藏茵陈活性成分的结构修饰及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏茵陈是一种传统藏药,具有保肝、抗炎、抗氧化损伤等多种生物活性。该药主要含有环烯醚萜、口山酮和三萜类成分。近些年,其所含环烯醚萜类和口山酮类成分逐渐成为研究热点。但这类成分普遍存在活性不高或不易吸收等不足之处。本文旨在通过生物学方法对藏茵陈所含主要成分进行修饰,以期获得具有一定活性的化合物。主要工作如下:
     以獐牙菜苦苷、当药醇苷的平均转移率为评价指标,通过正交试验对药材中含有的这两种化合物的提取工艺进行优化,并利用大孔树脂、硅胶等分离手段进行纯化,使其纯度达到80%以上。
     考察黑曲霉菌对獐牙菜苦苷、当药醇苷的转化作用。采用獐牙菜苦苷与黑曲霉菌共同孵育,并获取了(5Z)-5-乙叉基-8-羟基-3,4,5,6,7,8-六氢-1H-吡喃[3,4-c]嘧啶-1-酮(EHPO),獐牙菜苷等产物。经考察,确定了适于EHPO生成的培养基为:葡萄糖5g/L,蛋白胨7.5g/L, KH2PO4 5g/L, MgSO4 1.2g/L, MnSO4 1.51 g/L, NaCl 0.59 g/L,初始pH值为6.0。
     以转移率为主要指标确立了EHPO的制备工艺条件为:经石油醚(60-90℃)脱脂后,采用HPD-300型树脂纯化:依次采用水(3BV),10%乙醇(3BV)除杂,再用50%乙醇洗脱3BV。50%乙醇洗脱部分经Al2O3柱层析进一步纯化。依次采用乙酸乙酯-甲醇8:2溶液(9BV),乙酸乙酯-甲醇6:4溶液(4BV),乙酸乙酯-甲醇2:8溶液(12BV)洗脱。再经制备液相精制,可得到产物EHPO,并回收部分獐牙菜苦苷(纯度>95%)。
     采用Caco-2细胞模型进行的体外吸收试验表明:给予不同剂量的EHPO后,在Caco-2细胞模型中的转运中对应时间点的表观渗透系数值PappAP-BL约等于PappBL-AP.在所测浓度范围内转化产物的Papp值基本保持恒定。在Caco-2细胞模型中,EHPO的渗透性较好,以被动扩散为主的方式跨膜转运,但pH值、维拉帕米对其跨膜转运仍有一定的影响。
     通过大鼠肝匀浆脂质过氧化模型的研究结果表明:EHPO具有一定的体外抗氧化作用;在羟自由基致红细胞溶血模型中,0.8mg/mL的EHPO可显著性抑制羟自由基致氧化损伤。
     四氯化碳致小鼠急性肝损伤试验结果表明:EHPO能显著性降低小鼠血清ALT、AST水平,减少MDA含量,增强SOD活力(P<0.05),对四氯化碳引起的肝细胞损伤有一定的保护作用。
     总之,上述研究结果表明:藏茵陈所含主要化合物——獐牙菜苦苷、当药醇苷均可被黑曲霉菌降解转化。通过本文建立的分离、纯化工艺可有效的分离、制备前体化合物以及产物。初步研究结果表明,獐牙菜苦苷与黑曲霉菌共同孵育获得的化合物EHPO易于吸收,具有一定的抗氧化,保肝活性。
'Zang-Yin-Chen'(ZYC) is a traditional Tibetan medicine for the activity of hepatoprotective effect, antiinflammatory, antioxidative damage. It is suggested by phytochemistry study that iridoids、xanthones and triterpenoids are the mainly components in ZYC. In recent years, the compounds of xanthones and iridoids were studied widely. But the activity of these compouds were not good. For the purpose of new active substance discovery, the activity compounds of ZYC was modified by biology methods.The main research works are as follows:
     With the average transfer rate of swertiamarin and swertianolin as index, the best extraction technology of these constituents in ZYC was optimized by orthogonal experimental design. And macroporous resin, silica gel column chromatography were used for the separation of swertiamarin、swertianolin. And the purity is more than 80%.
