神经营养素-4及其受体在牛成熟精子和支持细胞中的表达与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近的研究表明,神经营养素(neurotrophins,NTs)在神经系统以外的心血管、肌肉和生殖等一些非神经系统中发挥着重要作用。本实验室曾首次发现了牛成熟精子能够表达并分泌神经生长因子(nerve growth factor,NGF)和脑源性神经营养因子(brain-derivedneurotrophic factor, BDNF)两种神经营养素。发现了BDNF参与牛成熟精子胰岛素和瘦素的分泌,NGF的异常表达与男性不育密切相关等。然而牛成熟精子及支持细胞中是否表达神经营养素-4(neurotrophine-4,NT-4)及其受体酪氨酸激酶受体B(tyrosine kinase B,TrkB),如果表达,其功能又有哪些?本文将对此进行研究。研究结果如下:
     1、牛成熟精子中NT-4及其受体TrkB的表达
     首先利用RT-PCR方法检测了牛成熟精子中是否有NT-4及其受体TrkBmRNA的表达。结果表明,牛成熟精子中虽然没有NT-4mRNA的存在,但却可以表达受体TrkB的mRNA。通过Western blot方法发现牛成熟精子中存在NT-4和TrkB的蛋白,利用细胞免疫荧光方法确定了NT-4蛋白主要存在于牛成熟精子尾部的中段及赤道部,而TrkB则存在于牛成熟精子的顶体膜及尾部中段。
     2、NT-4对牛成熟精子功能的影响
     为了进一步验证牛成熟精子中的NT-4的作用,本试验通过向牛成熟精子体外孵育系统中加入0,50,100,300和500ng mL的NT-4重组蛋白处理牛成熟精子30min后,检测了NT-4对牛精子线粒体膜电位、Ca~(2+)水平、顶体反应和活率的影响。结果表明:发现300ng或500ng mL的外源NT-4可显著的提高牛成熟精子的线粒体膜电位和Ca~(2+)水平(p <0.05)。若用NT-4处理牛成熟精子的同时添加20ng mL的TrkB的阻断剂K252a,牛成熟精子的线粒体膜电位和Ca~(2+)水平将会显著的下降(p <0.05)。此外,还检测了NT-4对牛成熟精子顶体反应及精子活率的影响,结果表明NT-4对牛成熟精子顶体反应及精子活率无影响(p>0.05)。这说明NT-4可以通过与牛成熟精子线粒体膜上的TrkB的结合影响牛成熟精子的Ca~(2+)水平及线粒体膜电位。
     3、NT-4及其受体TrkB在牛支持细胞中的表达
     牛成熟精子不能表达NT-4,NT-4蛋白是如何到达牛成熟精子上的呢?由于支持细胞是与精子直接接触的唯一的体细胞,因此,牛支持细胞可能是NT-4的分泌来源。首先,本试验比较了二步酶消化法和三步酶消化法对牛支持细胞的分离效果,结果显示差异不显著,都可以获得纯度大于90%以上的牛原代支持细胞。在此基础上,利用RT-PCR、Westernblot和细胞免疫荧光的方法发现牛支持细胞中可以表达NT-4及其受体TrkB。此外,通过免疫荧光和Western blot方法在牛支持细胞中分离得到的线粒体中发现了TrkB的蛋白,这充分说明TrkB不仅存在于支持细胞的膜上,而且还在于线粒体上。
     4、NT-4对牛睾丸支持功能的影响
     为了进一步验证支持细胞中的NT-4的作用,通过向牛原代支持细胞体外培养体系中加入不同浓度(0,50,100和300ng mL)的NT-4重组蛋白,检测了NT-4对牛支持细胞线粒体膜电位、Ca~(2+)水平、增殖和mRNA水平的影响。结果表明:发现50~300ng/mL NT-4可以显著的提高支持细胞内的Ca~(2+)水平(p <0.05),但对线粒体膜电位没有影响(p>0.05)。若在应用NT-4处理牛支持细胞过程中添加20ng mL的TrkB的阻断剂K252a,支持细胞的Ca~(2+)水平和线粒体膜电位均显著的下降(p <0.05)。以上结果说明NT-4可以与细胞膜上的TrkB结合影响细胞内的Ca~(2+)水平,NT-4还可以与线粒体膜上的TrkB结合影响线粒体的活性。此外,还研究了NT-4是否影响牛支持细胞的增殖,结果发现,不同浓度的NT-4对牛支持细胞的增殖无影响(p <0.05)。同时,还研究了NT-4对促卵泡素受体(folliclestimulating hormone receptor, FSHR)的表达,以及FSH对NT-4及其受体TrkB表达的影响。结果表明,50~300ng/mL的NT-4均可显著的提高支持细胞内FSHR的mRNA及蛋白的表达(p <0.05),且这种促进作用依赖于NT-4与TrkB结合。此外,5和50μg/mL的FSH处理支持细胞12h和24h均可以显著的提高NT-4及TrkB的mRNA的表达及NT-4的分泌(p<0.05)。
     综上所述,本文首次发现了牛成熟精子和支持细胞中NT-4及其受体TrkB的表达及功能。发现了(1)NT-4在促进牛成熟精子线粒体膜电位及Ca~(2+)水平等等方面有着重要的作用。(2)NT-4可以调节牛支持细胞中FSHR表达、线粒体膜电位及细胞内的Ca~(2+)水平。(3)牛支持细胞中NT-4及其受体TrkB的表达受FSH的调控。本研究的结果丰富了有关NT-4对牛雄性生殖影响的认识。
Recently, our studies have demonstrated that two members of neurotrophins, nerve growthfactor (NGF)and brain-derived neurotrophic factor(BDNF), exist in mature bull spermatozoa,and play a crucial role in the normal function of spermatozoa. Neurotrophin-4(NT-4)is anotherneurotrophic factor that signals predominantly through the TrkB receptor tyrosine kinase, but noreports of detection of NT-4and TrkB in bovine mature spermatozoa and Sertoli cells have beenpublished.
