水稻条纹病毒(RSV)RNA3、RNA4的克隆与抗RSV转基因水稻的培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻条纹叶枯病(Rice stripe disease)是水稻上普遍发生、危害严重的一种病毒病,其病原为水稻条纹病毒(Rice stripe virus, RSV)。近年来,随着种植方式的改变,耕作栽培技术的变化,导致水稻条纹叶枯病在黄淮稻区迅速回升,1999年后暴发成灾,目前己成为该稻区水稻生产上最主要的病害。水稻感染RSV后,造成水稻心叶褪绿,捻转,并弧圈装下垂,严重的心叶枯死,导致水稻产量大幅降低,甚至绝产。RSV主要由介体灰飞虱持久性经卵传播,电镜下观察病毒粒子呈丝状粒体,以折叠、分枝和超螺旋等形式存在。RNA介导的病毒抗性(RNA-Mediated Virus Resistance, RMVR)是近年来发展起来的一种新的抗病毒基因工程策略,其通过对入侵的病毒RNA进行降解,使入侵的病毒不能在植物中积累,从而赋予转基因植物病毒抗性。本研究探求了RSV致病性增强的分子机理,并培育了高抗且稳定遗传到T2代的抗水稻条纹病毒的转基因水稻,对于提高水稻的产量,保护水稻生产的可持续发展,具有重大意义。研究结果和主要结论如下:
     (1)水稻条纹病毒山东济宁分离物的分子变异分析
     传统的生物学测定发现RSV不同分离物之间存在着化学组成和致病性上的差异。近些年的研究表明,这种差异同样表现在核苷酸的水平。通过对部分分离物的RNA3、RNA4或部分编码基因的序列分析发现,RSV的基因序列和5′端及3′端非编码区序列相当保守,变异主要发生在基因间隔区(IR),但目前尚缺乏对不同类型病毒种群的遗传变异的系统分析。
     从山东济宁感病的水稻上,分离到强致病性水稻条纹病毒,命名为RSV-SD-JN2。为了从分子水平探讨RSV-SD-JN2变异及其致病性增强的原因,采用RT-PCR技术,克隆RSV-SD-JN2的RNA3.RNA4区段cDNA。序列测定结果显示,RSV-SD-JN2的RNA3和RNA4核苷酸序列长度分别为2487bp、2157bp;RNA3中,NS3基因长为636bp,IR为725bp,CP基因为969bp;RNA4中,SP基因长为537bp,IR为654bp,NSvc4基因为861bp。
     将RSV-SD-JN2与不同时期、不同区域和不同致病性的辽宁盘锦PJ、北京双桥SQ、江苏洪泽HZ、云南昆明KM、山东济宁SD-JN1,江苏江阴JY、浙江ZHEJIANG分离物的RNA3、RNA4全序列或部分序列进行比较分析,发现RNA3、RNA4序列5′和3′末端非编码区具有高度保守,仅存在个别碱基的差异;基因编码区保守性较高,核苷酸序列同源性均在93%以上,氨基酸序列同源性高达97%以上,且大部分碱基变异为无意义变异;IR易于变异,IR4的核苷酸序列同源性仅在91.6%-94.3%之间,而IR3的同源性为85.8%-96.7%。IR的变异导致RNA二级结构一发夹结构的稳定性提高是病毒致病性增强的重要原因。同时发现,SD-JN2分离物的RNA3内部各个序列可能存在不同的亲缘关系;NS3基因和CP基因与HZ分离物有很高的同源性,分别为98.9%和99.1%;而IR仅为86.3%,推测是由不同亚群的分离物的基因组相应片段经过交换重配引起的。
     (2)抗RSV两种分离物转基因水稻新种质的培育
     目前,种植抗条纹叶枯病品种是防治RSV最根本、有效的方法。而粳稻是黄淮稻区主要的种植品种,由于粳稻中缺少抗条纹叶枯病基因,病害的流行和发生已经给水稻生产造成重大损失。常规的培育水稻抗病品种的方法周期长、效率低。RNA介导病毒抗性是目前培育抗病毒作物最为有效而且快捷的方式,其具有抗性表型近乎免疫、抗性持久、生物安全性高等特点,是一种具有实际应用价值的植物抗病毒基因工程策略。但是RNA介导的病毒抗性还具有抗病性谱窄的缺点。为了克服这种缺点,可以通过构建包含同一病毒不同基因的嵌合基因片段的表达载体,导入植物,既可以提高抗性水平,又能增强对同一病毒不同分离物抗性范围及抗性遗传的稳定性。本研究基于RNAi的原理,同时为了克服因病毒突变造成的抗性逃逸,培育了高抗、广谱并且稳定遗传的转基因水稻。
     首先改造了pCAMBIA1300表达载体,加入了玉米泛素蛋白基因Ubi启动子,胭脂碱合成酶基因3′端Nos终止子,将选择标记基因Hygromycin B替换为生物安全性更高的Bar基因,构建了新的表达载体pUNB。利用RSV-SD-JN2的CP、SP基因部分片度构建了包含CP/SP嵌合基因及单CP、单SP基因的RNAi载体p1300CP/SP p1300CP、p1300SP;冻融法导入农杆菌EHA105,利用农杆菌介导的转化方法,转化水稻豫粳6号愈伤组织,分别获得了TO代转基因植株23、24和17棵。
     自交结实获得T1代株系,每个载体的T1代转基因株系各选取100棵,用来自山东济宁和江苏淮安RSV分离物接种,病毒抗性的检测结果显示:转化p1300CP/SP的转基因株系中有CS1、CS3、CS6、CS7、CS10、CS13、CS15、CS16、CS19株系,转化p1300CP的转基因株系中有CP1、CP3、CP4、CP7、CP9、CP12株系转化,p1300SP的转基因株系中中有SP2、SP5、SP6、SP7、SP13株系对两种病毒分离物的感病率都在6%以下,远远低于转化空载体转基因株系野生型株系的感病率,表现为抗性株系。三个载体其余株系的感病率都在12%以上,表现为中抗和感病株系。表明p1300CP/SP、p1300CP、p1300SP的T1代转基因株系中抗病株系的比率分别为39.13%、25.00%、29.41%。含CP/SP嵌合基因的转基因株系的抗病性和广谱性要好于转化单CP基因和单SP基因的转基因株系,说明同时干扰RSV多个基因的表达,可以更加有效的抵御RSV病毒的入侵,并且对不同地区分离物具有广谱抗性。
     T1代抗性株系的Southern杂交显示,外源基因以不同拷贝整合于水稻的基因组中,并进行了有效表达,且转基因植株的抗病性与转基因的拷贝数之间无明显的相关性;T1代抗性株系的总RNA和siRNA的Northern杂交显示,抗病植株中RNA的积累量明显低于同类型的感病植株,转基因植株中有siRNA存在,表明病毒抗性是由RNAi引发的。
     选取转化p1300CP/SP、p1300CP、p1300SP载体的T1代单拷贝抗性植株CS1、CS6、CP1、CP3、CP9、SP5、SP7进行T2代遗传分析,结果表明,转基因及其介导的抗性可以稳定的遗传至T2代,并且获得CSl和CP9两个不在发生分离的纯合体株系。
Rice stripe disease, with the pathogen Rice stripe virus (RSV), is one of the most widespread and severe virus diseases. In recent years, a quick spread of this disease had caused great losses in Huanghuai paddy fields due to changes in farming cultivation practices and technologies. Since 1999, the disease has broken out and become the major disease of this area. Infection of rice plants by RSV leads to the appearance of chlorotic stripes or mottling and necrotic streaks on leaves, with subsequent premature wilting which results in considerable decrease in grain yield. RSV