ERCC1、p53的表达与晚期NSCLC患者含铂方案化疗敏感性的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,肺癌的发病率和死亡率均居恶性肿瘤首位,而非小细胞肺癌(non-small cell lung cancer NSCLC)占所有肺癌患者80%左右,其中65%~70%的NSCLC就诊时已处于晚期。因此,化疗在Ⅲ/Ⅳ期NSCLC患者综合治疗中占重要地位。自80年代以来,随着第三代化疗新药异长春花碱、吉西他滨及紫杉类等药物的开发和利用,以铂类为基础联合第三代化疗新药的方案已成为NSCLC标准化疗(Standard Chemotherapy SC)方案,但是化疗反应率(Response Rate RR)和中位生存时间(Median Survival Time MST)仍然很低。由于遗传的异质性,同一种病理类型和分期的NSCLC对同一种化疗方案敏感性差异很大。因此在2004美国肿瘤临床学会(American Society of Clinical Oncology ASCO)年会上提出了个体化疗(tailor chemotherapy TC)概念并成为研究热点。TC是根据癌症病人的遗传学特点使用对其最佳的化疗药物,以提高化疗敏感性,提高RR及MST,同时将化疗的副作用降至最低。由于条件限制体外肿瘤细胞药物敏感性试验较少开展,而且体外药敏结果与体内药物敏感性差异很大,表明肿瘤细胞的内在的化疗敏感性有显著不同。DNA损伤修复系统作为机体抵抗各种损伤的分子基础,对于维护基因组的稳定与完整起着至关重要的作用;然而对于通过损伤DNA杀死癌细胞的放、化疗,这一过程无疑削弱了治疗效果。因此能够提示化疗药物敏感性及预后的分子标记物在TC方案制定中将发挥重要作用。切除修复交叉互补基因1(Excision repair cross-complementation group 1 ERCC1)、p53是与肺癌化疗耐药关系密切的两个重要基因,在化疗前对NSCLC组织进行p53、ERCC1基因检测可以使化疗药物的应用更个体化,更具科学性和合理性。本研究在征得患者知情同意和符合医学伦理学原则的前提下,检测49例NSCLC手术患者组织、外周血淋巴细胞(peripheral blood lymphocyte,PBL)化疗敏感性分子标记物ERCC1、p53蛋白表达,术前血清p53抗体水平,证实NSCLC癌组织与患者PBL中ERCC1、p53表达呈显著正相关;检测74例晚期NSCLC患者PBL中ERCC1、p53表达,对ERCC1、p53与含铂方案(TP、NP或GP)化疗敏感性的关系进行了研究,证实ERCC1,p53高表达与NSCLC患者顺铂类化疗药物的耐药显著相关。本研究为TC药物选择提供参考,以期提高化疗敏感性,提高MST及RR。
     研究目的
     1.检测p53、ERCC1在NSCLC癌组织、癌旁组织、和外周血淋巴细胞(peripheral blood lymphocytes,PBL)的表达,探讨p53、ERCC1在癌组织和PBL中表达的相关性;
     2.探讨III、IV期NSCLC患者PBL中p53、ERCC1的表达与铂类SC方案化疗敏感性关系;
     3.探讨NSCLC p53蛋白表达与血清p53抗体的相关性。
     研究内容和方法
     1. p53、ERCC1在NSCLC癌组织表达及其临床意义:采用免疫荧光化学方法检测49例NSCLC癌组织和PBL中p53、ERCC1蛋白表达,分析p53、ERCC1表达与NSCLC临床病理因素的关系,探讨NSCLC癌组织和PBL中p53、ERCC1表达的相关性,为进一步以PBL内p53、ERCC1表达情况为依据制定TC方案提供临床病理依据。
     2. PBL中ERCC1、p53的表达与Ⅲ/Ⅳ期NSCLC患者含铂类标准化疗方案敏感性的关系:采用免疫荧光细胞化学染色方法检测74例晚期NSCLC患者PBL中p53、ERCC1蛋白表达。给予患者2~4疗程铂类为基础的SC化疗,对病人化疗后的总生存期(OS)、肿瘤进展时间(TTP)、化疗疗效及一年生存率进行评价。
     3. NSCLC患者血清p53抗体检测及其与化疗敏感性相关性研究:采用免疫荧光化学染色方法检测NSCLC患者ERCC1、p53蛋白表达, ELISA检测术前血清p53抗体浓度,术后给予患者铂类为基础的SC化疗,对近期疗效进行评价。
     研究结果
     1. p53、ERCC1在NSCLC癌组织表达及其临床意义:p53、ERCC1主要呈细胞核染色,在细胞核内均匀分布,一些肿瘤细胞的胞质中也有表达,集中于核膜周围。
     2.癌组织、癌旁组织、正常肺组织、NSCLC的PBL和健康人的PBL的ERCC1阳性率分别为55.10%、26.53%、10.2%、51.10%和10%,p53阳性率分别为63.26%、30.61%、8.186、59.18%和5%, NSCLC患者癌组织和PBL的ERCC1、p53表达阳性率均高于癌旁组织、正常肺组织、健康人PBL(P<0.01)。癌组织及PBL中ERCC1、p53表达率与临床分期和淋巴结转移相关(P<0.05)。
     3. NSCLC癌组织与患者PBL中ERCC1、p53表达呈显著正相关(x2=14.8596 p<0.01;x2=21.291, p<0.01)。
     4. ERCC1、p53的表达与Ⅲ/Ⅳ期NSCLC患者含铂类标准化疗方案敏感性的关系:根据ERCC1,p53免疫荧光标记结果将NSCLC患者分为4组:EP组(阳性组:ERCC1及p53均高表达组)37例、N组(阴性组:ERCC1及p53均低表达组)29例、E组(仅ERCC1高表达组)4例、P组(仅p53高表达组)4例。4组患者的OS分别为(月)10.65±4.91、14.17±6.63、11.00±7.5、11.50±5.75。TTP分别为(月)7.78±4.59、12.41±7.16、8.25±7.75、10.75±6.12,组间差异有统计学意义(P<0.05),两组间两两比较结果示N组与其它各组间OS及TTP差异均有统计意义(P<0.01),而其它3组间OS及TTP差异没有统计学意义(P>0.05);N组化疗后RR为65.52%,显著高于EP组35.13%,而其它3组间比较则没有统计意义(P>0.05)。提示:ERCC1和p53均低表达的NSCLC患者,可以更好的从含铂类药物化疗方案中受益。
     5. p53蛋白在NSCLC高分化、中分化和低分化患者癌组织中的阳性表达率分别为:37.50%、53.84%和90.00%,p53阳性表达率与肿瘤分化程度显著相关(P=0.004);p53抗体在NSCLC高分化、中分化和低分化患者血清中的阳性率分别为43.75%、30.77%和75.00%,血清p53抗体与肿瘤分化程度相关(P=0.03)。49例NSCLC患者癌组织p53蛋白、血清p53抗体均阳性20例,均阴性12例,癌组织p53蛋白阳性而血清p53抗体阴性2例,癌组织p53蛋白阴性而血清p53抗体阳性5例。NSCLC患者癌组织p53蛋白与血清p53抗体表达相关(χ2=4.446 P=0.035)。
     结论
     1、NSCLC癌组织p53、ERCC1表达与肿瘤分化程度、TNM分期以及有无淋巴结转移相关。
     2、检测NSCLC患者PBL的p53、ERCC1表达可间接反映NSCLC组织的p53、ERCC1表达状况。
     3、PBL中p53、ERCC1表达情况与含铂化疗方案敏感性显著相关。
     4、PBL中p53、ERCC1可作为含铂化疗方案化疗敏感性及预后分子标记物,二者均低表达的NSCLC患者为最适含铂案TC靶向人群。
     5、p53蛋白、血清p53抗体阳性NSCLC患者,肿瘤分化程度低、恶性程度高。
     6、癌组织p53蛋白和血清p53抗体联合检测将有助于NSCLC的诊断及判断生物学行为和患者的预后。
