叶黄素循环对茶树光抑制破坏的防御及其关键酶基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树是我国重要的经济作物之一,茶叶为我国主要出口创汇农产品。我国茶区分布的气候范围南起热带季风气候北至暖温带季风气候;地形分布复杂,包括平原、丘陵、山地和高原。这些地区经常出现强光、季节性干旱、高(低)温等逆境,且茶树具有耐荫、喜湿的习性,因此加剧了光抑制程度,导致茶叶产量和品质降低。而有关茶树光抑制和光保护机制的研究非常缺乏。目前关于叶黄素循环在植物光保护中的作用及其关键酶—紫黄素脱环氧化酶(VDE)基因的结构及其调控是研究者关注的焦点。它对于阐明植物光抑制和光保护机理,以及提高光能转化利用效率具有重要意义。而且关于木本植物VDE基因的全长cDNA及其蛋白特征未见报道,特别是VDE中的Lipocalin蛋白特征区是否为影响催化活性的主要结构有待证实。为此本研究以茶树(品种为福鼎大白茶和龙井43)为试材,重点进行如下研究:一是关于茶树的光抑制及其恢复、叶黄素循环在茶树光保护中地位及其在自然强光和其它逆境中的表现特征,二是对茶树VDE进行全长cDNA克隆、序列的生物信息学分析和体外表达,并在此基础上对编码VDE蛋白中Lipocalin蛋白特征区的核酸序列进行体外定点突变、表达和活性鉴定。从而一方面进一步明确茶树光抑制机理,确立叶黄素循环在茶树光保护中的地位,并为茶树栽培和通过生物技术途径调控茶树体内的叶黄素循环、提高其抗逆能力和光合效率提供科学依据;另一方面将为其它木本植物的VDE研究奠定理论基础,同时进一步发展和丰富光合作用的光抑制理论。主要结果如下:
     1.在没有其它逆境存在时,晴天自然光强下,连体叶片的光系统Ⅱ(PSⅡ)的光化学效率(F_v/F_m)自8:00时开始,随着光强的增加,由最高值逐渐降低,并于13:00时降到最低,福鼎大白茶和龙井43的最低值分别比最高值降低了7.9%和10.2%;福鼎大白茶和龙井43在14:00时的表观量子效率(AQY)比9:00时的降低了25.7%和28.9%,说明自然强光下茶树经常发生光抑制;而当光量子通量密度(PFD)超过1250μmol.m~(-2).s~(-1)时,两个品种的F_v/F_m和PSⅡ潜在活性(F_v/F_o)就降低,证明茶树在晴天比较容易发生光抑制。发生光抑制时,它们的气孔导度和胞间CO_2浓度并未降低,表明在没有其它逆境存在时,自然强光是导致茶树光抑制现象发生的主要原因。自然光下,13:00时以后,F_v/F_m随着光强的减弱又逐渐升高,到18:00时,几乎接近上午最高值;
    
    一
    离体叶片的光抑制程度随着强光处理时间的延长而加重,160 min后,福鼎大
    白茶和龙井 43的 Fv”.比未处理前分别降低 25.0%和 26.2%,Fv”。分别降低
    65.l%和 67.5%,但是当光强减弱或在弱光下恢复2~4 h,又接近正常值,因
    此仅强光逆境引起的光抑制是可逆的。干旱胁迫不仅加重茶树光合作用的光抑
    制程度,而且降低其恢复能力。在同一条件下,龙井43所受的光抑制和弱光
    下恢复程度均比福鼎大白茶低,可见茶树所受光合作用的光抑制程度还因品种
    而异。
     同等条件下,茶树龙井 43的倒 2、3、4叶的 Fv/F。值分别比各自的对照降
    低了35.5%、25.6%和6.2%,说明茶树幼叶比成熟度高的功能叶更易发生光抑
    制。
     2.采取丙酮法提取茶树鲜叶中的叶黄素循环组分,分别在15C、22t和
    30oC室温下,用 Spherisorb Ca。(sum,250 nnnX4.6。)色谱柱,乙睛:甲
    醇(85:15)和甲醇:乙酸乙酯(68:32)为流动相,线性洗脱,在445 urn
    下检测。结果表明,不同温度条件下,高效液相色谱法都能够从茶树鲜叶提
    取物中检测到紫黄素(V人环氧玉米黄素u)和玉米黄素u人 而且分离效
    果好,重现性和精密度也很高,表明建立了稳定可靠的的茶树叶黄素循环组
    分测定方法。
     3.经叶黄素循环抑制剂 一二硫苏糖醇(DTT)处理的茶树叶片,以 850
    u mol.丫’.s-‘的叮D照射120 min后,福鼎大白茶的叶黄素循环组分中的(A+Z)
    含量降低了76.5儿结果导致非光化学碎灭门PQ入F丫F旷光化学碎灭系数…P入
    PS 11实际光化学量子效率(h PS 11R)和光合电子传递速率uTR)明显下降,
    而 F。显著上升,暗恢复后 Fv”。恢复程度小于未经 DTT处理的叶片,证明叶黄
    素循环是茶树光保护的主要途径。
     叶黄素循环库w八亿)受季节影响较大,具体表现为夏季小,秋、冬季
    大,而一天中的日变化不明显。在季节变化中,V.A和Z的含量不受叶黄素
    循环库大小的影响。遮荫不仅使叶黄素循环库减小,而且大幅度降低了 A《的
    含量,在6、10月,福鼎大白茶分别降少了88.8%~96.3%和85.1%~96.1%,
    龙井43分别降少了 85.4%~98.8%和 74.7%~92.9%。
     在晴天田间自然光照条件下,叶黄素循环的脱环氧化程度kA+Z*(V+A+Z门
    与 F/F.呈相反的日变化趋势,表明茶树叶片光抑制的发生,是依赖叶黄素循
    环的保护性反应。冬季叶黄素循环的脱环氧化程度比夏季大;干旱胁迫下叶黄
     n
    