is a representative of the genus Tenuivirus that is transmitted by a small brown planthopper, Laodelphax striatellus Fallen (Hemiptera, Delphacidae), in circulative-propagative and transovarial manners. RSV has filamentous particles which appear folded, branched and supercoiled in an electron microscope. A new powerful type of resistance, based upon the presence of RNA, known as RNA-mediated virus resistance (RMVR), was characterized by a high level of resistance that was not easily overcome by a high dosage of inoculums. In this study, we explore the molecular mechanism of RSV severer pathogenicity, and plant strong resistant and stably inherited T2 transgenic rice. The significant result can help increase the rice harvest and keep the sustainable development of rice product. The main results and conclusions presented in this thesis are as follows:
     (1) The analysis of molecular variability of RSV isolate (RSV-SD-JN2) in Jining Shandong
     Traditonal biology assay found that there is chemical composition and pathogenicity difference among different isolates of RSV. The difference expressed on the nucleotide level in recent years'study. According to the sequence analysis of RNA3, RNA4, or part encoding gene of some isolates, RSV gene sequence,5'or 3'untranslated regions are very conserved, the main variability occur in the intergenic region(IR). However, there is no systematic analyse of genetic variation among different virus population.
     A highly pathogenic Rice stripe virus was isolated from susceptible rice in Jining, Shandong Province, China, and was designated as RSV-SD-JN2. In order to explore the reason of RSV molecular variation and severer pathogenicity on the molecular level, we cloned the RNA3 and RNA4 cDNA fragments of RSV-SD-JN2 by reverse transcriptase-polymerase chain reaction (RT-PCR) and sequenced them. The results showed that the length of RNA3 and RNA4 of SD-JN2 were 2487bp and 2157bp respectively; the NS3 gene, IR and CP gene in RNA3 were 636bp,725bp and 969bp, respectively; the SP gene, and IR and NSvc4 in RNA4 was 537bp,654bp,861bp, respectively.
     Compared with the complete or part sequences of the RSV isolates from Panjin (PJ) in Liaoning province, Shuangqiao (SQ) in Beijing, Hongze (HZ) in Jiangsu, Kunming (KM) in yunan provice, Jining (SD-JN1) in Shandong, Jiangyin (JY) in Jiangsu province, ZHEJING in Zhejiang province that had been reported previously with different period, different area, different pathogenicity, we found that the most highly conserved regions located in 5'and 3' untranslated regions, which had only few base difference; the highly consensus of encoding regions also revealed more than 93% identity at the nucleotide sequence level, and more than 97% identity at the amino acid level, and most bases mutation was nonsense mutation; however, the most variable regions located in the intergenic region(IR). The variability of IR leaded to enhancement of RNA secondary structures-hairpin structures stability, which was the important reason of severer pathogenicity. Moreover, there is possible different genetic relationship among internal RNA3 different sequences of SD-JN2 isolate; the high homology of NS3 gene and CP gene compared with HZ isolate, is 98.9% and 99.1% respectively, but IR is 86.3%. It suggests that exchanged recombinant of different subgroup isolate cause the genome relevant fragment cause the result.