Morbidity and mortality of lung cancer occupied the first place of malignant tumors in our country, with 80% of nonsmall-cell lung cancer (NSCLC) in lung cancer. Unfortunately 65-70% of NSCLC was already in advanced stage when be diagnosed. Therefore chemotherapy plays a vital role in the combined therapy of stage III/IV NSCLC. Since 1980s, accompanying the pharmaprojects and utilization of the third generation agents, such as vinorelbine, gemcitabine, and Japanese yew branchlet, the third generation combined chemotherapy based on platinum became the standard chemotherapy profile. However, the reaction rate (RR) and meso-survive time of chemotherapy remained unsatisfactory. Because of the genetic heterogeneity, even the NSCLC patients with the same kind of pathological phenotype and stage can behave much differently to the same chemotherapy. Hence the tailor chemotherapy (TC) was presented in the 2004 American Society of Clinical Oncology (ASCO), and was prevailed. TC means to take out the most optimal chemotherapy agents based on its genetic characteristics, in order to improve the chemical sensitivity, improve the RR and MST, and to decrease the side effects. According to the conditions, there are seldom studies on the chemosensitivity of extracorporeal tumor cells. There would be much different between the extracorporeal and corporeal chemosensitivity. DNA damage-repair system is the molecular basis for the body to resist the damage, which is important to maintain the stabilization and integrity of the gene groups. Radiotherapy or chemotherapy would induce the damage to DNA, which would consequently weaken the therapeutic efficacy. Molecular markers which can hint the chemosensitivity and prognosis seem to play important roles in TC profiles. P53 and ERCC1 gene are two genes with tight relationship to chemoresistance of lung cancer. To detect the p53 and ERCC1 genes of NSCLC tissues before the chemotherapy can individualize the chemical agents, to be more scientific and rational. This study was approved by the patients and the medical ethics committee. In this study, ERCC1 and p53 protein expressions, pre-operational p53 antigbody of the carcinoma tissue and peripheral blood lymphocyte (PBL) in 49 patients with NSCLC were detected, and the correlation of ERCC1 and p53 expressions were confirmed between those in the NSCLC tissue and in PBL. ERCC1 and p53 expressions of PBL in 74 patients with NSCLC were detected, to evaluate the relationship between the ERCC1, p53 expressions and chemosensitivity to project with TP, NP or GP. Correlation between the hyper-expressions of ERCC1, p53 and chemoresistance to platinum in NSCLC was confirmed. This study can provide a reference for the choice of TC agents, to improve the chemosensitivity, MST and RR.
     Objects
     1. To detect the impression of p53, ERCC1 in the carcinoma tissue, peri-carcinoma tissue and PBL of NSCLC patients, to study the correlations of p53 and ERCC1 expressions between carcinoma tissue and PBL.
     2. To study the relationship between p53, ERCC1 expression of PBL in NSCLC and the SC project with platinum.
     3. To study the correlation of the p53 expression between in peri-carcinoma tissues and in serum.
     Methods
     1. Expressions of p53 and ERCC1 in peri-carcinoma tissues in NSCLC and their clinical values: To detect the expressions of p53 and ERCC1 protein in peri-carcinoma tissues and PBL in NSCLC with immonofluorescence chemistry, and to evaluate their relationship with pathological characteristics, to provide a clinical pathological basis for the TC profiles.