     1. Detection of NT-4mRNA and protein in mature bovine spermatozoa
     In the present study, the presence of NT-4in mature bull spermatozoa was investigated usingRT-PCR, immunofluorescence and Western blotting. The results showed that the TrkB transcriptswere present in bovine spermatozoa, but no RT-PCR evidence for NT-4transcripts in bovinespermatozoa. However, the NT-4and TrkB proteins were present in bovine spermatozoa, and theNT-4immunoreactivity was localized to the equatorial segment and midpiece of bovinespermatozoa, while the TrkB was localized to the midpiece and acrosome membrane of bovinespermatozoa.
     2. Study on the function of NT-4in mature bovine spermatozoa
     In addition, effects of NT-4on the mitochondria activity, Ca~(2+)level, viability and acrosomereaction of spermatozoa were studied. Significant increased mitochondria activity or Ca~(2+)levelof mature bovine spermatozoa were observed in response to300-500ng/mL or100-500ng/mLexogenous NT-4(p <0.05), respectively, in comparison with the control, while addition ofinhibitors (40ng mL k252a) specific for tyrosine protein kinase significantly blocked theincrease of mitochondria activity. However, NT-4had no effects on the viability or acrosomereaction of spermatozoa (p>0.05). Consequently, this study provided evidence that NT-4andTrkB proteins present in the mature bull spermatozoa and can influence the mitochondrialactivity and Ca~(2+)level of bovine spermatozoa through TrkB tyrosine kinase-dependent pathways.
     As there is no NT-4mRNA in bovine mature spermatozoa, where does the NT-4proteincome from and what is the function of it? Therefore, we hypothesized that NT-4may besynthesized in Sertoli cells, delivered to the target germ cells and exerts its function in theprocess of spermatogenesis. In the present study, two-step enzyme digest and three-step enzymedigest method were compared according to their isolation result. Results showed that nosignificant different cell density and purity were found and the purity of the isolated Sertoli cellswas all above90%. In addition, NT-4and its receptor TrkB mRNA and protein in bovine Sertolicells were found using RT-PCR, immunofluorescence and Western blotting. Moreover, TrkBproteins were also detected by immunofluorescence and Western blot analysis in themitochondria which was isolated from bovine Sertoli cells, which indicate that TrkB also exist inthe mitochondria.
     4. Study on the function of NT-4in bovine Sertoli cells
     In order to study the effect of NT-4on bovine Sertoli cells, significant increased Ca~(2+)level inbovine Sertoli cells was observed in response to50-300ng mL exogenous NT-4(p <0.05),while no different in the mitochondria activity were found (p>0.05), in comparison with thecontrol. However, the addition of inhibitors (20ng/mL k252a) specific for tyrosine protein kinasesignificantly decreases of Ca~(2+)level and mitochondria activity (p <0.05). All these resultsindicate that NT-4may regulate the Ca~(2+)level and mitochondrial activity of bovine Sertoli cellsthrough TrkB tyrosine kinase-dependent pathways in the cellular membrane and mitochondriaouter-membrane, respectively. Moreover, the effect of NT-4on proliferation of Sertoli cells wasalso studied. No significance differences of the proliferation rate were observed between thegroups treated with various concentrations of NT-4(p <0.05).Meanwhile, effect of NT-4on theexpression of FSHR mRNA and protein, FSH on the NT-4and TrkB mRNA expression werealso studied. Results showed that50-300ng mL NT-4can significantly stimulate the expressionof FSHR mRNA (p <0.05), and this effect was blocked by k252a, the inhibitor TrkB. Aftertreatment with5or50μg/mL FSH for24h, the expression of NT-4and TrkB mRNA and proteinwere significantly increased (p <0.05).
     In conclusion, the present study firstly demonstrated that the expression pattern of NT-4inmature bovine spermatozoa and Sertoli cells, and NT-4can influence the mitochondrial activityand concentration of Ca~(2+)in bovine spermatozoa and Sertoli cells through TrkB tyrosinekinase-dependent pathways. Meanwhile, NT-4can modulate the expression of FSHR in Sertoli cells and FSH can modulate the NT-4and TrkB expression. The findings define the maturebovine spermatozoa as one of the non-neuronal, endocrine targets of NT-4actions. These resultswill provide new insights and theory in the role of NTs in male reproduction system.
引文
[1] Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci,1996,19:289-317.
    [2] Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling,neuroprotection, neural repair. Annu Rev Neurosci,2001,24:1217-1281.
    [3] Huang EJ and Reichardt LF. Neurotrophins: roles in neuronal development andfunction. Annu Rev Neurosci,2001,24:677-736.
    [4] Levi-Montalcini R. The nerve growth factor35years later. Science1987,237:1154-1162.
    [5] Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor frommammalian brain. EMBO J,1982,1:549-553.
    [6] Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development.Cell,1997,88:347-354.
    [7] Thoenen H, Barde YA. Physiology of nerve growth factor. Physiol Rev,1980,60:1284-1335.
    [8] Indo Y. Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA):mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptortyrosine kinase for nerve growth factor. Hum Mutat,2001,18:462-471
    [9] Yeo GS, Connie Hung CC, Rochford J, et al. A de novo mutation affectinghuman TrkB associated with severe obesity and developmental delay. Nat,Neurosci,2004,7:1187-1189.
    [10] Egan MF, Kojima M, Callicott JH. The BDNF val66met polymorphism affectsactivity-dependent secretion of BDNF and human memory and hippocampalfunction. Cell,2003,112:257-269.
    [11] Donovan MJ, Lin MI, Wiegn P, et al. Brain derived neurotrophic factor is anendothelial cell survival factor required for intramyocardial vessel stabilization.Development,2000,127:4531-4540.
    [12] Kermani P, Rafii D, Jin DK, et al. Neurotrophins promote revascularization bylocal recruitment of TrkBC endothelial cells and systemic mobilization ofhematopoietic progenitors. J Clin Invest,2005,115:653-663.