    一
    素循环的脱环氧化程度和NPQ都较对照大:遮荫茶树移到强光下,叶黄素循环
    脱环氧化程度比自然光下生长的叶片明显增大,尤
Tea plant(CameIlia Sinensis (L.) O. Kuntzes) is one of the important industrial crops and export agricultural products in China. The scope of climate which tea areas distributes is between the tropical monsoon climate zone and warm temperate zone in China, and the topography is complex , with plains, hills, high mountains and plateaus. The stress conditions, including strong light intensity, seasonal drought, high or low temperature, often happen in tea areas, additionally, tea plant has habits and characteristics of resisting shade and tending to humid , which leads to photoinhibition of tea plant more easily, and decreases the yield and quality of tea. However, no report of photoinhibition and photoprotection in tea plant is found. At present, the role of xanthophyll cycle in plant photoprtect and the regulation of its key enzyme, violaxanthin de-epoxidase (VDE), are hot spot of study focused on. People mainly utilize methods of molecular biology to study xanthophyll cycle, despite of involving in many oth
    er methods. But, up to now, the cDNA of VDE gene and the features of VDE protein in xylophyta yet have not been found. In addition, it is unknown that whether lipocalin protein domain in VDE has functional signification with respect to catalytic activity.
    Here we place emphasis on studying two aspects in tea plant (cultivars: Fuding-dabaicha and longjing 43): one is of the photoinhibition and its recovery, the role of xanthophyll cycle in photoprotection and the characteristics of it contents change in nature light and in stress conditions, another is of the cloning, analysis with bioinformatics, site-mutated, expression and identification of activity in vitro of the cDNA of VDE gene. All of these further expend the theory of tea plant photosynthesis, and open new opportunities for possible enhancing stress conditions tolerance and photosynthetic efficiency in cultivation and breeding of tea plant. At the same time, these supply the references for the studies on VDEs in other xylophyta, further perfect the theory of plant photoinhibition and give more conclusive evidences for the important position of xanthophyll cycle in plant photoprotection. The significant results are showed as following:
    , 1. With increase of photon flux density(PFD) since 8:00, photochemical efficiency of PS II(Fv/Fm) of intact conjoined leaves of tea plant decreased gradually, and
    