     2. Relationship between p53, ERCC1 expression of PBL in NSCLC and the SC project with platinum: To dye the p53 and ERCC1 protein in the NSCLC with immunofluorescence cytochemical staining. After 2-4 courses of SC chemotherapy based on platinum, the total overall survival (OS), time to progression (TTP) chemical efficacy and one-year survival of the patients were evaluated.
     3. Correlation between the p53 antibody, p53 expression and the chemosensitivity of NSCLC: To detect the expression of ERCC1 and p53 protein in peri-carcinoma tissue of NSCLC with immunofluorescence chemistry, to detect the serum p53 antibody concentration, and to perform the SC chemotherapy based on platinum, so as to estimate the near future efficacy.
     Results
     1. p53 and ERCC1 expression in the peri-carcinoma tissues of NSCLC and their clinical values: p53 and ERCC1 were mostly nuclear-dyed. They homogeneously distributed in the nuclei, and also plasmatically distributed along the nuclear membrane.
     2. p53 positive rate of carcinoma tissue, peri-carcinoma tissue, normal lung tissue, PBL of NSCLC, normal PBL were respectively 63.26%、30.61%、8.186、59.18% and 5%. ERCC1 positive rates were 55.10%、26.53%、10.2%、51.10%和10%. P53 and ERCC1 expressions of carcinoma tissue and PBL in NSCLC significantly higher that those of peri-carcinoma tissue, normal lung tissue and normal PBL (P<0.01). the p53 and ERCC1 expressions in the peri-carcinoma tissue and PBL correlated with the clinical stages and lymphonode metastasis (p<0.05).
     3. p53 and ERCC1 expressions in peri-carcinoma tissue of NSCLC correlated with those in PBL (x2=14.8596 p<0.01;x2=21.291, p<0.01).
     4. Relationship between ERCC1, p53 expressions and the chemosensitivity of III/IV stage NSCLC to chemotherapy based on platinum: NSCLC patients were divided into 4 groups based on the ERCC1 and p53 positive immunoinfluence markers: EP group (both ERCC1 and p53 highly-expressed) 37 cases; N group (both ERCC1 and p53 lowly-expressed) 29 cases; E group (only ERCC1 highly-expressed) 4 cases; P group (only p53 highly-expressed). The OS in the 4 groups were respectively (months) 10.65±4.91,14.17±6.63,11±7.5 and 11.5±5.75. The TTP in the 4 groups were respectively (months) 7.78±4.59、12.41±7.16、8.25±7.75、10.75±6.12. Both OS and TPP were statistically significant among the groups (P<0.05). OS and TPP in N group were significantly different against the other 3 groups (P<0.01), and no significant difference between the other 3 groups (P>0.05). post-chemotherapy RR in N group was 65.52%, significantly increased against that of EP group (35.13% increase), and there were no significant difference among the other 3 groups (P>0.05). This hints those NSCLC patients with low ERCC1 and p53 expressions can benefit more from the chemotherapy based on platinum.
     5. Positive expressions of p53 protein in carcinoma tissue with well, moderate and poor differentiation NSCLC were respectively 37.50%、53.84% and 90.00%. p53 positive expression correlated with the tumor differentiation (P=0.04). p53 antibody in NSCLC serum with well, moderate and poor differentiation were 43.75%、30.77% and 75.00%. Serum p53 antibody correlated with the tumor differentiation (P=0.03). In 49 cases, 20 cases were both positive of p53 in NSCLC carcinoma tissue and serum, 12 cases were both negative. 2 cases were positive in carcinoma tissue and negative in serum, 5 cases were negative in carcinoma tissue and positive in serum. There is correlation between the carcinoma tissue p53 protein and the serum p53 antibody (χ2=4.446).
     Conclusions
     1. p53 and ERCC1 expressions in NSCLC tissue correlate with the tumor differentiation stage, TNM stage and lymphonode metastasis.
     2. p53 and ERCC1 expressions in PBL of NSCLC can reflect the p53 and ERCC1 expressions in NSCLC tissue.
     3. p53 and ERCC1 expressions in PBL correlated with the chemosensitivity based on platinum.
     4. p53 and ERCC1 expressions in PBL can be used as markers for chemosensitivity and prognosis based on platinum. NSCLC patients with low expressions of p53 and ERCC1 are most suitable for the TC project with platinum.
     5. Positive expressions of p53 protein in carcinoma tissue or serum p53 antibody hint a low tumor differentiation stage and high malignance.
     6. Combine test of the carcinoma tissue p53 protein and the serum p53 antibody can be valuable for the diagnose and prognosis of the NSCLC.
引文
1. Sarries C , Haura EB , Roig B , et al. Pharmacogenomics strategies for developing customized chemotherapy in non-small cell lung cancer[J ] . Pharmacogenomics , 2002 , 3(6) :763-780.
    2. Niedernhofer L J , Odijk H , Budzowska M, et al. The structure specific endonuclease Ercc1 Xpf is required to resolve DNA interstrand cross-link induced double strand breaks [J ] .Mol Cell Biol , 2004 , 24(10) :5776-5787.
    3.耿志坚,陈晓峰,乔庆,等.肺癌中p53及nm23与多药耐药基因表达的相关分析及预后意义.中国肿瘤临床与康复,2005, 12 (1): 0212.