    [13] Hallbook F. Evolution of the vertebrate neurotrophin and Trk receptor genefamilies. Curr Opin Neurobiol,1999,9:616-621.
    [14] Lee R, Kermani P, Teng KK, et al. Regulation of cell survival by secretedproneurotrophins. Science,2001,294:1945-1948.
    [15] Butte MJ, Hwang PK, Mobley WC, et al. Crystal structure of neurotrophin-3homodimer shows distinct regions are used to bind its receptors. Biochemistry,1998,37:16846-16852.
    [16] Rodriguez-Tebar A, Dechant G, Barde YA. Binding of brain-derivedneurotrophic factor to the nerve growth factor receptor. Neuron,1990,4:487-492.
    [17] He XL, Garcia KC. Structure of nerve growth factor complexed with the sharedneurotrophin receptor p75. Science,2004,304:870-875.
    [18] Murray SS, Perez P, Lee R, et al. A novel p75neurotrophin receptor-relatedprotein, NRH2, regulates nerve growth factor binding to the TrkA receptor. JNeurosci,2004,24:2742-2749.
    [19] Chao MV. Neurotrophins and their receptors: a convergence point for manysignalling pathways. Nat Rev, Neurosci,2003,4:299-309.
    [20] Huang EJ, Reichardt LF. Trk receptors: roles in signal transduction. Annu RevBiochem,2003,72:609-642.
    [21] Wiesmann C, Ultsch MH, Bass SH, et al. Crystal structure of nerve growthfactor in complex with the ligand-binding domain of the TrkA receptor. Nature1999,401:184-188.
    [22] Meakin SO, Suter U, Drinkwater CC, et al. The rat trk protooncogene productexhibits properties characteristic of the slow nerve growth factor receptor. ProcNatl Acad Sci USA,1992,89:2374-2378.
    [23] Clary DO, Reichardt LF. An alternatively spliced form of the nerve growthfactor receptor TrkA confers an enhanced response to neurotrophin3. ProcNatl Acad Sci USA,1994,91:11133-11137.
    [24] Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS,Carroll K, Spencer SD, Levinson AD. Human trks: molecular cloning, tissuedistribution, expression of extracellular domain immunoadhesins. J Neurosci1995,15:477-491.
    [25] Garner AS, Menegay HJ, Boeshore KL, et al. Expression of TrkB receptorisoforms in the developing avian visual system. J Neurosci,1996,16:1740-1752.
    [26] Strohmaier C, Carter, BD, Urfer R, et al.1996A splice variant of theneurotrophin receptor TrkB with increased specificity for brain-derivedneurotrophic factor. EMBO J,1996,15:3332-3337.
    [27] Rose CR., Blum R, Pichler B, et al. Truncated TrkB-T1mediatesneurotrophin-evoked calcium signalling in glia cells. Nature,2003,426:74-78.
    [28] Esteban PF, Yoon HY, Becker J. A kinase-deficient TrkC receptor isoformactivates Arf6-Rac1signaling through the scaffold protein tamalin. J Cell Biol2006,173:291-299.
    [29] Guiton M, Gunn-Moore FJ, Glass DJ, et al. Naturally occurring tyrosine kinaseinserts block high affinity binding of phospholipase C gamma and Shc to TrkCand neurotrophin-3signaling. J Biol Chem,1995,270:20384-20390.
    [30] Meakin SO, MacDonald JI, Gryz EA, et al. The signaling adapter FRS-2competes with Shc for binding to the nerve growth factor receptor TrkA: Amodel for discriminating proliferation and differentiation. J Biol Chem,1999,274:9861-9870.
    [31] Meyer-Franke A, Wilkinson GA, Kruttgen A, et al. Depolarization and cAMPelevation rapidly recruit TrkB to the plasma membrane of CNS neurons.Neuron,1998,21:681-693.
    [32] Du J, Feng L, Yang F, et al. Activity-and Ca (2C)-dependent modulation ofsurface expression of brain derived neurotrophic factor receptors inhippocampal neurons. J Cell Biol2000,150:1423-1434.
    [33] Du J, Feng L, Zaitsev E, et al. Regulation of TrkB receptor tyrosine kinase andits internalization by neuronal activity and Ca2C influx. J Cell Biol2003,163,385-395.
    [34] Levi-Montalcini R. The nerve growth factor35years later. Science,1987,237:1154-1162.
    [35] Shooter EM. Early days of the nerve growth factor proteins. Annu Rev Neurosci,2001,24:601-629.
    [36] Korsching S, Thoenen H. Nerve growth factor in sympathetic ganglia andcorresponding target organs of the rat: correlation with density of sympatheticinnervation. Proc Natl Acad Sci USA,1983,80:3513-3516.
    [37] Heumann R, Korsching S, Scott J, et al. Relationship between levels of nervegrowth factor (NGF) and its messenger RNA in sympathetic ganglia andperipheral target tissues. EMBO J,1984,3:3183-3189.
    [38] Davies AM, Bandtlow C, Heumann R, et al. Timing and site of nerve growthfactor synthesis in developing skin in relation to innervation and expression ofthe receptor. Nature,1987,326:353-358.
    [39] Campenot RB. Local control of neurite development by nerve growth factor.Proc Natl Acad Sci USA,1977,74:4516-4519.
    [40] Zhang X, Huang J, McNaughton PA. NGF rapidly increases membraneexpression of TRPV1heatgated ion channels. EMBO J,2005,24:4211-4223.
    [41] Kuruvilla R, Zweifel LS, Glebova NO, et al. A neurotrophin signaling cascadecoordinates sympathetic neuron development through differential control ofTrkA trafficking and retrograde signaling. Cell,2004,118:243-255.
    [42] Farinas I, Yoshida CK, Backus C, et al. Lack of neurotrophin-3results in deathof spinal sensory neurons and premature differentiation of their precursors.Neuron,1996,17:1065-1078.