     (2) Production of transgenic rice new germplasm against two isolations of RSV
     Cultivating a resistant breed is one of the most economical and efficient methods in preventing rice virus disease. However, a conventional method of breeding resistant varieties is a long-term and low-efficiency process. With the development of genetic engineering, transgenic technology has become a fast and efficient method of developing virus resistant varieties. RMVR, which has the advantage of high resistance (almost immunity), resistance durability, and high biosafety, has become a more tangible strategy to develop virus resistant plants. Although RMVR has a narrow resistance spectrum, transgenic plants can be produced by cloning effective nucleic acid fragments of different genes of the same virus, constructing plant expression vectors, and inserting into plants to extend resistance against different isolates of the same virus, apart from enhancing and stabilizing its genetic resistance. In this study, we generated stable, RSV-resistant, transgenic lines. The success in producing new germplasms of highly resistant transgenic rice plant will lay the theory foundation for breeding RSV-resistant rice to prevent resistance loss due to virus mutation.
     Expression vector pCAMBIA1300UNB was constructed with inserting Ubiquitin promoter and Nos-3'terminator, Changing hygromycin B resistance gene with Bialaphos resistance gene (Bar) based on vector pCAMBIA1300. Following RNA interference (RNAi) theory, we constructed three RNAi binary vectors based on coat protein(CP), special-disease protein(SP) and chimeric CP/SP gene sequence. Transgenic lines of rice CV. Yujing6 were generated through Agrobacterium-mediated transformation. We got T0 transgenic plants 23, 24 and 17, respectively.
     The self-fertilized seeds from T0 generation transgenic plants of transformed p1300CP/SP, p1300CP, and p1300SP vectors were planted to obtain T1 generation lines. In every transgenic line,100 positive plants were selected and inoculated with two RSV isolates SD-JN2 and JS-HA using viruliferous vector insects. Wild types (cv. Yujing 6) were used as control and then monitored daily for the appearance of symptoms. After four weeks of inoculation, lines CS1, CS3, CS6, CS7, CS10, CS13, CS15, CS16, and CS19 of p1300CP/SP transgenic plants; lines CP1, CP3, CP4, CP7, CP9, and CP12 of p1300CP transgenic plants; and lines SP2, SP5, SP6, SP7, and SP13 of p1300SP transgenic plants exhibited resistant phenotype, which had a susceptible score below 6%, far lower than the susceptible ratio of wild types. The susceptible ratios of other lines of the three vectors were all above 12%, exhibiting moderately resistant lines or susceptible lines. In these resistance assays chimeric CP/SP RNAi lines showed stranger resistance against two isolates than CP or SP single RNAi lines. The ratios of resistant transgenic lines were 39.13%,25.00%, and 29.41% in p1300CP/SP, p1300CP, and p1300SP, respectively. The result verifies that the ratio of T1 transgenic resistant lines containing CP/SP chimeric gene is higher than that contained the single CP or SP gene; furthermore, resistant lines containing CP/SP chimeric gene have the same high resistance to two RSV isolates.
     Stable integration and expression of RNAi transgenes were confirmed by Southern and Northern blot analysis of independent transgenic lines. In the resistant transgenic lines, relative to the susceptible transgenic plant, lower levels of transgene transcripts and specific short interference RNAs were observed, which showed that virus resistance was increased by RNAi.
     we selected T2 self-fertilized progeny of resistant transgenic plants which were Southern blotted proved have one copy from lines CS1, CS6, CP1, CP3, CP9, SP5, and SP7 to study the segregation pattern and stable inheritance of RNA-mediated multiple virus resistance. In the T2 generation, some resistant transgenic plants were stably homogenous. The resistance of transgenic plants would not separate at all, he results showed that transgene and RNA-mediated virus resistance can be stably inherited until T2.