    4. Kaspers C I L , Pieters R , Zantwijk C H V ,et al . In vit ro drug sensitivity of normal peripheral blood lymphocyte and childhood leakemic f rom bone marrow and periphera blood[J ] . Br J Cancer , 1991 , 64 (3) :469 - 474.
    5. Meaden ER, Hoggard PG, Khoo SH, et al. Determination of MRP1 exp ression and function in peripheral blood mono– nuclear cells in vivo[ J ]. J ImmunolMethods, 2002, 262: 159 - 165.
    6.王艳萍,袁淑兰,陈晓禾,等.肿瘤患者外周血淋巴细胞与肿瘤细胞体外化疗药敏研究.肿瘤防治杂志, 2004 , 11 (5) : 515 -517.
    7.郑裕明,汤敏中,李军,等.肝癌患者外周血淋巴细胞与肿瘤细胞体外化疗药敏实验研究.广西医学, 2006 , 28 ( 8) : 1192 -1193.
    8.刘细平,王严庆,汤为学.大肠癌患者肿瘤细胞及外周血淋巴细胞中P -糖蛋白表达的研究.重庆医学, 2004, 33 ( 9)∶1333 - 1335.
    9.吕喜英,李彦坤,张秀琴,等.肺癌患者外周血中多药耐药基因表达检测[ J ].承德医学院学报, 2003, (20) 1: 15 - 17.
    10. Altaha R , Liang X, Yu J J , et al. Excision repair cross complementing-group 1 : Gene expression and platinum resistance [J ] . Int J Mol Med , 2004 , 14(5) :959-970.
    11. Miyatake K, Gemba K, Ueoka H, et al. Progno significance of fumtant p53 p rotein, p-glycor p rotein and glutathion S transferase pi in patients with non-small cell lung cancer [ J ]. Anticancer Res,2003, 23 (3C) : 2829-2836.
    12. Lee HW, Choi YW, Han JH,et al. Expression of excision repair cross-complementation group 1 protein predicts poor outcome in advanced non-small cell lung cancer patientstreated with platinum-based doublet chemotherapy. Lung Cancer. 2009 Jan 15.
    13. Weberpals J, Garbuio K, O'Brien A, et al. The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer. 2009 Feb 15;124(4):806-15
    14. Duarte ML, de Moraes E, Pontes E, et al.Role of p53 in the induction of cyclooxygenase-2 by cisplatin or paclitaxel in non-small cell lung cancer cell lines. Cancer Lett. 2009 Jun 28;279(1):57-64. Epub 2009 Feb 13.
    15. Wachters FM, Wong LS, TimensW, et al. ERCC1, hRad51,and BRCA1 p rotein exp ression in relation to tumour response and survival of stage III/ IV NSCLC patients treated with chemotherapy[ J ]. Lung Cancer, 2005, 50 (2) : 211-219.
    16. Addario GD,Pintilie M,Leighl NB,et al.Platinum based versus Non-platinum-based chemotherary in advanced Non-Small-Cell Lung Cancer:A meta-analysis of the published literature.J Clin Oncol,2005,13:2926-2935。
    17. Sarries C, Haura EB, Roig B, et al. Pharmacogenomic strategies for developing customized chemotherapy in non-small-cell lung cancer[J].Pharmacogenomics, 2003,3:763–780.
    18. Brundage MD, Davies D, Mackillop WJ, et al.Prognostic factors in non-small cell lung cancer: a decade of progress[J].Chest,2002,122:1037-1057。
    19. Ryu JS, Hong YC, Han HS, et al. Association between polymorphisms of ERCC1 and XPD and survival in non-small cell lung cancer patients treated with cisplatin combination chemotherapy[J].Lung Cancer,2004,44:311-316.
    20. Simon GR, Sharma S, Cantor A, et al. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer[J].Chest,2005,127:978-983.
    21. Lord RVN, Brabender J, Gandara D, et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small-cell lung cancer[J].Clin Cancer Res ,2002,8:2286–2291.
    22. Rosell R, Felip E, Taron M,et al.Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery[J]. Clin Cancer Res,2004(suppl):4215–4219.
    23. Wachtersa FM, Wongb LSM, Timensc W,et al.ERCC1, hRad51, and BRCA1 proteinexpression in relation to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy[J]. Lung cancer,2005,50:211-219.
    24. Potti A, Mukherjee S, Petersen R,et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer N Engl J Med. 2006 Aug 10;355(6):570-80.
    25. Friedberg EC.DNA damage and repair. Nature,2003,421(6921):436-440.
    26. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents[J]. Cancer Treat Rev 2007;33:9–23.
    27. Ferry KV, Hamilton TC, Johnson SW.Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF[J]. Biochem Pharmacol. 2000 Nov 1;60(9):1305-13.
    28. Niedernhofer L J , Odijk H , Budzowska M, et al. The structure specific endonuclease Ercc1 Xpf is required to resolve DNA interstrand cross-link induced double strand breaks [J ] .Mol Cell Biol , 2004 , 24(10) :5776-5787.
    29. Jaspers NGJ,Raams A,Silengo MC,et al. First reported patient with human ERCC1 deficiency has cerebrooculo-facio-ske -letal syndrome with a mild defect in nucleotide excision repair and severe developmental failure[J]. Am. J. Hum. Genet,2007,80:457-466.
    30. Joshi M B , Shirota Y, Danerberg KD , et al. High gene expression of TS1 ,GSTP1 and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer[J ] . Clin Cancer Res , 2005 , 1(8) :2215-2221.
    31. Langer R , Specht K, Becker K, et al. Association of pretherapeutic expression of chemotherapy-related genes with response to neoadjuvant chemotherapy in Barrett carcinoma[J ] .Clin Cancer Res , 2005 , 11(9) :7462-7469.