     The utilization of swertiamarin、swertianolin by Aspergillus niger was investigated. And result showed these compouds could be transformed by it. For the purpose of compounds preparation, swertiamarin was coincubated with Aspergillus niger. The compouds including sweroside and (5Z)-5-ethylidene-8-hydroxy-3,4,5,6,7,8-hexahydro-1H-pyrano[3,4-c] pyridin-1-one were prepared. The medium was optimizated for the output of EHPO. The optimizated medium composition was glucose 5 g/L; Tryptone 7.5g/L; KH2PO45 g·/L; MnSO4 1.51 g/L; MgSO4 1.21 g/L, NaCl 0.59 g/L, pH of the medium was adjusted to 6.0.
     With the transfer rate of EHPO as index, the separation technology of EHPO was established. The fermentation broth was concentrated under reduced pressure and partitioned with petroleum (60-90℃). The aqueous layer was isolated by macroporous resin column chromatography. And the column was eluted with H2O (3BV),10% ethanol (3BV) followed by 50% ethanol (3BV). The faction eluted by 50% ethanol was isolated by Al2O3 column chromatography. And the column was eluted with acetoacetate-methanol (8:2) solution (9BV), acetoacetate-methanol (6:4) solution (4BV), followed by acetoacetate-methanol (2:8) solution (12BV). Finaly, the compounds such as EHPO and swertiamarin were isolated by preparative HPLC. The purity of them is more than 95%.
     In the Caco-2 cell model, the PappAP-BL of the EHPO was equal to the PappBL-AP, and Papp keep almost constant within the concentration investigated. The permeability of EHPO is good. In Caco-2 cell model, the transcellular transport mechanism of it mainly is a passive one. But the Papp still could be effected by pH, Verapamil.
     The antioxidative property of EHPO was evaluated by malondialdehyde (MDA) formation in a hepatic homogenates model, and a model of H2O2-induced hemolysis. The result showed EHPO could inhibit hepatic homogenate peroxidation. In the model of H2O2-induced hemolysis model, it could inhibit hemolysis significantly(0.8mg/mL). (P<0.05).
     The hepatoprotective effect was evaluated by the model of CCl4 induced acute hepatic injure in mice. EHPO could decrease the serum ALT, AST levels, the concentration of MDA and increase SOD activity in the mice treated with CCl4. It exhibited significant hepatoprotective effect.
     In summary, the results showed that swertiamarin and swertianolin could be transformed by Aspergillus niger. The technology we set could separate the precurosor compounds and the product. The compound of EHPO yielded by co-incubated swertiamarin with Aspergillus niger could be absorbed soon. And it has the activity of antioxidative, hepatoprotective effect.
引文
[1]杨水昌.《藏药志》[M].青海人民出版社,1991,1.
    [2]罗达尚.中华藏本草[M].民族出版社,1997,187-188.
    [3]Li JC, Feng L, Sun BH, et al. Hepatoprotective activity of the constituents in Swertia pseudochinensis[J]. Biol Pharm Bull,2005,28(3):534-537.
    [4]Karan M, Vasisht K, Handa SS. Antihepatotoxic activity of Swertia chirata on carbon tetrachloride induced hepatotoxicity in rats[J]. Phytother Res,1999,13(1): 24-30.
    [5]Xiufen W, Hiramatsu N, Matsubara M. The antioxidative activity of traditional Japanese herbs[J]. Biofactors,2004,21(1):281-284.
    [6]Rodriguez S, Wolfender J L, Hakizamungu E,et al. An antifungal naphthoquinone, xanthones and secoiridoids from Swertia calycina[J]. Planta Med,1995,61(4): 362-364.
    [7]El-Sedawy A I, Shu Y Z, Hattori M, et al. Metabolism of swertiamarin from Swertia japonica by human intestinal bacteria[J].Planta Med,1989, 55(2):147-150.
    [8]彭芳,刘晓波,方春生.紫红獐牙菜的利胆作用的实验研究[J].四川生理科学杂志,2004,26(4):189-189.
    [9]彭芳,刘晓波,方春生.紫红獐牙菜对实验性肝损伤的保护作用[J].中药新药与临床药理,2002,13(6):376-378.
    [10]彭芳,刘晓波,方春生.紫红獐牙菜对实验性慢性肝损伤的保护作用[J].中药新药与临床药理,2003,14(6):304-306.
    [11]王芸,杨峻山.獐牙菜属植物的研究概况[J].天然产物研究与开发,19924(1):99-114.
    [12]刘占文,陈长勤,金若敏,等。龙胆苦苷的保肝作用研究[J].中草药,2002,33(1):47-50.