引文
白庆荣,朱俊华,刘晓玲,朱常香,宋云枝,温孚江。利用RNA介导的抗病性获得抗2种病毒的转基因烟草。植物病理学报,2005,35(2):148-154
    陈声祥。 水稻病毒病发生现状及研究进展。 浙江农业科学,1996,8(1):41-42
    陈涛,张亚东,朱镇,赵凌,林静,张所兵,王才林。水稻条纹叶枯病抗性遗传和育种研究进展。江苏农业科学,2006,(2):1-4
    程兆榜,杨荣明,周益军。江苏稻区水稻条纹叶枯病发生新规律。浙江农业科学,2002,1(2):39-40
    程兆榜,任春梅,周益军,范永坚,谢联辉。水稻条纹病毒不同地区分离物的致病性研究。植物病理学报,2008,38(2):126-131
    迟胜起,宋云枝,朱常香,郑成超,刘晓玲,温孚江。核基质结合区对马铃薯Y病毒全长非翻译CP基因介导抗病性的影响。植物病理学报,2005,35(4):345-351
    代玉华。RNAi介导的水稻抗RSV基因工程。博士学位论文,北京:中国农业科学院,2007
    董志峰,马荣才,彭于发。转基因植物中外源非目的基因片段的生物安全研究进展。植物学报,2001,43(7):661-672
    郭兴启,吕士恩,朱常香,宋云枝,孟祥兵,郑成超,温孚江。利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草。植物病理学报,2001,31(4):250-256
    侯丙凯,夏光敏,陈正华。植物基因工程表达载体的改进和优化策略。遗传,2001,23(5):492-97
    李保健,欧阳学智,许耀。应用农杆菌Ti质粒系统将外源基因转入粳稻细胞的研究。中国科学(B辑),1990,(2):144-149
    李鹏,宋云枝,刘晓玲,朱常香,温孚江。马铃薯Y病毒CP基因5′端和3′端反向重复结构介导的抗病性研究。植物病理学报,2007,37(1):69-76
    李云,宋云枝,朱常香,温孚江。hpRNA的茎环比例对介导的病毒抗性产生的影响。植物病理学报,2008,38(5):468-477
    刘晓玲,宋云枝,刘红梅,温孚江,朱常香,白庆荣。PVX 25kD运动蛋白基因和外壳蛋白基因介导的抗病性研究。作物学报,2005,31(7):827-832
    刘利华,吴祖建,林奇英。水稻条纹叶枯病细胞病理变化的观察。植物病理学报,2000,30(4):306-311
    刘明志。论农杆菌介导的单子叶植物转化。遗传,1996,17(增刊):50-52
    林含新。水稻条纹病毒的病原性质、致病性分化及分子变异。博士学位论文,福州:福建农业大学,1999
    林含新,魏太云,吴祖建,林奇英,谢联辉。我国水稻条纹病毒一个强致病性分离物的RNA4序列测定与分析。微生物学报,2001,41(1):25-30
    林奇田,林含新,吴祖建,林奇英,谢联辉。水稻条纹病毒外壳蛋白和病害特异蛋白在寄主体内的积累。福建农业大学学报,1998,27(3):322-326
    林奇英,谢联辉,周仲驹,谢莉妍,吴祖建。水稻条纹叶枯病的研究Ⅰ:病害的分布和损失。福建农学院学报,1990,19(4):421-425
    林奇英,谢联辉,周仲驹,谢莉妍,宋秀高。水稻条纹叶枯病的研究Ⅱ:病害的症状与传播。福建农学院学报,1991,20(1):24-28
    李凡,杨金广,吴祖建,林奇英,陈海如,谢联辉。水稻条纹病毒云南分离物CP基因克隆及序列比较分析。云南农业大学学报,2006,21(1):148-151
    李云,宋云枝,朱常香,温孚江。hpRNA的茎环比例对介导的病毒抗性产生的影响。植物病理学报,2008,38(5):468-477
    刘力,陈声祥,邱并生。抗水稻条纹叶枯病毒核酶的设计、克隆及体外活性测定。中国病毒学,1996,11(2):157-163
    马德虎,韩方胜。水稻条纹叶枯病的发生原因及防治技术。安徽农学通报,2006,12(3):36-38
    马中良,杨怀义,王荣,田波。利用转hpRNA基因水稻抗水稻矮缩病毒。植物学报,2004,46(3):332-336
    明艳林,吴祖建,谢连辉。水稻条纹病毒CP、SP进入叶绿体与褪绿症状的关系。福建农林大学学报,2001,30(增):147-149
    邱小辉,薛锐,李西明。水稻转基因技术的现状及在育种上的应用。生物工程进展,1998,18(5):45-49
    曲志才,沈大棱,邓可京,吕英芝,李昌木,Hull R。水稻条纹病毒基因组组分4的克隆与序列分析。微生物学报,1999,39(1):36-42
    孙炳剑,袁虹霞,邢小萍,李洪连。水稻条纹叶枯病暴发原因分析与综合防治技术。河南农业科学,2005,(5):39-41
    孙黛珍,江玲,张迎信。8个水稻品种的条纹叶枯病抗性特征。中国水稻科学,2006,20(2):219-222
    苏少泉。转基因抗除草剂作物品种的现状与展望。世界农业,1998,(8):21-23
    王关林,方宏筠。植物基因工程原理与技术。科学出版社,1998
    王辉。水稻条纹病毒NS3基因的分子变异及其抗血清的制备。硕士学位论文,福州:福建农林大学,2003
    王雪景,孙毅。农杆菌介导的植物基因转化研究进展。生物技术通报,1999,(1):7-13
    王晓红,叶寅,王苏燕,田波。水稻条纹叶枯病毒基因组含vRNA2 ORF片段的克隆、 序列分析及其在原核中的表达。科学通报,1997,42(4):438-441
    魏太云。水稻条纹病毒的基因组结构及分子群体遗传。博士学位论文,福州:福建农业大学,2003
    魏太云,林含新,吴祖建,林奇英,谢联辉。水稻条纹病毒RNA4基因间隔区的分子变异。病毒学报,2001,17(2):144-149
    魏太云,王辉,林含新,吴祖建,林奇英,谢联辉。我国水稻条纹病毒RNA3片段序列分析-纤细病毒属重配的又一证据。生物化学与生物物理学报,2003a,35(1):97-103
    魏太云,林含新,吴祖建。水稻条纹叶枯病毒RNA4基因间隔区序列分析-混合侵染及基因组变异证据。微生物学报,2003b,43(5):578-585