    
    reached the lowest at 13:00, with Fv/Fm s of Fuding-dabaicha(FD) and Longjing 43(LJ) at 13:00 being lower by 7.9% and 10.2% than these at 8:00 respectively, at the same time, apparent quantum yield(AQY) of tea plant decreased notably after exposed to midday high irradiance, with AQYs of FD and LJ at 14:00 being lower by 25.7% and 28.9% than these at 9:00 respectively, under natural light in sunny day without other stress conditions. it indicates that photoinhibition of photosynthesis often occurs in tea plant under natural high light intensity. Fv/Fm s and potential activities of PS II (Fv/Fo)of FD and LJ decreasing when PFD at 1250 u mol.m-2.s-1 indicate photoinhibition of photosynthesis occurs in tea plant easily. The occurrence of photoinhibition with no decreases of stomatal conductance(Gs) and intercellular CO2 concentration(Ci) shows that natural high light intensity is the essential cause of photoinhibition in tea plant. The extent of photoinhibition of leaf disks of tea plant became more serious with
     the time of strong light treatment extending, with Fv/Fm s of FD and LJ decreased by 25.0% and 26.2% respectively, and FV/Fo s of FD and LJ decreased by 65.1% and 67.5% Respectively, after exposed to high artificial light intensity for 160 minutes. It indicates that the photoinhibition only caused by strong light is reversible , with the facts that Fv/Fm went up gradually after 13:00,and was close to the maximum at 18:00 in nature, and that Fv/Fm nearly reached to the untreated(control) after recovery of 2~4h in weak light in artificial light.
    Drought not only made the extent of photoinhibition of tea plant serious but also made the ability
引文
1. Powles SB.Photoinhibition of photosynthesis induced by visible light, Annu.Rev.Plant Physiol.,1984,35:15~44.
    2. Aro EM, Virgin I, Andersson B.Photoinhibition of photosystem Ⅱ:inactivation, protein damage and turn over,Biochim.Biophys.Acta,1993,1143:113~134.
    3. Long SP, Humphrises et al. Photoprotection of photosynthesis in nature. Annu.Rev. Plant Physiol. Plant Mol. Biol., 1994,45:633~662.
    4. Demmig Adams, Adams Ⅲ WW. Photoprotection and other responses of plants to high light stress, Annu. Rev.Plant Physiol. Plant Mol. Biol.,1992,43:599~626.
    5. Krause GH, Weis E.Chlorophyll fluorescence and photosynthesis:the basics, Annu. Rev. Plant Physiol.Plant Mol. Biol.,1991,42:313~349.
    6. Schreiber U, Schliwa V, Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res.,1986,10:51~62.
    7. Van kooten O, Snd JFH.The use of chlorophyll fluorescence nomenclature in plant stress physiology,Photosynth. Res.,1990,25:147~150.
    8. quist G, Chow WS, Andersson JM. Photoinhibition of photosynthesis represent a mechanism for the long-term regulation of photosynthesis Ⅱ,Planta,1992,186:450~463.
    9. Schansker G, Van Rensen JSV. Performance of active photosystem Ⅱ centers in photoinhibition pea leaves, Photosynth.Res.,1999,62:175~184.
    10. Demmig B,Bj rkman O.Comparison of the effects of excessive light on chlorophyll fluorescence(77K) and photon yield of O_2 evolution in leaves of higher plants, Planta, 1987,171:171~184.
    11. Ogren E, Evans JR. Photoinhibition in situ in six species of Eucalyptus,Aust.Plant Physiol.,1992,19:223~232.
    12.郭连旺,许大全,沈允钢.田间棉花叶片光合效率中午降低的原因,植物生理学报,1994,20(4):360~366.
    13.张振贤等.生姜光合效率日变化的研究,园艺学报,2000,27(2):107~111.
    14.赵世杰,许长成,孟庆伟等,田间小麦叶片光合作用的光抑制,西北植物学报,1998,18(4):521~526.
    15.郭延平,张良诚,洪双松等.温州蜜柑叶片光合作用的光抑制,园艺学报,1999,26(5):281~286.
    16. Congming Lu,Jianhua Zhang.Effects of water stress on photosynthesis,
    
    
    chlorophyll fluorescence and photoinhibiton in wheat plants. Aust.J.Plant Physiol., 1998,25:883~892.
    17.许长成,李德全,邹琦等.干旱条件下冬小麦不同叶龄叶绿素荧光及叶黄素循环组分的变化,植物生理学报,1999,25(1):29~37.
    18. Valladares F,Pearcy RW.Interactions between water stress,sun-shade acclimation,heat tolerance and photoinhibition in the Sclerophyll heteromeles arbutifolia,Plant Cell and Environ.,1997,20:25~36.
    19. Osmond CB. What is photoinhibition? Some insights from comparison of shade and sun plants,Photoinhibition of photosynthesis: from molecular mechanisms to the field(editors:Baker NR,Bowyer JR),Bios Scientifics press,Oxford, UK, 1994, 1~24.
    20.罗俊,张木清,吕建林等.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响,福建农业大学学报,2000,29(1):18~22.
    21.李平,李晓萍,陈贻竹等.低温光抑制胁迫对不同抗冷性的籼稻抽穗期剑叶叶绿素荧光的影响,中国水稻科学,2000,14(2):88~92。
    22. Da Matta FM, Maestri M. Photoinhibition and recovery of photosynthesis in coffea orabica and C. canephora,Photosynthetica,1997,34(3):439~446.
    23.洪双松,许大全.小麦和大豆叶片荧光参数对强光响应的差异,科学通报,1997,42(7):753~756.
    24.靳月华,陶大立.光系统Ⅱ的光抑制和超氧的产生,植物学报,2000,42(1):10~14.
    25.徐志防,罗广华,等。强光及活性氧对大豆光合作用的影响,植物学报,1998,41(5):862~866.
    26. Muller P, Xiao-ping Li, Niyogi KK. Non-photochemical quenching. A response to excess light energy, Plant Physiol.,2001,125:1558~1566.
    27. Gilmore AM.Mechanistic aspects of xanthophyll cycle-dependent photo-protection in higher plant chloroplasts and leaves,Physiol.Plant.,99:197~209.
    28.武海,许大全.依赖叶黄素循环的非辐射能耗散在防御珊瑚树叶片光抑制破坏中的作用,植物生理学报,1993,19(2);181~187.
    29.季本华,焦德茂.水稻抗光破坏能力与D1蛋白和叶黄素循环的关系,科学通报,2000,45(5);510~515。
    30. Jahns P,krause H.Xanthophyll cycle and energy-dependent fluorescence quenching in leaves from pea plants grown under intermittent light, Planta
    