    [43] Yee CL, Jones KR, Finger TE. Brain-derived neurotrophic factor is present inadult mouse taste cells with synapses. J Comp Neurol,2003,459:15-24.
    [44] Farinas I, Wilkinson GA, Backus C, et al. Characterization of neurotrophin andTrk receptor functions in developing sensory ganglia: direct NT-3activation ofTrkB neurons in vivo. Neuron,1998,21:325-334.
    [45] Coppola V, Kucera J, Palko ME, et al. Dissection of NT3functions in vivo bygene replacement strategy. Development,2001,128:4315-4327.
    [46] Farinas I, et al. Spatial shaping of cochlear innervation by temporally regulatedneurotrophin expression. J Neurosci2001,21:6170-6180.
    [47] Heumann R, Korsching S, Bandtlow C, et al. Changes of nerve growth factorsynthesis in nonneuronal cells in response to sciatic nerve transection.J CellBiol1987,104:1623-1631.
    [48] Schober A, Wolf N, Huber K, et al. TrkB and neurotrophin-4are important fordevelopment and maintenance of sympathetic preganglionic neuronsinnervating the adrenal medulla. J Neurosci,1998,18:7272-7284.
    [49] Roosen A et al. Lack of neurotrophin-4causes selective structural and chemicaldeficits in sympathetic ganglia and their preganglionic innervation. J Neurosci,2001,21:3073-3084.
    [50] Mannion RJ, Costigan M, Decosterd I, et al. Neurotrophins: peripherally andcentrally acting modulators of tactile stimulus-induced inflammatory painhypersensitivity. Proc Natl Acad Sci USA,1999,96:9385-9390.
    [51] Patapoutian A, Backus C, Kispert A, et al. Regulation of neurotrophin-3expression by epithelial-mesenchymal interactions: the role of Wntfactors.Science,1999,283:1180-1183.
    [52] Selby MJ, Edwards R, Sharp F, et al. Mouse nerve growth factor gene: structureand expression. Mol Cell Biol1987,7:3057-3064.
    [53] Bishop JF, Mueller GP, Mouradian MM. Alternate50exons in the ratbrain-derived neurotrophic factor gene: differential patterns of expressionacross brain regions. Brain Res Mol Brain Res,1994,26:225-232.
    [54] Lei L, Laub F, Lush M, et al. The zinc finger transcription factor Klf7isrequired for TrkA gene expression and development of nociceptive sensoryneurons. Genes Dev,2005,19:1354-1364.
    [55] Chang Q, Khare G, Dani V, et al. The disease progression of MeCp2mutantmice is affected by the level of BDNF expression. Neuron,2006,49:341-348.
    [56] Tao X, Finkbeiner S, Arnold DB, et al.1998Ca2C influx regulates BDNFtranscription by a CREB family transcription factordependent mechanism.Neuron1998,20:709-726.
    [57] Tao X, West AE, Chen WG, et al. A calcium-responsive transcription factor,CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron,200233:383-395.
    [58] Chen WG, West AE, Tao X, et al. Upstream stimulatory factors are mediators ofCa2C-responsive transcription in neurons. J Neurosci,2003,23:2572-2581.
    [59] Heymach Jr JV, Kruttgen A, et al. The regulated secretion and vectorialtargeting of neurotrophins in neuroendocrine and epithelial cells. J Biol Chem1996,271:25430-25437.
    [60] Mowla SJ, Farhadi, HF, Pareek S, et al. Biosynthesis and post-translationalprocessing of the precursor to brain-derived neurotrophic factor. J Biol Chem,2001,276:12660-12666.
    [61] Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphismaffects activity-dependent secretion of BDNF and human memory andhippocampal function. Cell,2003,112,257-269.
    [62] Lou H, Kim, SK, Zaitsev E, et al. Sorting and activity-dependent secretion ofBDNF require interaction of a specific motif with the sorting receptorcarboxypeptidase e. Neuron,2005,45:245-255.
    [63] Lee R, Kermani P, Teng KK, et al. Regulation of cell survival by secretedproneurotrophins. Science,2001,294,1945-1948.
    [64] Fahnestock M, Michalski B, Xu B, et al. The precursor pro-nerve growth factoris the predominant form of nerve growth factor in brain and is increased inAlzheimer’s disease. Mol Cell Neurosci,2001,18:210-220.
    [65] Harrington AW, Leiner B, Blechschmitt C, et al. Secreted proNGF is apathophysiological death-inducing ligand after adult CNS injury. Proc NatlAcad Sci USA,2004,101:6226-6230.
    [66] Pedraza CE, Podlesniy P, Vidal N, et al. Pro-NGF isolated from the human brainaffected by Alzheimer’s disease induces neuronal apoptosis mediated byp75NTR. Am J Pathol2005,166:533-543.
    [67] Huang EJ, Reichardt, LF. Trk receptors: roles in signal transduction. Annu RevBiochem,2003,72:609-642.
    [68] Inagaki N, Thoenen H, Lindholm D. TrkA tyrosine residues involved inNGF-induced neurite outgrowth of PC12cells. Eur J Neurosci,1995,7:1125-1133.
    [69] York RD, Molliver DC, Grewal SS, et al. Role of phosphoinositide3-kinase andendocytosis in nerve growth factor-induced extracellular signal-regulated. MolCell Biol,2000,20(21):8069-83
    [70] Benito-Gutierrez E, Garcia-Fernandez J, Comella JX. Origin and evolution ofthe Trk family of neurotrophic receptors. Mol Cell Neurosci,2006,31:179-192.
    [71] Minichiello L, Casagranda F. Tatche RS, et al. Point mutation in trkB causesloss of NT4-dependent neurons without major effects on diverse BDNFresponses. Neuron,1998,21:335-345.
    [72] Medina DL, Sciarretta C, Calella AM, et al. TrkB regulates neocortex formationthrough the Shc/PLCgamma-mediated control of neuronal migration. EMBO J,2004,23:3803-3814.