    魏太云,林含新,吴祖建,林奇英,谢联辉。水稻条叶枯病毒NS2基因遗传多样性分析。中国生物化学与分子生物学报,2003c,(5):600-605
    温孚江,朱常香。转录后的基因沉默与植物病毒抗性。生物工程学报,2001,17(3):159-264
    吴爱忠,赵艳,曲志才,沈大棱,潘重光,苏德明。水稻条叶枯病毒(RSV)的SP蛋白在介体灰飞虱内的亚细胞定位。科学通报,2001,45(14):1183-1186
    吴书俊,钟环,左慧,顾铭洪,梁国华。水稻条纹病毒的分子生物学与抗病基因工程研究进展。江西农业科学,2006,18(4):72-77
    谢联辉,周仲驹,林奇英。水稻条纹叶枯病的研究Ⅲ:病害的病原性质。福建农学院学报,1991,20(2):144-149
    刑祖颐,何家齐,刘志武。籼粳稻杂交育种的研究Ⅱ.抗条纹叶枯病育种。作物学报,1985,11 (1): 1-7
    徐茂军。转基因植物中卡那霉素抗性(Kanr)标记基因的生物安全性。生物学通报,2000,36(2) : 18-19
    徐子银。重要禾谷类植物转基因研究。生物工程进展,2001,21(1):59-74
    薛大伟,马丽莲,姜华,华志华,郭龙彪,黄大年,钱前。抗除草剂转基因水稻的安全性评价。农业生物技术学报,2005,23(6):723-727
    燕义唐,王晋芳,邱并生。悬浮细胞再生表达外壳蛋白的转基因Indica水稻对水稻条纹病毒的抗病性。中国病毒学,1997,12(3):260-269
    叶景佳,许则丰。多种小分子干扰RNA联合抑制乙型肝炎病毒的体外研究。试验生物学报,2005,38(2):141-147
    于群,魏太云,林含新,吴祖建,林奇英,谢联辉。我国水稻条纹病毒北京双桥(RSV-BSQl)分离物RNA4片段序列分析。农业生物技术学报,2000,8(3):225-228
    张恒木,孙焕然,王华弟,陈剑平。水稻条纹病毒分子生物学研究进展。植物保护学报,2007,34(4):436-440
    张明,邵宁生。RNA阻抑和基因沉默。军事医学科学院院刊,2002,26(1):61-65
    张恭,刘立峰,周维,王海光,马峙英。水稻条纹叶枯病毒RNA干扰载体的构建。华北农学报,2008,23(4):10-13
    朱凤美。江南稻区新发生的几种稻病。植物保护,1964,2(3):100-102
    朱俊华,朱常香,温孚江,宋云枝。正向和反向重复RNA介导的抗马铃薯Y病毒基因工程比较研究。植物病理学报,2004,34(2):133-140
    朱俊华,竺晓平,温孚江,白庆荣,朱常香,宋云枝。马铃薯Y病毒衣壳蛋白基因片段长度对RNA介导抗病性的影响。中国科学(C辑),2004b,34(1):23-30
    竺晓平,朱常香,宋云枝,温孚江,刘红梅,李向东。CP基因3’端短片段介导的对马铃薯Y病毒的抗性。中国农业科学,2006,39(6):1153-1158
    周彤,王磊,程兆榜,范永坚,周益军。主栽品种镇稻88对水稻条纹叶枯的抗性特征及其遗传研究。中国农业科学,2009,42(1):103-109
    周仲驹,林奇英,谢联辉。水稻条纹叶枯病的研究Ⅳ:病叶细胞的病理变化。福建农学院学报,1992,21(2):157-162
    Ahlquist P.. RNA dependent RNA polymerases, viruses, and RNA silencing. Science,2002, 296(5571):1270-1273
    Alejska M., Malinowska N., Urbanowicz A., Figlerowicz M.. Two types of nonhomologous RNA recombination in brome mosaic virus. Acta Biochimica Polonica,2005, (52): 833-844
    Aranda M. A., Fraile A., Dopazo J., Malpica M.. Contribution of mutation and RNA recombination to the evolution of a plantpathogenic RNA. Journal of Molecular Evolution,1997,44(1):81-88
    Auperin D. D., Romanowski V., Galinski M.. Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. Journal of Virology, 1984,52(3):897-904
    Banner L. R., Lai M. M. C.. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology,1991, (185):441-445
    Barbier P., Takahashi M., Nakamura I., Toriyama S., Ishihama A.. Solubilization and promoter analysis of RNA polymerase from rice stripe virus. Journal of Virology,1992, (66): 6171-6174
    Baroth M., Orlich M., Thiel H. J., Becher P.. Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology,2000, (278):456-466
    Baulcombe D. C.. Viruses and gene silencing in plants. Arch. Virol. Suppl.,1999, (15): 189-201
    Bernstein E., Caudy A. A., Hammond S. M. and Hannon G. J.. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001 (409):363-366.