    [13]郭爱华.龙胆科獐牙菜属药用植物化学成分与药理作用的研究进展[J].山西中医学院学报,2005,6(1):57-59.
    [14]孙洪发,胡伯林,樊淑芬,等.花锚的三个新口山酮[J].植物学报,1983, 5(9):460-465.
    [15]孙洪发,胡伯林,丁经业,等.花锚的三种新口山酮甙[J].植物学报,1987,29(4):422-428.
    [16]张德,祝亚非,林少琨.藏药花锚中新化学成分的鉴定[J].中草药,2003,34(1):9-11.
    [17]孙学华,陈静,李晓红.藏医药治疗病毒性肝炎的临床及实验研究[J].中国民族民间医药杂志,2002,55(2):75-77
    [18]杜继曾,李庆芬,陈晓光.川西樟牙菜对低张性低氧肝损伤的保护作用[J].药学学报,1983,18(3):174-176.
    [19]Hajimehdipoor H, Sadeghi Z, Elmi S,et al. Protective effects of Swertia longifolia Boiss. and its active compound, swerchirin, on paracetamol-induced hepatotoxicity in mice[J]. JPharm Pharmacol,2006,58(2):277-280.
    [20]张经明,鲍文莲,高海平,等.花锚及其口山酮苷抗肝损伤和毒性的研究[J].中草药,1984,I5(10):34-36.
    [21]高洁,王素娟,方芳,等.藏药花锚中的(?)酮类成分及其抗氧化活性[J].中国医学科学院学报,2004,26(4):364-367.
    [22]陈大勋,李瑞蜂,马正,等.花锚治疗小儿急性黄疸型肝炎的疗效观察[J].中草药,1984,15(11):29-30.
    [23]陈大勋,毛洪屏,马正,等.复方花锚治疗小儿急性乙型肝炎86例观察[J].青海医药杂志,1987,92(2):7-9.
    [24]张杰,王志平,唐荣江,等.花锚及复方花锚免疫药理实验研究[J].青海医药杂志,1986(3):17-18.
    [25]Karan M, Vasisht K, Handa SS. Antihepatotoxic activity of Swertia chirata on paracetamol and galactosamine induced hepatotoxicity in rats[J].Phytother Res, 1999,13(2):95-101.
    [26]Mukherjee S, Sur A, Maiti BR. Hepatoprotective effect of Swertia chirata on rat[J].Indian JExp Biol,1997,35(4):384-388.
    [27]Mandat S, Des PC, Joshi PC, et al, Anti-inflammatory action of swertia chirata[J]. Fitoterapia,1992,63(2):122-128.
    [28]Reen PK, Karan M, Singh K, et al. Screening of various Swertia species, extracts in primary monotayer cultures of rat hepatocytes against CCl4 and paracetamol induced toxicity[J]. J Ethnopharmacology,2001,75:239-247.
    [29]Hase K., Li JX. Basnet P, et al, Hepatoprotective principles of Swartia japonica on D-Galactosamaine/Lipopolysaecharide induced liver injury in mice[J]. Chem Pharm Bull,1997,45(11):1823-1827.
    [30]Hase K, Xiong Q, Basnet P, et al. Inhibitory effect of tetrahydroswertianolin on tumornecrosis factor-a-dependent hepatic apoptosis in mice[J]. Biochem Pharmacol,1999,57(12):1431-1437.
    [31]S Ashida, SF Noguchi, T,Suzuki. Antioxidative components, xanthone derivatives in Swertia japonica[J].J AM. Oil. Chem. Soc.,1994,71(10): 1095-1098.
    [32]丁经业,孙洪发.藏茵陈抗肝炎有效成分研究——芒果苷和齐墩果酸的分离和鉴定[J].中草药,1980,11(9):391-393.
    [33]卞庆亚.芒果苷对实验性肝损伤大鼠酶及形态变化影响的研究[J].中国实验动物学杂志,1999,9(1):10-12.
    [34]Keshetty Srisilam, Ciddi Veeresham. Biotransformation of drugs by microbial cultures for predicting mammalian drug metabolism[J]. Biotechnology Advances, 2003,21:3-39.
    [35]Smith RV, Rosazza JP. Microbial models of mammalian metabolism, aromatic hydroxylation[J]. Arch Biochem Biophys,1974,161:551-558.