    [73] Qian X, Riccio A, Zhang Y, et al. Identification and characterization of novelsubstrates of Trk receptors in developing neurons. Neuron,1998,21,1017-1029.
    [74] MacDonald JI, Gryz EA, Kubu CJ, et al. Direct binding of the signaling adapterprotein Grb2to the activation loop tyrosines on the nerve growth factorreceptor tyrosine kinase, TrkA. J Biol Chem,2000,275:18225-18233.
    [75] Yano H, Cong F, Birge RB, et al. Association of the Abl tyrosine kinase with theTrk nerve growth factor receptor. J. Neurosci Res,2000,59:356-364.
    [76] Robinson KN, Manto K, Buchsbaum RJ. et al. Neurotrophin-dependent tyrosinephosphorylation of Ras guanine-releasing factor1and associated neuriteoutgrowth is dependent on the HIKE domain of TrkA. J Biol Chem,2005,280:225-235.
    [77] Chen ZY, Ieraci A, Teng H, et al. Sortilin controls intracellular sorting ofbrainderived neurotrophic factor to the regulated secretory pathway. JNeurosci2005,25:6156-6166.
    [78]Linggi MS, Burke, TL, Williams BB, et al. Neurotrophin receptor interactingfactor (NRIF) is an essential mediator of apoptotic signaling by the p75neurotrophin receptor. J Biol Chem,2005,280:13801-13808.
    [79] Hamanoue, M., Middleton, G., Wyatt, S., et al. p75-mediated NF-kappa Bactivation enhances the survival response of developing sensory neurons tonerve growth factor. Mol Cell Neurosci,1999,14:28-40.
    [80] Middleton G, Hamanoue M, Enokido Y, et al. Cytokine-induced nuclear factorkappa B activation promotes the survival of developing neurons. J Cell Biol,2000,148:325-332.
    [81] Yamashita T, Tucker KL, Barde YA. Neurotrophin binding to the p75receptormodulates Rho activity and axonal outgrowth. Neuron,1999,24:585-593.
    [82] Yamashita T, Fujitani M, Hata K, et al. Diverse functions of the p75neurotrophin receptor. Anat Sci Int,2005,80:37-41.
    [83] P. Roux and Philip A.Neurotrophin signaling through the p75neurotrophinreceptor. Barker Progress in Neurobiology,2002,67:203-233
    [84] Li C, Watanabe G, et al. Expression of nerve growth factor (NGF), and itsreceptors TrkA and p75in the reproductive organs of the adult malerats.Zoolog sci,2005,22:933-7.
    [85] Man Su Kim and Yuriy M.NGF activates NFAT-dependent tranSCsription viathe PI3K-Akt-GSK3β pathway in rat sensory neurons Usachev FASEB J, Apr2009;23:884.1.
    [86] Robert Kalb. The protean actions of neurotrophins and their receptors on the lifeand death of neurons. TRENDS in Neurosciences,2005,28:5-11
    [87] Anders Nykjaer, Ramee Lee, Kenneth K Teng et al. Sortilin is essential forproNGF induced neuronal cell death. Nature,2004,427:843-848.
    [88] Melinda G Arnett, Janelle M Ryals and Douglas E Wright. proNGF, sortilin, andp75NTR: potential mediators of injury-induced apoptosis in the mouse dorsalroot ganglion.Brain Res.2007,1183:32-42.
    [89] Westergaard UB, S rensen ES, et al. Functional organization of the sortilinVps10p domain. J Biol Chem,2004,279:50221-9
    [90] Frédéric Lebrun-Julien, Mathieu J Bertrand, et al. ProNGF induces TNF{alpha}-dependent death of retinal ganglion cells through a p75NTRnon-cell-autonomous signaling pathway. PNAS,2010,107:3817-3822.
    [91]Ayer-LeLievre C, Olson L, Ebendal T, et al. Nerve growth factor mRNA andprotein in the testis and epididymis of mouse and rat. PNAS,1988,85:2628-2632.
    [92]Seidl K, Buchberger A, Erck C. Expression of nerve growth factor andneurotrophin receptors in testicular cells suggest novel roles for neurotrophinsoutside the nervous system. Reproduction Fertility and Development,1996,8:1075-1087.
    [93]Jin W, Arai KY, Shimizu K, et al. Cellular localization of NGF and its receptorstrkA and p75LNGFR in male reproductive organs of the Japanese monkey,Macaca fuscata fuscata. Endocrine,2006,29:155-160.
    [94] Djakiew D, Pflug B, Dionne C, Onoda M. Postnatal expression of nerve growthfactor receptors in the rat testis. Biology of Reproduction,1994,51:214-221.
    [95] Muller D, Davidoff MS, Bargheer O, et al. The expression of neurotrophins andtheir receptors in the prenatal and adult human testis: evidence for functions inLeydig cells. Histochemistry and Cell Biology,2006,126:199-211.
    [96] Persson H, Ayer-Le Lievre C, So¨der O, et al. Expression of b-nerve growthfactor receptor mRNA in Sertoli cells downregulated by testosterone. Science,1990,247:704-707.
    [97] Schultz R, Metsis M, Ho¨ kfelt T, et al. Expression of neurotrophin receptors inrat testis. Upregulation of TrkA mRNA with hCG treatment. Molecular andCellular Endocrinology,2001,182:121-127.
    [98] Levanti MB, Germana`A, de Carlos F, et al. Effects of increased nerve growthfactor plasma levels on the expression of TrkA and p75in rat testicles. Journalof Anatomy,2006,208:373-379.
    [99] Cupp AS, Tessarollo L, Skinner MK. Testis developmental phenotypes inneurotropin receptor trkA and trkC null mutations: role in formation ofseminiferous cords and germ cell survival. Biology of Reproduction2002,66:1838-1845.
    [100] Perrard M, Vigier M, Damestoy A, et al. b-Nerve growth factor participates inan auto/paracrine pathway of regulation of the meiotic differentiation of ratspermatocytes. Journal of Cellular Physiology,2007,210:51-62.