    Bujarski J. J.. Molecular basis of genetic variability in RNA virus. In Mandahar C L ed. Molecular Biology of Plant Viruses. Boston:Kluwer Academic Publishers.1999, 120-141
    Catalanotto C., Azzalin G, Macino G. Gene silencing in worms and fungi. Nature,2000, 404(6775):245
    Cerutti H.. RNA.interference:traveling in the cell and gaining functions? Trends Genet.,2003, 19(1):39-46
    Chan M. T., Chang H. H., Ho S. L.. Agobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase Promoter/p-glucronidase gene. Plant Mol. Biol., 1993, (22):491-506
    Chen X. M., Liu J., Li X., Jiang F., Xie X. Y, Zhu C. X., Wen F. J.. Inhibiting Virus Infection by RNA Interference of the Eight Functional Genes of the Potato Virus Y Genome. J. Phytopathol,2010,158(12):776-784
    Chetverin A. B.. The puzzle of RNA recombination. FEBS Lett.,1999, (460):1-5
    Christou P., Ford T. L., Kofrom M.. Produetion of transgenic rice (Oryza sativa L.) Plants from agronomically important Indica and Japonica varieties via electric discharge Particle acceleration of exogenous DNA into immature zypotic embryos. Bio./Technol., 1991, (9):957-962
    Chomchan P., Li S. F., Miranda G J., Shirako Y. Interactions among proteins coded on rice grassy stunt virus genome. Annals of phytopathological society of Japan,2000, (66): 164.
    Chomchan P., Li S. F., Miranda G. J., Shirako Y. Analysis on protein-protein interactions among 12 proteins encoded on rice grassy stunt virus genome. Abstracts of 20th annual meeting of ASV, Wisconsin, USA,2001, (7):42-44.
    Cooper B., Lapidot M., Heick J. A., Dodds J. A., Beachy R. N.. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology,1995, (206):307-313
    Cogoni C.,Macino G. Post-transcriptional gene silencing across kingdoms. Current Opinion in Genetics Development,2000, (10):638-643
    Dalmay T. A., Hamilton S., Rudd S., Angell, Baulcombe D. C.. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell,2000, (101):543-553
    De haan P., Gielen J. J. L., Prins M.. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology,1992, (10):1133-1137
    Drake J. W., Holland J. J.. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA, 1999,(96):13910-13913.
    Duan Y. P., Powell C. A., Purcifull D. E.. Phenotypic variation in transgenic expressing geminivirus movement Proteins:abnormal Phenotypes and delayed infection by gene produces virus like symptoms in transgenic plants. MPMI,1998, (11):413-417
    Du Q., Thonberg H., Wang J., Wahlestedt C., Liang Z. A.. systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic. Acids Res.,2005, (33):1671-1677
    Dykxhoorn D. M., Lieberman J.. Silencing Viral Infection. Plos Medicine,2006, (3): 1000-1004
    Elbashir S. M., Lendeckel W., Tuschl T.. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & Development,2001, (15):188-200
    Elbashir S. M., Harborth J., Weber K.. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,2002, (26):199-213
    Elliot R. M.. Molecular biology of the Bunyaviridae. Journal of General Virology,1990, 71(3):501-522
    Estarbrook E. M., Tsai J. H., Falk B. W.. In vivo transfer to barley stripe mosaic hordeivirus ribonucleotides to the 5'terminus of maize stripe tenuivirus RNAs. Proceedings of National Scientific Academic of USA,1998,95(14):8304-8309
    Falk B. W., Tsai J., Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology,1998,(36):139-163
    Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C.. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998, (391):806-811
    Fraile A., Alonso-Prados J. L., Aranda M. A, Bernal J. J., Malpica J. M., Garcia-Arenal F.. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. Journal of Virology,1997,71(2):934-940
    Frischmuth T., Engel M., Lauster S., Jeske H.. Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted, Sida-infecting bipartite geminiviruses in Central America. Journal of General Virology,1997, (78):2675-2682
    Gingery R. E.. The rice stripe virus group. In The Plant Viruses (edited by Milne RG). Plenum Publishing Corp. New York,1988, (4):297-329
    Goldbach R., Bucher E., Prins M.. Resistance mechanisms to plant viruses:an overview. Virus Res.2003, (92),207-212
    Golemboski D. B., Lomonossoff G. P., Zaitlin M.. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistances to the virus. Proceedings of the National Academy of Sciences,1990, (17):6311-6315
    Gregory R. I., Chendrimada T. P., Cooch N., Shiekhattar R.. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell,2005, (123):631-640
    Gura T. A.. Silence that speaks volumes. Nature,2000,404 (6780):804-808
    Hammond S. M., Bernstein E., Beach D., Hannon G. J.. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000, (404):293-296
    Hammond S. M., Caudy A. A., Hannon G. J.. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet.2001,2(2):110-119
    Hannon G.J.. RNA interference. Nature,2002,418(6894):244-251
    Hayakawa T., Zhu Y. F., Itoh K., Kimura Y., Izawa T., Shmamoto K., Toriyama S.. Genetieally engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc. Natl. Acad. Sci. USA,1992, (89):9865-9869
    Hayano-Saito Y., Satio K., Nakamura S.. Fine physical mapping of the rice stripe resistance gene locus, Stv-bi. Theor. App. I. Genet.,2000, (101):59-63