    [36]Isabelle L, Jacques B, Robert A. Microbial Models of Drug Metabolism: Microbial Transformations of Trimegestonel (RU27987), a 3-Keto-△ 4,9(10)-19-norsteroid Drug[J]. Bioorg Medicinal Chem 1999,7 (11):2329-2341.
    [37]Ma XC, Wu LJ, Guo DA. Microbial transformation of dehydrucostuslactone by Mucor polymorphosporus[J]. J Asian J Nat Prod,2006,8(8):713-718.
    [38]Ye M, Qu G Q, Guo H Z, et al. Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure—activity relationships [J]. J Steroid Biochem Molecular Biology,2004,91(1-2):87~98.
    [39]Akita H, Kawahara E, Kishida M, et al. Synthesis of naturally occurring beta-D-glucopyranoside based on enzymatic beta-glycosidation[J]. Journal of Molecular Catalysis B:Enzymatic,2006,40(1-2):8-15.
    [40]Park S H, Shim J H, et al. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase[J]. Carbohydrate Research,2004, 339(17):2789~2797.
    [41]Yamada M, Okada Y, Yoshida T, et al. Biotransformation of isoeugenol to vanillin by Pseudomonas putida 1E27 cells[J]. Applied Microbiology Biotechnology,2007,73(5):1025~1030.
    [42]Alexandre V, Ladril S, Maurs M, et al. Microbial models of animal drug metabolism Part 5. Microbial preparation of human hydroxylated metabo lites of irbesartan[J]. Journal of Molecular Catalysis B:Enzymatic,2004,29(1-6): 173~179.
    [43]El Sayed K A. Microbial models of mammalian metabolism:microbial transformation of naproxen[J]. Pharmazie,2000,55(12):934~936
    [44]Riva S. Biocatalytic modification of natural products[J]. Current Opinion in Chemical Biology,2001,5(2):106~111.
    [45]Shige T, Honda K, Shimizu S. Whole organism biocatalysis[J].. Current Opinion in Chemical Biology,2005,9(2):174~180.
    [46]Giri A, Dhingra V, Giri C C, et al. Biotransformations using plant cells, organ cultures and enzyme systems:current trends and future prospects[J]. Biotechnology Advances,2001,19(3):175~199.
    [47]Kang JJ, Wang HW, Linr IV,et al. Modulation of cytochrome P-450 dependent monooxygenases, glutathione and glutathione S-transferase in rat liver by geniposide from Gardenia jasm inoides[J]. Food Chem Toxicol,1997,35(10-11): 957-965.
    [48]朱振家,钱之玉,陆莉华等,栀子提取物京尼平苷和西红花苷利胆作用的研究[J].中草药,1999,30(11):841~843.
    [49]Hye—Jin Koo, Yun Seon Song, Hee—Jeong Kim, et al. Antiinflammatory effects of genipin, an active principle of gardenia[J]. Eur JPharmacol,2004, 495:201-208.
    [50]米靖字.常用中药牛蒡子的化学、体内外代谢及质量控制研究[D].上海中医药大学博士论文,2002.37~39.
    [51]曾衍霖.生物转化研究与新药开发[J].中国新药杂志,1998,7(5):337-340.
    [52]张秀桥,黄凤娇,陈家春,等.獐牙菜中口山酮提取物抗HBV体外实验研究 [J],中药材,2006,29(7):697-699.
    [53]孙洪发,胡伯林,丁经业,等.川西獐牙菜苷类成分[J].植物学报,1991,33 (1):31-33.
    [54]余龙江.发酵工程原理与技术应用[M].第一版,化学工程出版社,北京,14-14.
    [55]沙倩,杨柳,王建军,等.产环氧化物水解酶的黑曲霉菌种分离和发酵条件的研究[J].菌物系统,2001,20(4):494-502,
    [56]陈冠军,孙忠氛,王颖达,等.黑曲霉菊糖酶的纯化及性质[J].微生物学报,1997,37(5):362—367.
    [57]吴克,蔡敬民,刘斌,等.黑曲霉A3木聚糖酶酶学性质研究[J].菌群系统2000,19(3):383-388.
    [58]陈红歌,朱静 梁改芹,等.黑曲霉木聚糖酶的纯化与性质[J].菌物系统2000,19(1):111-116,
    [59]孙迅,陈新爱,高庆义,等.黑曲霉产木聚糖酶发酵条件的正交设计试验[J].微生物学通报2000,27(2):108-112.