    [101] Cheng CY, Mruk DD2004Sertoli-Sertoli and Sertoli-germ cell interactionsand their significance in germ cell movement in the seminiferous epitheliumduring spermatogenesis. Endocrine Reviews25747-806.
    [102] Svechnikov K, Izzo G, Landreh L, et al. Endocrine disruptors and Leydig cellfunction. Journal of Biomedicine Biotechnology.2010,2010:1-11
    [103] Lonnerberg P, Soder O, Parvinen M, et al. b-Nerve growth factor influencesthe expression of androgen-binding protein messenger ribonucleic acid in therat testis. Biology of Reproduction,1992,47:381-388.
    [104] Chen Y, Dicou E, Djakiew D. Characterization of nerve growth factorprecursor protein expression in rat round spermatids and the trophic effects ofnerve growth factor in the maintenance of Sertoli cell viability. Molecular andCellular Endocrinology,1997,127:129-136.
    [105] Jin W, Tanaka A, Watanabe G, et al. Effect of NGF on the motility andacrosome reaction of golden hamster spermatozoa in vitro. Journal ofReproduction and Development,2010,56:437-443.
    [106] Li C, Zheng L,Wang C, et al. Absence of nerve growth factor and comparisonof tyrosine kinase receptor A levels in mature spermatozoa fromoligoasthenozoospermic, asthenozoospermic and fertile men. Clinica ChimicaActa,2010,411:1482-1486.
    [107] Li CJ, Sun YF, Yi KL, et al. Detection of nerve growth factor (NGF) and itsspecific receptor (TrkA) in ejaculated bovine sperm, and the effects of NGF onsperm function. Theriogenology,2010,74:1615-1622.
    [108] Mutter D, Middendorff R, Davidoff MS. Neurotrophic factors in Q11the testis.Biomedical Reviews,1999,10:25-30.
    [109] Ip NY, Ibanez CF, Nye SH, et al. Mammalian neurotrophin-4: structure,chromosomal localization, tissue distribution, and receptor specificity.PNAS,1992,89:3060-3064.
    [110] Funakoshi H, Frisen J, Barbany G, et al. Differential expression of mRNAs forneurotrophins and their receptors after axotomy of the sciatic nerve. Journal ofCell Biology,1993,123:455-465.
    [111] Levine E, Cupp AS, Skinner MK. Role of neurotropins in rat embryonic testismorphogenesis (cord formation). Biology of Reproduction,2000,62:132-142.
    [112] Snider WD. Functions of the neurotrophins during nervous systemdevelopment: what the knockouts are teaching us.1994, Cell,77:627-638.
    [113] Liebl DJ, Klesse LJ, Tessarollo L, et al. Loss of brain-derived neurotrophicfactor-dependent neural crest-derived sensory neurons in neurotrophin-4mutant mice. PNAS,2000,97:2297-2302.
    [114] Aquila S, Gentile M, Middea E, et al. Autocrine regulation of insulin secretionin human ejaculated spermatozoa.Endocrinology,2005,146:552-557.
    [115] Amory JK, Bremner W. Endocrine regulation of testicular function in men:implications for contraceptive development. Molecular and CellularEndocrinology,2001,182:175-179.
    [116] Russo MA, Giustizieri ML, Favale A, et al. Spatiotemporal patterns ofexpression of neurotrophins and neurotrophin receptors in mice suggestfunctional roles in testicular and epididymal morphogenesis. Biology ofReproduction,1999,61:1123-1132.
    [117] Robinson LL, Townsend J,Anderson RA. The human fetal testis is a site ofexpression of neurotrophins and their receptors: regulation of the germ celland peritubular cell population. Journal of Clinical Endocrinology andMetabolism,2003,88:3943-3951.
    [118] Cupp AS, Tessarollo L, Skinner MK. Testis developmental phenotypes inneurotropin receptor trkA and trkC null mutations: role in formation ofseminiferous cords and germ cell survival. Biology of Reproduction,2002,66:1838-1845.
    [119] Artico M, Bronzetti E, Saso L, et al. Immunohistochemical profile of someneurotransmitters and neurotrophins in the seminiferous tubules of rats treatedby lonidamine. European Journal of Histochemistry,2007,51:19-24.
    [120] Cupp AS, Uzumcu M, Skinner MK. Chemotactic role of neurotropin3in theembryonic testis that facilitates male sex determination. Biology ofReproduction,2003,68:2033-2037.
    [121]Clement TM, Bhandari RK, Sadler-Riggleman I, et al. SRY directly regulatesthe neurotrophin3promoter during male sex determination and testisdevelopment in rats. Biology of Reproduction,2011,85:277-284.
    [122] Russo MA, Odorisio T, Fradeani A,et al. Low-affinity nerve growth factorreceptor is expresse during testicular morphogenesis and in germ cells atspecific stages of spermatogenesis. Molecular Reproduction and Development,1994,37:157-166.
    [123] Hempstead BL. Dissecting the diverse actions of pro-and mature neurotro-phins.Curr Alzheimer Res,2006,3:19-24.
    [124] Reichardt LF. Neurotrophin-regulated signaling pathways. Philos Trans R SocLond B Biol Sci,2006,361:1545-1564.
    [125] Kawamura K, Kawamura N, Fukuda J, et al. Regulation of preimplantationembryo development by brain-derived neurotrophic factor. Dev Biol,2007,311:147-158.
    [126] Passananti C, Corbi N, Paggi MG. The product of Zfp59(Mfg2), a mouse geneexpressed at the spermatid stage of spermatogenesis, accumulates in the spermnuclei. Cell Growth Differ,1995,6:1037-1044.
    [127] Ostermeier GC, Miller D, Huntriss JD, et al. Delivering spermatozoan RNA tothe oocyte. Nature,2004,429:154.
    [128] Svoboda P, Stein P and Hayashi H, et al. Selective reduction of dormantmaternal mRNAs in mouse oocytes by RNA interference. Development,2000,127:4147-4156.