    1994,192:176~182.
    31. Yamamoto HY. Biochemistry of the violaxanthin cycle in higher plants, Pure and Appl. Chem.,1979,51:639~648.
    32. Tbayer SS, Bj rkman O. Leaf xanthophyll content and composition in sun and shade determined by HPLC, Photosynth. Rea, 1990,23:331~343.
    33. Thayer SS, Bjorkman O. Carotenoid distribution and deepoxidase in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize,Photosynth. Res.,1992,33:213~225.
    34. Lee AI, Thornber JP. Analysis of the pigment stioichiometry of pigment-protein complexes from barley(Hordemu vulgare)(The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem Ⅰ and photosystem Ⅱ), Plant Physiol.,1995,107:565~574.
    35. Juhler RK, Andreasson E et al. Composition of photosystem pigments in thylakoid membrane vesicles from spinach, Photosynth. Res.,1993,35:171~178.
    36. Eskling M,Arvidsson PO,kerlund HE. The xanthophyll cycle, its regulation and components, Physiol. Plant.,1997,100:806~816.
    37. Philip Y, Young A. Occurrence of the carotenoid lactucaxanthin in higher plant LHCⅡ, Photosynth. Res.,1995,43:273~282.
    38. Ruban AV, Young AJ, Pascal AA et al. The effect of illumination on the xanthophyll composition of the photosystem Ⅱlight-harvesting complexes of spinach thylakoid membranes,Plant Physiol.,1994,104:227~234.
    39. Pete GF,Thornber JP. Biochemical composition and organization of higher plant photosystem Ⅱ light-harvesting pigment-proteins,J.Bio.Chem.,1991,266:16745~16754.
    40. Yamamoto HY, Bassci R. The light reactions(editors:Ort DR, Yokum CF),Kluwer Academic Publishers, Norwell, MA, 1996,539~563.
    41. Li Xiao-Ping, Bj kmam O, Shlh C et al. A pigment-binding protein essential for regulatin of photosynthetic light harvesting, Nature, 2000,403:391~395.
    42. Aspinall-□Dea M, Wentworth M, Pascal A et al.In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants, Proc.Natl. Acad.Sci. USA, 2002,99:16331~16335.
    43. Arvidsson PO, Carlsson M, Stefnsson H et al. Violaxanthin accessibility and temperature dependency for de-epoxidase in spinach thylakoid membranes,Photosynth. Res.,1997,52(1):39~48.
    
    
    44. Ruban AV, Pascal A, Lee PJ et al. Molecular configuration of xanthophyll cycle carotenoids in photosystem Ⅱ antenna complexes,J.of Bio.Chem.,2002,227(45),42937~42942.
    45. Verhoeven AS, Adams Ⅲ WW,Demmig-Adams B et al. Xanthophyll cycle pigment localization and dynamics during exposure to low temperature and light stress in Vinca major, Plant Physiol.,1999,120:727~737.
    46. Xu DQ, Shen YG. Diural variation in the photosynthetic efficiency in plants, Acta Phyophysiol Sin(植物生理学报), 1997, 23: 410~416.
    47. Krause GH. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms,Physiol. Plant.,1988,74:566~574.
    48. H rtel H, Lokstein H. Relationship between quenching of maximum and dark-level chlorophyll fluorescence in vivo:dependence on photosystem Ⅱ antenna size,Biochim Biophys Acta,1995,1228:91~94.
    49. Horton P, Ruban AV, Walters RG.Regulation of light harvesting in green plants:indication by non-phyotochemical quenching of chlorophyll fluorescence, Plant Physiol., 1994,106:415~420.
    50. Demmig-Adams B, Adams Ⅲ WW, Logan BA et al. Xanthophyll cycle-dependent energy dissipation and flexible PSⅡ efficiency in plants acclimated to light stress, Aust.J.of Plant Physiol.,1995,22:249~260.
    51. Brugnoli E, Cona A, Lauteri M. Xanthophyll cycle components and capacity for non-radiative energy dissipation in sun and shade leaves of Ligustrum ovalifolium exposed to conditions limiting photosynthesis,Photosynth.Res.,1994,41:451~463.
    52. Demmig B, Winter K. Characterisation of three components of non-photochemical fluorescence quenching and their response to photoinhibition, Aust.J. plant Physiol.,1988,15:163~177.
    53. Demmig-Adams B,Adams Ⅲ WW.Harvesting sunlight safely,Nature,2000,403:371~374.
    54. Glimore AM et al. Xanthophyll cycle-dependent quenching of photosystem Ⅱ chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime, Proc. Natl. Acad.Sci. USA, 1995,92:2273~2277.
    55. Terjung F.Photoprotective energy dissipation in higher plant leaves investigated by chlorophyll fluorescence decay measurements with additional radiation pulses, Photosynthetica, 1998,35(4):621~629.
    