    32. Reed E , Dabholkar M, Thornton K, et al. Evidence for in the appearance of mRNAs of nucleotide excision repair genes ,in human ovarian cancer tissues [ J ] . Oncol Rep , 2000 , 7(11) :1123-1128.
    33. Shirota Y, Stoehlmacher J , Brabender J , et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy [J] . J Clin Oncol , 2001 , 19 (5) :4298-4304.
    34. Warnecke-Eberz U , Metzger R , Miyazono F , et al. High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction ofminor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer[J ] . Clin Cancer Res , 2004 , 10(7) :3794-3799.
    35. Ceppi P , Volante M, Novello S , et al. ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small cell lung cancer treated with cisplatin and gemcitabine [J ] . Ann. of Onc. , 2006 , 17 (5) :1818-1825.
    36. Yang M,Kim WH,Choi Y,et al. Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer . Euro J cancer Prev 2006;15(3):269-273.
    37. Rosell R,Taron M,Aberola V,et al. Genetic testing for chemotherapy in non-small -cell lung cancer[J].Lung Cancer,2003,41(1):97-102.
    38. Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy[J]. N Engl J Med 2006;355:983–91.
    39. Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer[J]. J Clin Oncol 2007;25:2747–54.
    40. Linzer DI , Levine AJ . Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells.Cell,1979,17(1):43-52.
    41. Morgunkova A, Almazov V, Strunina S, et al. Dominant negative inactivation of p53: the effect of the p roportion between a trans2 dominant inhibitor and itps target[ J ]. Molecular Biology, 2003,37 (1) : 345 - 346.
    42. Sameshima Y,Matsuno Y, Hirohashi S, et al. Alterations of the p53 gene are common and critical events for the maintenance of malignant phenotypes in small2cell lung carcinoma [ J ]. Oncogene, 1992, 7 (6) : 451.
    43. KawasakiM, Nakanishi Y, Kuwano K, et al. The utility of p53 immunostaining of trans bronchialbiop sy specimens in advanced non - small cell lung cancer. Clin Cancer Res,1997, 3 (7)∶1195
    44. Rosell R, Gonzalez Larriba JL, Alberola V, et al. Single agent paclilaxel by three hour in the treatment of non small cell lung cancer: L inks between p53 and K - ras gene stastus and chemosensitivity. Semin Oncol, 1995, 22 ( 6 Supp l 14)∶12
    45. Hartman,A.R;Ford,J.M.BRCA1 and p53:compensatory roles in DNA repair.J.Mol.Mel.Chem. 2006,2:1-12.
    46. Cleaver,J.E;Crowley,E.UV damage,DNA repair and skin carcinogenesis.Front Biosci. 2002,7: 1024-1043.
    47. Kaina,B.DNA damage-triggerd apoptosis:critical rle of DNA repair,double-strand breaks,cell proliferation and signaling.Biochem.Pharmacol. 2003,66:1547-1554.
    48. Oren,M.Decision making by p53:life,death and cancer.Cell Death.Differ. 2003,10:431- 442.
    49. Roos,W.P;Kaina,B.DNA damage-induced cell death by apoptosis.Trends Mol. Med. 2006,12:440-450
    50. Robles,A.I.;Harris,C.C.P53-mediated apoptosis and genomic instability diseases.Acta Oncol. 2001,40:696-701.
    51. Brash,D.E.Roles of the transcription factor p53 in keratinocyte carcinomas.Br.J. Dermatol. 2006,154 Suppl 1:8-10.
    52. Bauer,J.H.;Helfand,S.L.New tricks of an old molecule:lifespan regulation by p53.Aging Cell2006,5:437-440.
    53. Nakamura,Y.Isolation of p53-target genes and their function analysis.Cancer Sci. 2004,95:7-11.
    54.沈宗丽,周振英,朱月清,吴晓柳.肿瘤患者外周血淋巴细胞p53高表达的临床意义.肿瘤学杂志2002,8(2):92-93
    55. NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol. 2008 Oct 1;26(28):4617-25.
    56. Seve P,Dumontet C.Chemoresistance in non-small cell lung cancer.Curr Med Chem Anticancr Agent,2005,5:217-27
    57. Bepler G, Gautam A, Mclntyre LM,et al. Prognostic significance of molecular genetic aberrations on chromosome segment 11pl 5.5 in non-small-cell-lung-cancer[J]. J CUn Onco,2002,20:1353-1360
    58. Rosell R, Danenberg KD, Alberola V, et al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients[J]. Clin Can Res,2004,10:1318-1325
    59. Alberola V, Camps C, Provencio M, et al. Cisplatin plus gemcitabine versus acisplatin-based triplet versus nonplatinum sequential doublets in advanced non-small-cell lung cancer: A Spanish Lung Cancer Group phase III randomized trial[J]. J Clin Oncol,2003,21:3207–3213.
    60. Bepler G,Sharma A,Greenberg H,et al. Prospective evaluation of RRM1 as a predictor of response to gemcitabine/carboplatin (GC) in non-small cell lung cancer (NSCLC)[J]. J Clin Onco,2006 ASCO annual meeting proceedings part I,24(June 20 suppl):7054
    61. Levine AJ. P53,the cellular gatekeeper for growth and division[J]. Cell, 1997,88: 323-331.
    62. Bassi L, Carloni M, Fonti E, et al. Pifithrin_alpha,an inhibitor of P53,enhances the genetic instability induced by etoposide(VP16) in human lymphoblastoid cells treated in vitro[J]. Mutat Res, 2002, 499(2):163-176.