    [60]郑淑霞,沈志扬,刘树滔,等.黑曲霉发酵粉中一种β-葡萄糖苷酶的分离纯化与表征[J].福州大学学报(自然科学版),2004,32(1):101-105.
    [61]刘玉焕钟英长对硫磷真菌降解酶的分离纯化和性质[J].菌物系统2000,19(3):377-382
    [62]杨正茂,赵玉秀.秦克亮,等.β—呋喃果糖苷酶的性质研究[J].中国医药工业杂志2003.34(3):114-118.
    [63]陈冠军罗贵民程玉华.黑曲霉糖化酶的分离纯化及其性质[J].微生物学报1991,31(3):213-220.
    [64]郑志强,朱书峰,孙志浩,等.微生物转化方法生产香草酸与香草醛的初步研究[J].工业微生物,2002,32(4):1-6.
    [65]Hu JN, Zhu XM, Lee KT, et al. Optimization of ginsenosides hydrolyzing beta-glucosidase production from Aspergillus niger using response surface methodology[J]. Biol Pharm Bull.2008 31(10):1870-1874.
    [66]Mohamed AE, Khalafallah AK, Yousof AH, et al. Biotransformation of glabratephrin, a rare type of isoprenylated flavonoids, by Aspergillus niger. Z Naturforsch[J].2008,63(7-8):561-564.
    [67]Chill L, Trinh L, Azadi P, et al. Production, purification, and characterization of human alphal proteinase inhibitor from Aspergillus niger[J]. Biotechnol Bioeng.2009,102(3):828-844.
    [68]陈惠忠 高培基王祖农黑曲霉An-76 β—木聚糖酶的诱导合成[J].生物工程学报,1990,6(1):73-75.
    [69]蔡静平,殷蔚申.固定化黑曲霉生产葡萄酸—δ—内酯的研究[J].工业微生物,1989,19(2):1-7.
    [70]曹健,殷蔚申.黑曲霉几丁质和壳聚糖的研究[J].微生物学通报,1995 22(4):200-203.
    [71]李林,傅庭治曹幼琴.植酸钠对黑曲霉柠檬酸发酵产酸的促进效应[J].微生物学通报,1994,21(4):220-224.
    [72]谢宇,赵金生,尚晓娴.黑曲霉No.5.1纤维素酶液体发酵培养基研究[J].江西农业大学学报,2008,30(1):127-130.
    [73]杨红亚,吴少华,王兴红,et al.开展中药生物转化研究意义深远[J].中草药,2004,35(12):1321-1324.
    [74]Ikeshiro Y,Y Tomita.A new iridoid glucoside of Swertia japonica[J].Planta Med, 1984,50:485-492
    [75]Ikeshiro Y,Y Tomita.Iridoid glucoside of Swertia japonica[J].Planta Med,1985,51:390-396
    [76]Ikeshiro Y,Y Tomita. Senburiside Ⅱ,a new iridoid glucoside from Swertia japonica[J].Planta Med,1987,53:158-165
    [77]Khetwal K S, Joshi B, Bishet R S.Tri-and tetraoxygenated xanthones from Swertia patiolata[J].Phytochemistry,1990,29(4):1265-1270.
    [78]Kulanthaivel P, Pelletier S W, Khetwal K S.Isolation of a new xanthone and 2-hydroxydimethylterephthalate from Swertia petiolata[J]. J Nat Prod,1988,51(2): 379-382.
    [79]Rana VS, Rawat MS.A new xanthone glycoside and antioxidant constituents from the rhizomes of Swertia speciosa[J]. Chem Biodivers.2005, 2(10):1310-1315.
    [80]何伟,李伟.大孔树脂在中药成分分离中的应用[J].南京中医药大学学报,2005,21(2):134—136.
    [81]Kumar R A, Clark D S. Hish—throushput screening of biocatalytic activity: applications in drug discovery[J]. Current Opinion in Chemical Biology,2006, 10(2):162~168.
    [82]Rich J O, Michels P C, Khmelnitsky Y L. Combinatorial biocatalysis[J]. Current Opinion in Chemical Biology,2002,6 (2):161~167.
    [83]Ahreuter D H, Clark D S. Combinatorial biocatalysis:taking the lead from nature[J]. Current Opinion in Biotechnology,1999,10(2):130—136.
    [84]Hudson E P, Eppler R K, Clark D S. Biocatalysis in semi—aqueous and nearly anhydrous conditions [J]. Current Opinion in Biotechnology,2005,16(6): 637-643.
