12843-12845.
    [126]Du J; Hu M; Fan J; et al. Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media. Chemical Society Reviews.2012,41,4511-4535.
    [127]Xu Z; Yoon J; Spring D R. A selective and ratiometric Cu2+fluorescent probe based on naphthalimide excimer—monomer switching. Chemical Communications.2010,15(46):2563-2565.
    [128]Duke R M; Veale E B; Pfeffer F M; et al. Colorimetric and fluorescent anion sensors:an overview of recent developments in the use of 1, 8-naphthalimide-based chemosensors. Chemical Society Reviews.2010,10(39): 3936-3953.
    [129]Dong M; Wang Y W; Peng Y. Highly selective ratiometric fluorescent sensing for Hg2+ and Au3+, respectively, in aqueous media. Organic Letters.2010, 22(12):5310-5313.
    [130]Zhu B; Gao C; Zhao Y; et al. A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chemical Communications.2011,30(47):8656-8658.
    [131]Ren J; Wu Z; Zhou Y; et al. Colorimetric fluoride sensor based on 1, 8-naphthalimide derivatives. Dyes and Pigments.2011,3(91):442-445.
    [132]Lan G Y; Huang C C; Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chemical Communications. 2010,8(46):1257-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700