    63. Honma M, Momose M, Tanabe H, et al. Requirement of wild_type P53 protein for maintenance of chromosomal integrity[J]. Mol Carcinog, 2000,28:203-214.
    64. Bill CA, Yu Y, Miselis NR, et al. A role for P53 in DNA end rejoining by human cell extracts[J]. Mutat Res, 1997,385:21-29.
    65. Xia F, Liber HL. The tumor suppressor P53 modifies mutational processes in a human lymphoblastoid cell line[J]. Mutat Res, 1997,373:87-97.
    66. Hussain SP, Harris CC.p53 biological network:at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J Nippon Med Sch. 2006 Apr;73(2):54-64.
    67. Lozano G, Zambetti GP.What have animal models taught us about the p53 pathway? J Pathol. 2005 Jan;205(2):206-20.
    68. Somasundaram,K.Tumor suppressor p53:regulation and function.Front Biosci. 2000,5:D424- D437.
    69. Minamoto T, Buschmann T, Habelhah H, Matusevich E, Tahara H, Boerresen-Dale AL, Harris C, Sidransky D, Ronai Z.Distinct pattern of p53 phosphorylation in human tumors. Oncogene. 2001 Jun 7;20(26):3341-7.
    70. Colman MS, Afshari CA, Barrett JC.Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res. 2000 Apr;462(2-3):179-88.
    71. Pietsch EC, Humbey O, Murphy ME.Polymorphisms in the p53 pathway. Oncogene. 2006 Mar 13;25(11):1602-11.
    72. Okobia MN, Bunker CH.Molecular epidemiology of breast cancer:a review. Afr J Reprod Health. 2003 Dec;7(3):17-28.
    73. Bullock AN, Fersht AR.Rescuing the function of mutant p53. Nat Rev Cancer. 2001 Oct;1(1):68-76.
    74. Willis A, Jung EJ, Wakefield T, Chen X.Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 2004 Mar 25;23(13):2330-8
    75. Chène P.In vitro analysis of the dominant negative effect of p53 mutants. J Mol Biol. 1998 Aug 14;281(2):205-9.
    76. Newton HB.Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumor. Expert Rev Anticancer Ther. 2005 Feb;5(1):177-91.
    77. Gottifredi V, Shieh SY, Prives C.Regulation of p53 after different forms of stress and at different cell cycle stages. Cold Spring Harb Symp Quant Biol. 2000;65:483-8..
    78. Stewart CL, Soria AM, Hamel PA.Integration of the pRB and p53 cell cycle control pathways. J Neurooncol. 2001 Feb;51(3):183-204.
    79. Su D,Liu P,et al.Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer. 2007 May;56(2):281-8.
    80. Rosell R, Taron M, Barnadas A, et al.Nucleotide excision repair pathways involved in cisplatin resistance in non-small cell lung cancer.Cancer Control. 2003 Jul-Aug;10(4):297-305.
    81.潘泓非小细胞肺癌术后化疗相关基因的临床与基础研究2007年5月84-85。
    82. Rosell R,Cobo M,Isla D,et al.ERCC1 mRNA-based randomized phaseⅢtrial of docetaxel doublets with cisplatin or gemcitabine in stageⅣnon-small cell lung cancer(NSCLC)patients(p).J Clin Oncol,2005,23:621s.
    83. SamouMaelian V, Maugard CM, JolicoeurM, et al. Chemosensitity and radiosensitivity p rofiles of four new human epithelial ovan cancer cell lines exhibiting genetic alterations in BRCA2, FbetaⅡ, KRAS2, TP53 and /or CD NK2A.Cancer Chmother Pharmacol, 2004, 54 (6) :497.。
    84. Niklinska W, Burzykowski T, Laudanski J, et al. Strong association between P53 p rotein accumulation, serum anti-bodies and gene mutation in non - small cell lung cancer. Folia Histochem Cytobiol, 2001, 39 (2):51
    85. DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979 May;76(5):2420-4.
    86. Crawford LV , Pim DC , Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer.Int J Cancer ,1982,30(4):403-408.
    87. Baselga J ,Norton L ,Albanell J,et al.Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts.Cancer Res , 1998,58 (13):2825-2831.
    88. Chang SC,Lin JK,Liang WY.Genetic alteration of p53,but not overpression of intrtumoral p53 protein ,or serum p53 antibody is a prognosis factor in sporadic colorectal adenocarcinoma.International Journal of Oncology.2005;26(1):65-75.
    89. Lutz W, Nowakowska-Swirta E. Gene p53 mutation,protein p53,and anti-p53 antibodies as biomarkers of cancer process. Int J Occup Med Environ Health. 2002;15(3):209-18.
    90. Shiota G, Kishimoto Y, Suyama A, et al.Prognostic significance of serum anti-p53 antibody in patients with hepatocellurlar carcinoma. J Hepatol. 1997 Oct;27(4):661-8.
    91. Neri M, Betta P, Marroni P,et al.Serum anti-p53 autoantibodies in pleural malignant mesothelioma,lung cancer and non-neoplastic lung diseases. Lung Cancer. 2003 Feb;39(2):165-72.
    92. Shimada H, Takeda A, Arima M, et al.Serum p53 antibody is a useful tumormarker in superficial esophageal aquamous cell carcinoma. Cancer. 2000 Oct 15;89(8):1677-83
    93. Saffroy R, Lelong JC, Azoulay D,et al.Clinical significane of circulating anti-p53 antobodies in European patients with hepatocellular carcinoma. Br J Cancer. 1999 Feb;79(3-4):604-10
    94. Takeda A, Shimada H, Nakajima K, et al.Clinical significane of serum p53 antibody detection in a chemosensitivity assay in cases of human colorectal cancer. Gan To Kagaku Ryoho. 2000 Jun;27(6):879-83
    95. Liu XF, Zhang H, Zhu SG, et al.Correlation of p53 gene mutation and expression of p53 protein in cholangiocarcinoma. World J Gastroenterol. 2006 Aug 7;12(29):4706-9.