    [129] Zheng LW, Li CJ, Sun YF, et al. Expression of brain-derived neurotrophicfactor in mature sperm from fertile and infertile men. Clin Chim Acta,2011,412:44-47.
    [130] Xu C, Rigney DR, Anderson DJ, et al. Two-dimensional electrophoretic profileof human sperm membrane proteins[J]. J Androl,1994,15:595-603.
    [131]董华,王军军,应天翼.一种同时提取细胞总RNA和总蛋白的方法[J].生物技术通迅,2005,16(6):649-650.
    [132]沙里金.牛成熟精子全蛋白制备方法的建立及鲜冻精差异蛋白的检测[D].2007,吉林农业大学.
    [133] Li CJ, Sun YF, Yi KL, et al. Detection of nerve growth factor (NGF) and itsspecific receptor (TrkA) in ejaculated bovine sperm, and the effects of NGF onsperm function. Theriogenolgy,2010,74:1615-1622.
    [134] Berkemeier LY, Winslow JW, Kaplan DR. Neurotrophin-5: a novelneurotrophic factor that activates trk and trkB. Neuron,1991,7:857-866.
    [135] Ip NY, Ibanez CF, Nye SH, et al. Mammalian neurotrophin-4: structure,chromosomal localization, tissue distribution, and receptor specificity. ProcNatl Acad Sci USA,1992,89:3060-3064.
    [136] Timmusk T, Belluardo N, Metsis M. Wide spread and developmentallyregulated expression of neurotrophin-4mRNA in rat brain and peripheraltissues. Eur J Neurosci,1993,5:605-613.
    [137] Zhang SH, Zhou XF, Deng YS. Measurement of neurotrophin45in rattissues by a sensitive immunoassay. J Neurosci Methods,1999,89:69-74.
    [138] Muller D, Middendorff R, Davidoff MS. Neurotrophic factors in the testis.Biomed Rev,1999,10:25-30.
    [139] Davidoff M, Schulze W, Middendorff R. The Leydig cell of the human testis-anew member of the neuroendocrine system. Cell Tissue Res,1993,211:429-439.
    [140] Seidl K, Buchberger A, Erck C. Expression of nerve growth factor andneurotrophin receptors in testicular cells suggest novel roles for neurotrophinsoutside the nervous system. Reprod Fertil Dev,1996,8:1075-1087.
    [141] Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R SocLond B Biol Sci,2006,361:1545-1564.
    [142] Chao MV. Neurotrophins and their receptors: a convergence point for manysignalling pathways. Nat Rev Neurosci,2003,4:299-309.
    [143] Sousa AP, Amaral A, Baptista M, et al. Not all sperm are equal: functionalmitochondria characterize a subpopulation of human sperm with betterfertilization potential. PLoS ONE6, e18112. DOI:10.1371/journal.pone.0018112,2011.
    [144] Hawthorne SK, Goodarzi G, Bagarova J, et al. Comparative genomics of thesperm mitochondria-associated cysteine-rich protein gene. Genomics,2006,87:382-391.
    [145] Ursini F,Heim S, Kiess M, et al. Dual function of the selenoprotein PHGPxduring sperm maturation. Science,1999,285:1393-1396.
    [146] Masamichi Doiguchi, Takayuki Mori, Kiyotaka Toshimori, et al. Spergen-1Might Be an Adhesive Molecule Associated with Mitochondria in the MiddlePiece of Spermatozoa. Developmental Biology,2002,252:127-137.
    [147] Rodriguez-Tebar A, Denchant G, Barde YA. Binding of brain-derived487-492.
    [148] Meghan A Hopkins, Mary P Rosser, Prabhavathi B, et al. Interaction of NT-4and BDNF with gp145trkb receptor: effect on cellular metabolism Journal ofNeuroscience Methods,1997,72:167-174.
    [149]温叶飞,周艳荣,阎新龙,等.小鼠睾丸支持细胞的生物学特性研究[J].生物技术通讯,2007,18(2):236-239.
    [150]刘闯,赵晓娥,马保华,等.新生犊牛睾丸支持细胞的高效分离培养与鉴定.西北农林科技大学学报,2001,38(1):7-10.
    [151] O’Shaughnessy PJ, Morris ID, Huhtaniemi I, et al. Role of androgen andgonadotrophins in the development and function of the Sertoli cells andLeydig cells: data from mutant and genetically modified mice. Mol. Cell.Endocrinol,2009,306:2-8.
    [152] Cheng CY and Mruk DD. A local autocrine axis in the testes that regulatesspermatogenesis. Nat. Rev. Endocrinol,2010,6:380-395.
    [153] Mays-Hoopes LL, Bolen J, Riggs AD, et al. Preparation of spermatogonia,spermatocytes, and round spermatids for analysis of gene expression usingfluorescence-activated cell sorting. Biol. Reprod,1995,53:1003-1011.
    [154] Lassalle B, Ziyyat A, Testart J, et al. Flow cytometric method to isolate roundspermatids from mouse testis. Hum. Reprod,1999,14:388-394.
    [155] Cowden RR and Curtis SK. Acridine orange as a supravital fluorochromeindicating varying degrees of chromatin condensation. Histochemistry,1974,40:305-310.
    [156] Kubota H, Avarbock MR, and Brinster RL. Spermatogonial stem cells sharesome, but not all, phenotypic and functional characteristics with other stemcells. Proc. Natl. Acad. Sci. USA,2003,100:6487-6492.
    [157]武海军.犊牛睾丸支持细胞的分离培养及其对淋巴细胞的影响[D]陕西杨凌:西北农林科技大学,2007.
    [158]何大维,李旭良,魏光辉,等.精原干细胞在支持细胞饲养层上的长期增殖特征[J].生殖与避孕,2006,26(6):323--327.
    [159]李恩中,李德雪,张世庆,等.以支持细胞为饲养层培养小鼠精原干细胞[J].动物学报,2006,52(4):774-779.