    
    56. Havaux M, Bonfils J-P, Ltz C et al. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npql arabidopsis mutant dificient in the xanthophyll cycle enzyme violaxanthin de-epoxidase, Plant Physiol., 2000,124:273~284.
    57. Niyogi KK, Grossman AR, Bj kmam O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion,Plant Cell,1998,10:1121~1134.
    58. Niyogi KK,Shih C,Chow WS et al.Photoprotection in a zeaxanthin-and lutein-deficient double mutant of arabidopsis,Photosynth.Res.,2001.67:139~145.
    59. Chang SH, Bugos RC, Sun WH et al. Antisense suppression of violaxanthin de-epoxidase in tobacco does not effect plant performance in controlled growth conditions, Photosynth. Res.,2000,69:95~103.
    60. Verhoeven AS,Bugos RC, Yamamoto HY. Transgenic tobacco with suppressed zeaxanthin formation is susceptible to stress-induced photoinhibition, Photosynth. Res., 2001,67:27~39.
    61. Hieber AD,Bugos RC,Verhoeven et al.Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding, Planta, 2002,214:476~483.
    62. Demmig B, Winter K,. Kruger A.Photoinhibition and zeaxanthin formation in intact leaves,Plant Physiol.,1987,84(2):218~224.
    63. Demmig-Adams B,Winter K,Krger A et al.Zeaxanthin synthesis, energy dissipation, and photoprotection of photosystem Ⅱat chilling temperature, Plant Physiol.,1989,90:894~898.
    64. Demmig-Admas B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin, Biochim Biophys Acta,1990,1020:1~24.
    65. Demmig B, Winter K, Krger A et al. Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress, Plant Physiol.,1988,87:17~24.
    66. Adams Ⅲ WW,Demmig-Adams B,Winter K.Relative contribution of zeaxanthin-related and zeaxanthin-unrelated typers of "high-energy- state" quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions, Plant Physiol.,1990, 92:302~309.
    67. Bilger W, Bj rkman O, Thayer SS. Light-induced spectral absorbance changes
    
    in relation to photosynthesis and epoxidation state of xanthophyll cycle components in cotton leaves, Plant Physiol.,1989,91:542~551.
    68. Gilmore AD,Yamamoto HY.Zeaxanthin formation and energy-dependent fluo-rescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport, Plant Physiol.,1991,96:635~643.
    69. Horton P, Ruban AY, Rees D et al. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHC Ⅱ chlorophyll-protein complex. FEBs Lett,1991,292:1~4.
    70. Gilmore AM, Yamamoto HY. Linear models relating xanthophyll and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching, Photosynth.Res,1993,35:67~78.
    71.季本华,朱素琴,焦德茂.午间强光下籼粳杂种稻的叶黄素循环和CO_2交换特性,中国水稻科学,2000,14(3):149~156.
    72.董高峰,阳成伟,徐志防等.光照下叶黄素循环与非辐射能量耗散的关系,生物化学与生物物理进展,2002,29(1):91~93.
    73. Schindler C, Lichtenthaler HK. Is there a correlation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence? Plant Physiol.Biochem.,1994,32:813~823.
    74. Tardy F, Havaux M. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition, resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana,J. Photochem. Photobiol.,1996,34:87~94.
    75. H rtel H, Lokstein H, Grimm B et al.Kinekis studies on the xanthophyll cycle in barley leaves: influence of antenna size and relations to non-photochemical chlorophyll fluorescence quenching, Plant Physiol.,1996,110:471~482.
    76. Thiele A, Krause GH.Xanthophyll cycle and thermal energy dissipation in Photosynthesis Ⅱ:Relationship between zeaxanthin formation, energy-dependent fluorescence quenching and photoinhibition,J.Plant Physiol.,1994,144:324~332.
    77. Thiele A et al.Increased xanthophyll cycle activity and reduce D1 protein inactivation related to photoinhibition in two plant systems acclimated to excess light, Plant Sci.,1996,115:237~250.
    78. Tardy F et al. Thylakoid membrance fluidity and thermostability during the operation of the xanthophyll cycle in higher chloroplasts, Biochim. Biophys.Acta.,1997,1330(2):179~193.
    