    96. Bergqvist M, Brattstrom D,Larsson A,et al.The role of circulating anti-p53 antibodiesin patients with advancenon-small cell lung cancer and their correlation to clinical parameters and survival. BMC Cancer,2004,4(1):66.
    97. Rosenfeld MP Prognostic significance of serum p53 antibody in patients with lung cancer. J Natl Cancer Inst,1997,89(5):381.
    98.赵峰,周清华,王兰兰.肺癌患者血清p53抗体的检测及其临床意义.华西医学,2002,17(1):23-24.
    99.张燕,徐从高,陈黎,等.血清p53抗体水平与肺癌临床指标关系的研究.实用癌症杂志,2000,15(5):493-494,501.
    100. Brambilla E , Brambilla C. p53 and lung cancer . Pathol Biol ( Paris) , 1997 , 45 (10) : 852-863.
    101.朱珊,刘运秋,刘金梅,等.血清p53抗体与肺癌早期诊断、判定疗效、预测复发及预后.中国综合临床, 2004 ,20 (4) : 319-321.
    102. Ryder SD,Rizz PM,Volkmann M,et al.Use of specific ELISA for the detection of antibodies directed againt p53 protein in patients with hepatocelluar carcinoma.J Clin Pathol.1996;49:295-299.
    103. Liu ZX,Liu GJ.Determination of drug sensitivity of human NSCLC cells and its relationships with expressions of two drug-resistance factors p53 antibody and GST-πJournal of Jilin.University Medicine Edition ,2005,31(5):795-798.
    [1] Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update[J]. Eur J Cancer 1998;34:1522–34.
    [2] Chikako Kiyohara , Kouichi Yoshimasu. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A meta-analysis[J].Int J Med Sci,2007,4(2):59–71
    [3] Perez RP. Cellular and molecular determinants of cisplatin resistance[J]. Eur J Cancer 1998;34:1535–42.
    [4] Richardson A, Kaye SB. Drug resistance in ovarian cancer: the emerging importance of gene transcription and spatio-temporal regulation of resistance[J]. Drug Resist Updat 2005;8:311–21.
    [5] Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin[J]. Crit Rev Oncol Hematol 2007;63:12–31.
    [6] Vasey PA. Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies[J]. Br J Cancer 2003;89 Suppl 3:S23–8.
    [7] Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy[J]. Nat Rev 2003;3:502–16.
    [8] Ferry KV, Hamilton TC, Johnson SW.Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF[J]. Biochem Pharmacol. 2000 Nov 1;60(9):1305-13.
    [9] Siddik ZH. Cisplatin : mode of cytotoxic action and molecular basis of resistance[J].Oncogene,2003,22(47):7265 -7279
    [10] Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents[J]. Cancer Treat Rev 2007;33:9–23.
    [11] Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer[J]. J Clin Oncol 2007;25:2747–54.
    [12] Sugasawa K, Ng JM, Masutani C,et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair[J]. Mol Cell. 1998 Aug;2(2):223-32.
    [13] Jaspers NGJ,Raams A,Silengo MC,et al. First reported patient with human ERCC1 deficiency has cerebrooculo-facio-ske -letal syndrome with a mild defect in nucleotide excision repair and severe developmental failure[J]. Am. J. Hum. Genet,2007,80:457-466.
    [14] Kunkel TA, Erie DA. DNA mismatch repair[J]. Annu Rev Biochem 2005;74:681–710.
    [15] Jascur T, Boland CR. Structure and function of the components of the human DNA mismatch repair system[J]. Int J Cancer 2006;119:2030–5.
    [16] Gras E, Catasus L, Arguelles R, et al. Microsatellite instability,MLH- [16] L promoter hypermethylation , and frameshift mutations at coding mononucleotide repeat microsatellites in ovarian tumors[J].Cancer, 200l, 92 (11): 2829- 2836.
    [17] Kuraguchi M, Yang K, Wong E, The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis[J]. Cancer Res. 2001 Nov 1;61(21):7934-42.
    [18] Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer[J]. J Clin Oncol 2003;21:1174–9.
    [19] Jiricny J, Marra G. Jiricny J, Marra G. DNA repair defects in colon cancer[J]. Curr Opin Genet Dev. 2003 Feb;13(1):61-9.
    [20] Rhyu MS. Molecular mechanisms underlying hereditary nonpolyposis colorectal carcinoma[J]. J Natl Cancer Inst 1996;88:240–51.
    [21] Suzuki H, Itoh F, Toyota M, et al. Distinct methylation pattern and microsatellite instability in sporadic gastric cancer[J]. Int J Cancer 1999;83:309–13.
    [22] Esteller M. Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes[J]. Eur J Cancer 2000;36:2294–300.
    [23] Geisler JP, Goodheart MJ, Sood AK, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma[J]. Cancer 2003;98:2199- 206.
    [24] Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging antitumour therapies[J]. Eur J Cancer 2003;39:2142–9.
    [25] Scartozzi M, Franciosi V, Campanini N, et al. Mismatch repair system (MMR) status correlates with response and survival in non-small cell lung cancer (NSCLC)patients[J]. Lung Cancer 2006;53:103–9.