    [160]上官芳芳,史小林. Sert oli细胞对体外培养的大脑皮质神经元的营养作用[J].首都医科大学学报,2003,24(3):247-250.
    [161] Luca G, Cal vitt i M, Neri L M, et al. Mit og enic ef f ect s of rat Sertoli cellson adult h om ol ogou s is let cells: in v it ro and in vivo studies [J]. El sevier,2001:681-682.
    [162] Pineau C, Dupaix A, J gou B, et al. The co-culture of Sertoli cells and Germcel ls: Appli cat ions in t oxi cology [J]. Toxicology in Vitro,1999,13(4):513-520.
    [163] Sun J, Zhong L, Zhu Y, et al. Research on the isolation of mouse Leydig cellsusing differential digestion with a low concentration of collagenase.[J]Reprod.Dev,2011,57:433-436.
    [164]杨润军,许尚忠,李俊雅,等.小鼠睾丸支持细胞和胰岛共培养的研究[J].畜牧兽医学报,2009,40(1):44-51.
    [165]丁训诚,蒋学之,顾祖维,等.男性生殖毒理学[M].北京:中国人口出版社,1997
    [166] Dufour JM, Rajotte RV, Seeberger K, et al. Long_term survival of neonatalporcine Sertol i cel ls in non_immunosuppressed rat s [J].Xenotransplantat ion,2003,10(6):577-586.
    [167] Duan XQ, Song CH, Xu P, et al. Seperation and ident if ication of rat Fasl+sertoli cells[J]. Basic and Clinical Medicine,2004,24(1):88-91.
    [168]陈咏梅,叶世隽.大鼠睾丸支持细胞雄激素结合蛋白mRNA在生精周期中的表达[J].中国医学科学院学报,2000,22(3):287-289.
    [169] Patapoutian A, Reichardt LF. Trk receptors: Mediators of neurotrophin action.Curr. Opin. Neurobiol,2001,11:272-280.
    [170] van der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases andtheir signal transduction pathways. Annu. Rev. Cell Biol,1994,10:251-337.
    [171] Segal RA, Greenberg ME. Intracellular signaling pathways activated byneurotrophic factors. Annu. Rev. Neurosci,1996,19:463-489.
    [172] Middlemas DS, Lindberg RA, Hunter T. TrkB, a neural receptorprotein-tyrosine kinase: Evidence for a full-length and two truncated receptors.Mol. Cell Biol,1991,11:143-153.
    [173] Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development andfunction. Annu. Rev. Neurosci,2001,24:677-736.
    [174] Klein R., Conway D, Parada LF, et al. The trkB tyrosine protein kinase genecodes for a second neurogenic receptor that lacks the catalytic kinase domain.Cell,1990,61:647-656.
    [175] Rose CR, Blum R, Pichler B, et al. Truncated TrkB-T1mediatesneurotrophinevoked calcium signalling in glia cells. Nature,2003,426:74-78.
    [176] Baxter GT, Radeke MJ, Kuo RC, et al. Signal transduction mediated by thetruncated trkB receptor isoforms, trkB.T1and trkB.T2.[J].Neurosci,1997,17:2683-2690.
    [177] Falk R, Wiedemann, Detlef Siemen, et al. The neurotrophin receptor TrkB iscolocalized to mitochondrial membranes. The International Journal ofBiochemistry, Cell Biology,2006,38:610-620.
    [178] Dias JA, Lindau-Shepard B, HauerC, et al. Human follicle stimula-tinghormone structure-activity relationships. Biol.Reprod,1998,58:1331-1336.
    [179] SALAS C, JULIO-PIEPER M, VALLADARES M, et al. Nerve GrowthFactor-Dependent Activation of trkA receptors in the human ovary results insynthesis of follicle-stimulating hormone receptors and estrogen secretion [J].J Clin Endocrinol Metab,2006,91(6):2396-2403.
    [180] DISSEN GA, ROMERO C, HIRSHFIELD AN, et al. Nerve growth factor isrequired for early follicular development in the mammalianovary[J].Endocrinology,2001,142:2078-2086.
    [181] Weng Q, Shi Z, Watanabe G et al.Immunolocalization of NGF and itsreceptors trkA and p75in the oviducts of golden hamsters during the estrouscycle. Exp Anim,2009,58(5):543-6.
    [182] Wang CQ, Zhang J, Sun YF et al. Expression of neurotrophin4and itsreceptor tyrosine kinase B in reproductive tissues during the follicular andluteal phases in cows. Asian-Australian journal of animal science,2011,24(3):336-343.
    [183] Roberts KP, Zirkin BR. Androgen regulation of spermatogenesis in therat[J].Ann N Y Acad Sci,1991,637(1):99-106.
    [184] Kliesch S, Penttila TL, Gromoll J, et a1. FSH receptor mRNA is expressedstage-depedently during rat spermatogenesis[J]. Mol Cell Endoerinol,1992,84(3):45-51.
    [185] Shigetada Nakanishi and Makoto Okazawa. Membrane potential-regulatedCa2+signalling in development and maturation of mammalian cerebellargranule cells. J Physiol,2006,575:389-395.
    [186] Sharpe RM, Kerr JB, Mckinnell C, et al. Temporal relationship betweenandrogen-dependent changes in the volume of seminiferous tubule fluid,lumen size and seminiferous tubule protein secretion in rats [J]. J Reprod Fertil,1994,101:193-198.
    [187] Nemere I, Norman AW. Steroid hormone actions at the plasma membrane:induced calcium uptake and exocytotic events [J]. Mol Cell Endocrinol,1991,80:165-169.
    [188] Huang HF, Nieschlag E. Suppression of the intratesticular testosterone isassociated with quantitative changes in spermatogonial populations in intactadult rats [J]. Endocrinology,1986,118:619-627.
    [189] Abel M, Baban D, Lee S, et al. Effects of follicle stimulating hormone ontesticular mRNA transcript levels in the hypogonadal mouse. Journal ofMolecular Endocrinology,2009,42:291-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700