    
    79. Sarry J-E et al.The protection function of the xanthophyll cycle in photosynthesis,FEBS lett.,1994,353:147~150.
    80. Havaux et af.Increased heat emission and its relationship to the xanthophyll cycle in pea leaves exposed to strong light stress,J Biochem.Photosiol.Biol.,1991,8:361~390.
    81. Havanx M,Niyogi KK.The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism, Proc. Natl.Acad Sci. USA,1999,96:8762~8767.
    82. Havaux M. Carotenoids as membrane stabilizers in chloroplasts, Trends Plant Sci., 1998,3:147~151.
    83. Sujak A, Gabrielska J, Grudzinski W. Lutien and zeaxanthin as protections of lipid membranes against oxidative damage:the structure aspects, Arch. Biochem.Biophys.,1999,371:301~307.
    84. Klheim C,gren J, Jansson S. Rapid regulation of light harvesting and plant fitness in the field, Science,2002,297:91~93.
    85. Sun WH, Verhoeven AS, Bugos RC et al. Suppression of zeaxanthin formation does not reduce photosynthesis and growth of transgenic tobacco under field conditions, Photosynth. Rex, 2001,67:41~50.
    86. Mares-Perlmaw JA, Millen AE, Ficek TC et al.The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic diease,Nutr., 2002,132:518s~524s.
    87.李洪明.万寿菊叶黄素及其生理功能研究概况,中国食品添加剂,2001,4:31~34.
    88. Sliney DH,Muller H,Ham WT.Retinal sensitivity to damage from short wavelenght light, Nature,1976,260:153~155.
    89. Freudenheimm LJ, Marshall JL, Vena JR et al. Premenopausal breast cancer risk and intakes of vegetables, fruits and related nutrients,J.Natl. Cancer. Inst.,1996,88:340~348.
    90. Demmig-Adams B,Adams Ⅲ WW.Antioxidants in photosynthesis and human nutrition. Science,2002,298:2149~2153.
    91.董高峰,陈贻竹,蒋跃明.植物叶黄素循环与非腐生能量耗散,植物生理学通讯,1999,35(2):141~144.
    92. Horton P,Ruban AV.Regulation of photosystem Ⅱ,Photosynth.Res.,1992,34:375~385.
    93. Niyogi KK. Photoprotection revisited:genetic and molecular approaches, Annu.
    
    Rev. Plant Physiol. Plant Mol. Biol.,1999,50:333~359.
    94. Bratt CE, Arvidsson P-O et al. Regulation of violxanthin de-epoxidase activity by pH and ascorbate concentratin, Photosynth. Res.,1995,45:169~175.
    95. Bagel A,Holocher K.Localization of the xanthophyll-cycle enzyme violaxanthin deepoxidase within the thylakoid lumen and abolition of its mobility PH decrease, Planta,1994,192:581~589.
    96. Neubauer C,Yamamoto HY.Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts Plant Physiol.,1992,99:1354~1361.
    97. Mller-Moul P,Conklin PL,Niyogi kk. Ascorbate dificiency can limit violaxanthin de-epoxidase activity in vivo, Plant Physiol., 2002,128:970~977.
    98. Leipner J,Stamp.P,Fracheboud Y. Artifically increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves, Planta, 2002,210:964~969.
    99. Xu CC,Lin RC, Li LB et al.Increase in resistance to low temperature photoinhibition following ascorbate feeding is attributable to an enhanced xanthophytl cycle activity in rice (Oryza sativa L.) leaves, Photosynthetica,2000,38(2):221~226.
    100. Foyer CH, keiandais M. A Comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membrances of pea leaf mesophyll cell, Plant Physiol.,1996,148:391~398.
    101. Bugos RC,Chang S-H et al.Developmental expression of violaxanthin deepoxidase in leaves of tabacco growing under high and low light, Plant Physiol.,1999,121:207~213.
    102. Esskling M,kerlund HE.Changes in the quantities of violaxanthin de-epoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light, Photosynth. Res.,1998,57:41~50.
    103. Pfndel EE, Run-Sun Pan, Dilley RA.Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves, Plant Physiol.,1992,98:1372~1380.
    104. Bugos R, Yamamoto HY.Molecular cloning of violaxanthin deepoxidase from romaine lettuce and expression in Escherichia coli, Proc. Natl. Acad Sci.,
    