    [26] Berkovich E, Monnat RJ Jr, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair[J]. Nat Cell Biol. 2007 Jun;9(6):683-90.
    [27] Scully R , Chen J , Plug A. Association of BRCA1 wit h Rad51 in mitotic and meiotic cells[J]. Cell,1997,88 (2) :265-275.
    [28] Wang Y, Cortez D , Yazdi P , et al . BASC , a super complex of BRCA1-associated proteins involved in t he recognition and repair of aberrant DNA structures[J]. Genes Dev,2000,14 (8) :927-939.
    [29] Lunn RM, Langlois RG, HsiehLL, etal. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin a variant frequency[J]. Cancer Res,1999.59 (11):2557-2561.
    [30] Selfridge J , Hsia KT , Redhead NJ , et al . Correction of liver dysfunction in DNA repair-deficient mice wit h an ERCC1 transgene[J]. Nucleic Acids Res,2001,29 :4541- 4550.
    [31] Kuraoka I, Kobertz WR , Ariza RR , et al . Repair of an interst rand DNA cross-link initiated by ERCC1-XPF repair/recombinatein nuclease[J].JBiol Chem, 2000, 275 :26632-26636.
    [32] Rosell R,Taron M,Aberola V,et al. Genetic testing for chemotherapy in non-small -cell lung cancer[J].Lung Cancer,2003,41(1):97-102.
    [33] Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy[J]. N Engl J Med 2006;355:983–91.
    [34] Azuma K, Sasada T, Kawahara A,et al. Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with a combination of cisplatin/docetaxel and concurrent thoracic irradiation[J]. Cancer Chemother Pharmacol. 2009 Jan 3. [Epub ahead of print].
    [35] Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines[J]. Cancer Res 2003;63:1311–6.
    [36] Ferry KV, Hamilton TC, Johnson SW. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: Role of ercc1-xpf[J]. Biochem Pharmacol2000;60:1305–13.
    [37] Reed E, Yu JJ, Davies A, Gannon J, Armentrout SL. Clear cell tumors have higher mRNA levels of ERCC1 and XPB than other histological types of epithelial ovarian cancer[J]. Clin Cancer Res 2003;9:5299–305.
    [38] Cai KQ, Albarracin C, Rosen D, et al. Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma[J]. Hum Pathol 2004;35:552–9.
    [39] Weberpals J, Garbuio K, O'Brien A, et al. The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer[J]. Int J Cancer. 2009 Feb 15;124(4):806-15.
    [40] Arnould S ,Hennebelle I ,Canal P ,et al . Cellular determinant s of oxaliplatin sensitivity in colon cancer cell lines[J]. Eur J Cancer,2003,39 :112-119.
    [41] Kwon HC, Roh M, Oh S, Kim SH, Kim M, Kim JS, et al.Prognostic value of expression of ERCC1, thymidylate synthase,and glutathione S-transferase P1 for 5-fluorouracil/oxaliplatin chemotherapy in advanced gastric cancer[J]. Ann Oncol 2007;18:504–9.
    [42] Warnecke-Eberz U, Metzger R, Miyazono F,et al. High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer[J]. Clin Cancer Res 2004;10:3794–9.
    [43] Joshi MB, Shirota Y, Danenberg KD, et al. High gene expression of TS1, GSTP1,and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer[J]. Clin Cancer Res 2005;11:2215–21.
    [44] Shirota Y, Stoehlmacher J, Brabender J,et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy[J]. J Clin Oncol 2001;19:4298–304.
    [45] Vallbohmer D, Iqbal S, Yang DY, et al. Molecular determinants of irinotecan efficacy[J]. Int J Cancer 2006;119:2435–42.
    [46] Bosl GJ, Motzer RJ. Testicular germ-cell cancer[J]. N Engl J Med 1997;337:242–54.
    [47] Welsh C, Day R, McGurk C, Masters JR, Wood RD, Koberle B. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines[J]. Int J Cancer2004;110:352–61.
    [48] Koberle B, Masters JRW, Hartley JA, Wood RD. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours[J]. Curr Biol 1999;9:273–8.
    [49] Bellmunt J, Paz-Ares L, Cuello M,et al. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy[J]. Ann Oncol. 2007 Mar;18(3):522-8.
    [50] Yamamoto M, Taguchi K, Baba H , et al. Loss of protein expression of hMLH1 and hMSH2 with double primary carcinomas of the stomach and colorectum[J]. Oncol Rep, 2006 , 16(1) : 41-47.
    [51] Watanabe Y, Koi M, Hemmi H, Hoshai H, Noda K. A change in microsatellite instability caused by cisplatin-based chemotherapy of ovarian cancer[J]. Br J Cancer 2001;85:1064–9.
    [52] Fink D, Nebel S, Norris PS, et al. Enrichment for DNA mismatch repair-deficient cells during treatment with cisplatin[J]. Int J Cancer 1998;77:741–6.
    [53] Strathdee G, MacKean MJ, Illand M, Brown R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer[J]. Oncogene 1999;18:2335–41.
    [54] Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer[J]. Nat Genet 1999;21:103–7.
    [55] Lin X, Howell SB. DNA mismatch repair and p53 function are major determinants of the rate of development of cisplatin resistance[J]. Mol Cancer Ther 2006;5:1239–47.
    [56] Lin X, Ramamurthi K, Mishima M, Kondo A, Christen RD, Howell SB. P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin[J]. Cancer Res 2001;61:1508–16.
    [57] Gifford G, Paul J, Vasey PA, Kaye SB, Brown R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients[J]. Clin Cancer Res 2004;10:4420–6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700