    Hayashi T., Usugi T., Nakano M., Ishikawa K.. On the strains of rice stripe virus (1) An attempt to detect strains by difference of molecular size of disease-specific proteins. Proceedings of the Association for Plant Protection of Kyushu,1989, (35):1-2
    Helliwell C., Waterhouse P.. Constructs and methods for high-throughput gene silencing in plants. Methods,2003, (30):289-295
    Hibino H.. Biology and Epidemiology of rice viruses. Annual Review of phytopathology,1996, (34):249-274
    Hiei Y., Ohta S., Komari T.. Efficient transformation of (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant,1994, (6): 271-282
    Hirst G. K.. Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harb. Symp. Quant. Biol.,1962, (27):303-309
    Hou Y. M., Sanders R., Ursin V. M.. Transgenic plants expressing geminivirus movement proteins:abnormal phenotypes and delayed infection by Tomato mottle virus in transgenic tomatos expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Mol. Plant Microbe. Interact.,2000,13(3):297-308
    Huisman M. J., Conelissen B. J. C., Groenendijk C. F. M.. Alfalfa mosaic virus temperature sensitive mutants V. the nueleotide sequence of TBTS7 RNA3 shows limited nueleotide changes and evidence far heterologus recombination. Virology,1989,171(2):409-416
    Ishida Y., Saita H., Ohta S.. High efficient transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens. Nuture Bio/Technol,1996, (14):745-750
    Ishii M., Ono K.. On strains of rice stripe virus. Annuals of the phytopathological society of Japan,1966, (32):83
    Jackson A. L., Bartz S. R., Schelter J., Kobayashi S. V., Burchard J., Mao M., Li B., Cavet G., Linsley P. S.. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology,2003, (21):635-637
    Kakutani T., Hayano Y., Hayashi T., Minobe Y.. Ambisense segment 4 of rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). Journal of General Virology,1990,71(7):1427-1432.
    Kakutani T., Hayano Y, Hayashi T., Minobe Y. Ambisense segment 3 of rice stripe virus:the first instance of a virus containing two ambisense segments. Journal of General Virology, 1991, (72):465-468.
    Kawchuk L. M., Martin R. R., Mcpherson J.. Sense and antisense RNA-mediated resistance to potato leafroll virus in russet Burbank potato plants. MPMI,1991, (4):247-253
    Khatchikian D., Orlich M., Rot R.. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature, 1989,340(6229):156-157.
    Kisimoto R.. On the transovarial passage of the rice stripe virus through the small brown planthopper, Laodelphax striatelllus Fallen, in:Conference on Relationships between Arthropods and plant-Pathogenic Viruses. Suppl. Tokyo,1965, (23):73-90
    Kiso A., Yamamoto T., Kitani K.. Studies on rice stripe disease with special reference to the causal virus, its laction in the diseased tissues and the metabolic changes in the disease plant. Bulletin Shikoku Agricultural Experiment Station,1974, (27):1-5
    Koganezawa H.. Purification and properties of rice stripe virus. In:Symposium on Virus Diseases of Tropical Crops. Tropical Agriculture Research,1977, (10):151-154
    Koganezawa H., Doi Y., Yora K.. Purification of rice stripe virus. Annuals of the phytopathological society of Japan,1975,(41):148-154
    Kooter J. M., Matzke M. A., Meyer P.. Listening to the silent genes:transgene silencing, gene regulation and pathogen control. Trends Plant Sci.,1999, (4):340-347
    Krake L. R., Rezaian M. A., Dry I. B.. Expression of the tomato leaf curl geminivirus C4 gene produces virus like symptoms in transgenic plants. MPMI,1998, (11):413-417
    Lawson C., Kaniewski W., Haley L., Rozman R., Newell C., Sanders P., Turner N. E.. Engineering resistance to mixed virus infection in a commercial potato cultivar: Resistance to potato virus X and potato virus Y in transgenic Russet Bubank. Bio/ Technology,1990, (8):127-134
    Liang D., Ma X., Qu Z., Well B., Hull R.. PVC2 of rice stripe tenuivirus is a component of fibrillar electron-opaque inclusion body. Abstracts of 19th American Society for Virology, . Colorado, USA.2000, (7):W15-1
    Lindbo J. A., Dougherty W. G. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology,1992, (189):725-733
    Lipardi C., Wei Q., Paterson B.. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001,107(3): 297-307
    Lu L., Du Z., Qin M., Wang P., Lan H., Niu X., Jia D., Xie L., Lin Q., Xie L., Wu Z.. Pc4, a putative movement protein of Rice stripe virus, interacts with a type I Dna J protein and a small Hsp of rice. Virus Genes,2009,38(2):320-327
    Ma H. T., On K. F., Tsang Y. H.. An inducible system for expression and validation of the specificity of short hairpin RNA in mammalian cells. Nucleic. Acids. Res.,2007,35(4): e22
    Martinez J., Patkaniowska A., Urlaub H., Luhrmann R., Tuschl T.. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell,2002, (110):563-574
    Masuta C., Ueda S., Suzuki M., Uyeda I.. Evolution of a quadripartite hybrid virus by interspecific exchange and recombination between replicase components of two related tripartite RNA viruses. Proceedings of the National Academy of Sciences of the United States of America,1998,95:10487-10492
    Matzke M., Matzke A. J., Kooter J. M.. RNA:guiding gene silencing. Science,2001,293 (5532):1080-1083