    1996,93:6320~6325.
    105. Adams Ⅲ WW, Demmig-Admas B, Logan BA et aL Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem Ⅱefficiency in two vines, Stephania japonica and Smilax austrails,growing in the understory of an open Eucalyptus forest,plant Cell and Environ.,1999,22:125~135.
    106.杨兴洪,邹琦,王玮.遮荫棉花转入强光后光合作用的光抑制及其恢复(En),植物学报,2001,43(12):1255~1259。
    107. Demmig-Adams B, Moeller DL, Logan BA. Positive correlation between levels of retained zeaxanthin + antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola(Hayata)Merrill, Planta,1998,205:367~374.
    108. Siefermann D, Yamamoto HY.Light-induced deepoxidation of violaxanthin in lettuce chloroplasts,Biochem. Biophys. Acta, 1975, 387:149~158.
    109. Falbel TG, Stawhelin LA, AdamsⅢ,WW. Analysis of xanthophll cycle carotenoids and chlorophyll fluorescence in light intensity-dependent chlorophyll-deficient mutants of wheat and barly,Photosynth.Res.,1994,42:191~202.
    110. Adams Ⅲ WW,Barker DH. Seasonal changes in xanthophyll cycle-dependent energy dissipation in Yucca glauca Nuttall,Plant Cell and Environ.,1998,21:501~511.
    111. Adams Ⅲ WW, Demmig-Adams B.The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter, Plant Cell and Environ.,1995,18:117~127.
    112. Ji BH, Zhu SQ, Jiao DM. Photochemical efficiency of PSⅡand membrane lipid peroxidation in leaves of indica and japonica rice(Oryza sativa)under chilling temperature and strong light stress conditions, Acta Botanica Sinica(植物学报), 2002,44(2):139~146.
    113. Pfundel E, Bilger W. Regulation and possible function of the violaxanthin in cycle, Photosynth. Rea,1994,42:89~109.
    114. Munn-Bosch S, Alegre L. Changes in carotenoids, tocopherals and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officnalis plants, Planta, 2000,210:925~931.
    115. Munn-Bosch S,Alegre L.The xanthophyll cycle is induced by light irrespective of water status in field-grown lavender(Lavandula stoechas)plants, Physiol.Plant., 2000,180:147~151.
    
    
    116. Morales T, Abdia A, Abadia J.Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet(Beta Vulgaris L.), Plant Physiol.,1990,94,607~613.
    117. Morales T, Abdia A, Belkhodja R et al.Iron deficiency-induced changes in the photsynthetic pigment composition of field-grown pear(Pyrus communis L.) leaves, Plant Cell and Environ.,1994,17:1153~1160.
    118. Lailiang Cheng. Xanthophyll cycle pool size and composition in reaction to the nitrogen content of apple leaves,J.of Exp. Bot., 2003,54(381):385~393.
    119. Yamamoto HY, Higashi RM. Violaxanthin De-epoxidase lipid composition and substrate specificity, Arch.of Biochem. And biophy.,1978, 190:514~522.
    120. Arvidsson P-O et al.Purification and identification of the violaxanthin deepoxidase as a 43KD protein, Photosynth. Res.,1996,49:119~129.
    121. Rockholm DC, Yamamoto HY.Violaxanthin deepoxidase:purification of a 43-Kilodalton lumental protein from lettuce by lipid-affinity precipitation with monogalactosyldiacylglyceride,Plant Physiol.,1996,110:697~703.
    122. Kuwabara T, Hasegawa M. Characterization of violaxanthin deepoxidase purified in the presence of Tween 20:Effects of Dithiothreitol and pepstain A, Plant Cell Physiol.,1999,40(11):1119~1126.
    123. Bugos RC et al. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants,J.Biol.Chem.,1998,273:15321~15324.
    124.陈宗懋 主编.中国茶叶大辞典,中国轻工业出版社,北京,2000.
    125.施嘉潘主编.茶树栽培生理学,农业出版社,北京,1992。
    126. Roberts GR, Keys AJ. The mechanism of photosynthesis in thetea plant,J.of Exp. Bot.,1978,29:1403~1407.
    127. Smith BG,Stephens W, Burgess PJ et al.Effects of light,temperature, irrigation and fertilizer on photosynthetic rate in tea(Camellia sinensis L.),Experimental Agri.,1993, 29:291~306.
    128.林金科,詹样金 等.铁观音茶树的光合特性,茶叶科学,1999,19(1):35~40.
    129.陶汉之 等.我国茶树光合作用研究进展及发展趋势,茶叶科学,1995,15(1):1~8.
    130. Kunio O, Kiyoshi M.Changes in photosynthetic activity of growing tea leaf and involvement of light environment,Japanses Society of Tea Science and Tech.,1996,82:1~8.
    