    [85]Pfruender H, Jones R, Weuster—Botz D. Water immiscible ionic liquids as solvents for whole cell biocatalysis [J]. Journal of Biotechnology,2006,124(1): 182-190.
    [86]de Carvalho C C C R, da Fonseca MMR. Biotransformation of terpenes [J].Biotechnology Advances,2006,24(2):134~142.
    [87]Rathbone D A, Bruce N C. Microbial transformation of alkaloids [J]. Current Opinion in Microbiology,2002,5(3):274~281.
    [88]Lorenz P, Liebeton K, Niehaus F, et al. Screening for novel enzymes for biocatalytic processes:accessing the metagenome as a resouree of novel functional sequence space[J].Current Opinion in Biotechnology,2002,13(6): 572~577.
    [89]Wahler D, Reymond J L. Novel methods for biocatalyst screening [J]. Current Opinion in Chemical Biology,2001,5(2):152~158.
    [90]Kim J W, Peeples T L. Screening extremophiles for bioconversion potentials Atomi H. Recent progress towards the application of hyperthermophiles and their enzymes[J]. Current Opinion in Chemical Biology,2005,9(2):166~173.
    [91]Kaur J, Sharma R. Directed evolution:An approach to engineer enzymes. Critical Reviews in Biotechnology,2006,26(3):165~199.
    [92]Bolon D N, Voigt C A, Mayo S L. Denovo design of biocatalysts [J]. Current Opinion in Chemical Biology,2002,6(2):125~129.
    [93]张媛媛、管棣、谢青兰,等.[口山]酮体外抗氧化作用研究[J].中成药,2007, 29(3):342~345.
    [94]何铁光、杨丽涛、李杨瑞,等.铁皮石斛原球茎多糖粗品与纯品的体外抗氧化活性研究[J].中成药,2007,29(9):1265~1269.
    [95]李志孝,黄成钢,蔡育军,等.天门冬多糖的化学结构及体外抗氧化活性[J].药学学报,2000,35(5):358~362.
    [96]岳兴如,阮耀,阮翘齐墩果酸对早期糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响[J].中药药理与临床2006;22(3、4):32-33.
    [97]张晓玲,瞿伟菁,孙斌,等.刺梨黄酮的体外抗氧化作用[J].天然产物研究与开发,2005,17(4):396-401.
    [98]Nordberg J, Arner E S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system[J]. Free Radic Biol Med,2001,31:1287-1312.
    [99]Femando D, Etelvino J H. Aminoacetone induced iron-mediated oxidative damage to isolated rat liver mitochondria[J]. Archives of Biochem and Biophys, 2004,430:284-289.
    [100]Droge W. Free radicals in the physiological control of cell function[J]. Physiol Rev,2002,82(1):47-50.
    [101]Himyuki M, Miho K, Yoshiyasu F, et al. Aantioxidant xanthones from garcinia subelliptical[J]. Photochem,1994,36(2):501-506.
    [102]Wu YJ, Ji WG, Zhang ZM, et al. Antioxidative activity of 4-oxy-4-hydroxy"nitroxides in tissues and erthrocytes from rats [J]. Acta Phamuwol Sin,1997,18:150-154.
    [103]罗景慧,杨迎暴,林永成,等.海洋真菌Halorosellina oceanicum 323代谢产物的体外抗氧化活性研究[J].中药材,2004,27(3):188-193.
    [104]陈纪岳,胡明,朱彦平,等.药物从肠上皮细胞模型中排放的动力学模型[J].上海医科大学学报.1996.23(4):247-251.
    [105]国家医药管理局中草药情报中心站,植物药有效成分手册,北京:人民卫生出版社,1986,1008-1008.
    [106]丁经业,樊淑芬,胡伯林.抱茎獐牙菜(?)酮苷和黄酮苷.植物学报,1988,30(4):414-418.
    [107]秦素娟,李会军,李萍,等.毛花柱忍冬地上部分化学成分研究[J].中国医院药学杂志,2008,43(9): 662-664.
    [108]张均田.现代药理学实验方法[M].第一版,北京医科大学中国协和医科 大学联合出版社,北京:1998,1397-1398.
    [109]余龙江.发酵工程原理与技术应用[M].第一版,化学工业出版社,北京:2006,41-49.
    [1]Stenberg P, Bergstrom C A, Luthman K, et al. Theoretical predictions of drug absorption in drug discovery and development[J]. Clin Pharmacokinet,2002, 41(11):877-899.