    
    131.林金科.水分胁迫对茶树光合作用的影响,福建农业大学学报,1998,27(4):423~427.
    132. Rajkumar R,Mauivel L,Marimuthu S.Longevity and factors influencing photosynthesis in tea leaves, Photosynthetica, 1998,35(1):41~46.
    133.原田重雄,加纳照崇 等.茶树炭素同化作用研究,茶叶研究报告,1957,10(12):22~25.
    134.中山仰.茶树光合成研究现状问题,茶叶研究报告,1972,37(6):1~11.
    135.等.不同茶树品种的光合效率及其在建成高产茶园中的作用(王立 译),国外农学—茶叶,1981,1:18~22.
    136.庄雪岚.茶树光合作用的研究进展,国外农学—茶叶,1982,3:1~10.
    137.原田重雄,加纳照崇 等.茶树炭素同化作用研究(第3报),茶叶技术研究,1959,20:6~9.
    138.陶汉之.茶树光合日变化的研究,作物学报,1991,17(6):444~452.
    139.陈贤田等.茶树光合“午休”的原因分析,浙江林业科技,2002,22(3):80~83.
    140.柯世省,金则新 等.浙江天台山茶树光合日变化及光响应,应用与环境生物学报,2002,8(2):159~164.
    141. Mohotti AJ,Lawcor DW.Diurnal variation of photosynthesis and photoinhibition in tea:effects of irradiance and nitrogen supply during growth in the field,J.of Exp. Bot.,2002,53(367):313~322.
    142.许大全 等.植物光合作用的光抑制,植物生理学通讯,1992,28(4):237~243.
    143. Xu DQ, Wu S.Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions, Photosynthetica,1996,32:417~423.
    144. Bj rkman O, Powles B. Inhibition of photosynthetic reactions under water stress:interaction with light level, Planta,1984,161:490~504.
    145. Epron D, Dreyer E, Brenda N. Photosynthesis of oal[Quercus petrea(matt)Lield] during drought under field conditions:diurnal lourse of net CO_2 assimilation and photochemical efficiency of photosystem Ⅱ, Plant Cell and Environ.,1992,15:809~820.
    146. Cornic G ,Briantais JM. Portioning of photosynthetic electron flow between CO_2 and O_2 reduction in a C_3 leaf(Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress, Planta,1991,183:178~184.
    
    
    147.赵世杰,孟庆伟 等.植物组织中叶黄素循环组分的高效液相色谱分析法,植物生理通讯,1995,31(6):438~442.
    148. Bilger W, Bj rkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis,Photosynth.Res,1990,25:173~185.
    149. Logan BA, Barker DH, aemmig-Adams B et al. Acclimation of leaf carotenoid composition and ascorbate levels to gradients in thelight environment within an Australian rainforest, Plant Cell and Environ.,1996,19:1083~1090.
    150. Eickmeier WG,Casper C,Osmond B.Chlorophyll fluorescence in the resurr-ection plant Selaginella lepidophylla and evidence for zeaxanthin-asso-ciated photoprotection,Planta,1993,189:30~38.
    151. Brestic M,Cornic G,Fryer MJ et al.Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta, t995,196:450~457.
    152. Bassi R, Pinear B, Dainese P et al. Carotenoid bingding proteins of photosystem Ⅱ,Europ.J.of Biochem.,1993,212:297~303.
    153.王肃威 等.两个不同基因小麦光抑制特性的比较,植物学报,2000,42(12),1300~1303.
    154.黄福平,陈荣冰.茶树抗旱生理研究进展,福建茶叶,2000,3:2~5.
    155.赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用,河南农业大学学报,2000,34(3):248~251.
    156.季本华,焦德茂.籼粳稻光合作用的光抑制特性及在正反交F_1杂种中的表现,植物生理学报,1994,20(1):8~16.
    157.J.萨姆布鲁克,E.F,弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版,金冬雁等译),科学出版社,北京,1992.
    158. Von Heijine G,et al.Domain structure of mitochondrial and chloroplast targeting peptides,Eur.J..Biochem.,1989,180:535~545.
    159. S.smeckens C et al. The role of the transit peptide in the routing of precursors toward different chloroplast compartments, Cell, 1986, 46:365~375.
    160. Havaux M, Niyogi KK.The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism, Proc. Natl.Acad Sci.,1999,96:8762~8767.
    161. Pervaiz S, Brew K. Homology of beta-lactoglobulin, serum retinol-binding
    
    protein, and protein HC, Science, 1985,228(4697):335~337.
    162.迪芬巴赫CW,德维克斯勒GS,PCR技术实验指南(America:Cold Spring Harbor Laboratory Press,1995),黄培堂等译.北京:科学出版社1998.
    163.张龙翔,张庭芳,李令媛 主编.生化实验方法和技术(第二版),北京;高等教育出版社,1997,137~140.
    164. John HL, Hans CR. Methods in Enzymology:Steroids and Isoprenoids. London: Academic Press, 1985 vol.110:303~312.
    165. Pervaiz S, Brew K. Homology of β-lactoglobulin,serum retinal binding protein and protein HC, Science,1985,228:335~337.
    166. Flower DR. The lipocalin protein family: structure and function. Biochem.1996,318:1~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700