    [2]唐晓荞,杨祥良.灯盏花磷脂复合物改善大鼠小肠吸收的研究[J].中国中药杂志,2005,30(3):222-225.
    [3]Gotoh Y, Kamada N, Momose D.The advantages of the ussing chamber in drug absorption studies [J]. JBiomol Screen,2005,10(5):517-523.
    [4]王琰,李正荣,潘飞燕,等.纳米脂质体包裹胰岛素经Caco-2细胞转运的研究[J].中国药理学通报,2005,21(1):78-81.
    [5]Annette B, Sibylle H, Kayoshi S, et al. Cell cultures as tools in biopharmacy[J]. Eur JPharm Sci,2000,11(2):551-560.
    [6]Putnam W S, Pan L, Tsutsui K,et al. Comparison of bidirectional cephalexin transport across MDCK and Caco-2 cell monolayers:interactions with peptide transporters[J]. Pharm Res,2002,19(1):27-33.
    [7]崔志清叶斌.牛磺酸对翻转小鼠离体小肠葡萄糖—钠转运电位的影响[J].中国药理学通报,1995,11(4):288-290.
    [8]王新春,侯世祥,李文,等.白藜芦醇纳米脂质体体外释药和大鼠小肠吸收特性的研究[J]. China J Chin Mater Med(中国中药杂志),2007,32(11):1084-1088.
    [9]李高,丁文峰,裘军,等.利福平对地高辛小肠吸收作用的影响[J].同济医科大学学报,2001,30(4),321-323,332.
    [10]罗和生,黄晓东,操寄望,等.小壁碱治疗分泌性腹泻的实验研究[J].中药药理与临床,2000,16(3):15-17.
    [11]Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells[J]. Biochem Biophys Res Commun,1991,175(3) 880.
    [12]王来友,关溯,黄民,等.补骨脂素在Caco-2细胞模型中的吸收特性研究[J].中国药学杂志,2005,40(24):1868-1870.
    [13]沙先谊,方晓玲,吴云娟.9-硝基喜树碱在Caco-2细胞模型中的体外摄取、转运及外排动力学[J].药学学报,2004,39(10):839—843.
    [14]Rosenberg DW, Leff T. Regulation of cytochrome P450 in cultured human colonic cells[J].Arch Biochem Biophys,1993,300(1):186-192.
    [15]Lampen A, Bader A, Bestmann T, et al. Catalytic activities, protein-and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines[J]. Xenobiotica,1998,28(5):429-441.
    [16]Perters WH, Roelofs HM. Time-dependent activity and expression of gtutathione S-transferases in the human colon adenocarcinonle cell line Caco-2[J]. Biochem J,1989,264(2):613-616.
    [17]Abid A, Bouchon I, Siest G,et al. Glucuronidation in the Caco-2 human intestinal cell line:induction of UDP-glucuronosyltransferase 1*6[J]. Biochem Pharmacol, 1995,50(4):557-561.
    [18]Gan L L, Dhiren R T. Application of the Caco-2 model in the design and development of orally active drug:elucidation of biochemical and physical barriers posed by the intestinal epithelium [J]. Adv Drug Deliv Rev,1997,23(1): 77-82.
    [19]Gedde-Dahl A, Kulseth M. Reduced secretion of triacylglycerol in Caco-2 cells transfected with intestinal fatty acid-binding protein [J]. Lipids,2002,37(1): 61-68.
    [20]Konishi Y, Kobayashi S. Transepithelial transport of chlorogenic acid,caffeic acid and their colonic metabolites in intestinal Caco-2 cell monolayers[J]. Agric Food Chem,2004,52(9):2518-2526.
    [21]Menon R M, Barr W H. Transporters involved in apical and basolateral uptake of ceftibuten into Caco-2 cells[J]. Biopharm Drug Dispos,2002,23(8):317-326.
    [22]朱狄峰,赵筱萍,程翼宇.丹参素在Caco-2细胞单层模型中的跨膜转运研究[J].中国中药杂志,2006,31(18):1517-1520.
    [23]Woo J S, Lee C H, Shim C K, et al. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KR30031[J]. Pharm Res, 2003,20(1):24-30.
    [24]Maeng H J, Yoo H J, Kim I W, et al. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers[J]. J Pharm Sci,2002,91(12): 2614-2621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700