    Malpica J. M., Fraile A., Morueno I., Obies C. I., Drake J. W., Garcia-Arenal F.. The rate and character of spontaneous mutation in an RNA virus. Genetics,2002, (162):1505-1511
    Melcher U.. The'30K' superfamily of viral movement proteins. Journal of General Virology, 2000,81(1):257-266
    Miranda G. J., Azzam O., Shirako Y.. comparison of nucleotide sequences between northern and southern Philippine isolates of rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology,2000,266(1):26-32
    Molnar A., Csorba T., Lakatos L., Varallyay E., Lacomme C., Burgyan J.. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol.,2005, (79):7812-7818
    Murphy F. A, Fanaquet C. M., Bishop D. H. I.. Classification and nomenclature of viruses: Sixth Report of the International Committee on Taxonomy of Viruses. Archives of virolagyl,1995,10:316-318
    Nagy P. D, Simon A. E.. New insights into the mechanisms of RNA recombination. Virology, 1997,235(1):1-9
    Napoli C., Lemieux C., Jorgensen R.. Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible co-suppression of homologous genes in transplants. Plant Cell,1990, (2):279-289
    Nicholson R. H., Nicholson A. W.. Molecular characterization of a mouse cDNA encoding Dicer, a ribonuclease III:ortholog involved in RNA interference. Mann Genome,2002, 13(2):67-73
    Nicola-Negri E. D., Brunetti A., Tavazza M., Iiardi V.. Hairpin RNA-mediated silencing of Plum pox virus PI and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Research,2005, (14):989-994
    Nykanen A., Haley B., Zamore P. D.. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell,2001 (107):309-321
    Oard J. H., Linseombe S. D., Braverman M. P.. Development, field evaluation and agronomic performance of transgenic gerbicide-resistant rice. Molecular Breed,1996, (2):359-368
    Paddison P. J., Caudy A. A., Bernstein E., Hannon G. J. and Conklin D. S.. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development,2002, (16):948-958
    Palauqui J. C., Elmayan T., Pollien J. M., Vaucheret H.. Systemic acquired silencing: transgene specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. The EMBO Journal,1997, (16):4738-4745
    Pandolfini T., Molesini B., Avesani L., Spena A., Polverari A.. Expression of self-complementary hairpin RNA under the control of the rolc promoter confers systemic disease resistance to Plum Pox Virus (PPV) without preventing local infection. BMC Biotechnology,2003, (3):7-22
    Piccin A., Salameh A., Benna C., Sandrelli F., Mazzotta G, Zordan M., Rosato E., Kyriacou C. P. Costa R.. Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acid Research,2001,29(12), e55
    Pinto Y. M., Kok R. A., Bauleombe D. C.. Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Biotechnol,1999,17(7): 702-707
    Qiu W. P., Moyer J. W.. Tomato spotted wilt tospovirus adapts to the TSWV N gene-derived resistance by genome reassortment. Phytopathology,1999,89(7):575-582
    Qu Z., Liang D., Harper G, Hull R.. Comparison of sequences of RNAs 3 and 4 of rice stripe virus from China with those of Japanese isolates. Virus Genes,1997,15(2):99-103
    Raffo A. J., Dawson W. O.. Construction of tobacco mosaie virus subgenomic replicons that are replicated and spread systemieally in tobacco plants. Virology,1991,184(1):277-89
    Ramirez B. C., Haenni A. L.. Molecular biology of tenuiviruses:a remarkable group of plant viruses. Journal of General Virology,1994,75(1):467-475
    Ramos P. L., Guevara-Gonzalez R. G., Peral R., Ascencio-Ibannez J. T., Polston J. E., Arguello-Astorga G. R., Vega-Arregin J. C., Rivera-Bustamante R. F.. Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV:Implications for the delimitation of cis-and trans-acting replication specificity determinants. Archives of Virology,2003, (148):1697-1712
    Rodriguez L. L., Owens J. H., Peters C. J.. Genetic reassortment among viruses causing hantavirus pulmonary syndrome. Virology,1998,242(1):99-106
    Robinson D. J., Hamilton W. D., Harrison B. D.. Two anomalous tobravirus isolates:evidence for RNA recombination in nature. Journal of General Virology,1987, (68):2551-2561
    Roossinck M. J.. Mechanisms of plant virus evolution. Annual of Review of Phytopathology, 1997, (35):191-209
    Prins M., Goldbach R.. RNA-mediated virus resistance in transgenic plants. Archives of Virology,1996,141(12):2259-2276
    Ramesh S. V., Mishra A. K., Praveen S.. Hairpin RNA-Mediated Strategies for Silencing of Tomato Leaf Curl Virus AC1 and AC4 Genes for Effective Resistance in Plants. Oligonucleotides,2007, (17):251-257
    Rshid H., Yokoi S., Toriyama K.. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant cell Rep,1996,15:727-730
    Sabine B.. Antisense RNA regulation and RNA interference. Biochemica et Biophysica Acta, 2002,15(75):15-25
    Sanford J. C., Johnston S. A.. The concept of parasite-derived resistance:deriving resistance genes from the parasite own genome. J. Theor. Biol.,1985, (113):395-405
    Saxena S., Jonsson Z. O., Dutta A.. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem.,2003,278 (45):44312-44319
    Sharp P. A.. RNA interference. Genes Dev,2001,15(5):485-490
    Shimizu T., Toriyama S., Takahashi M., Akutsu K., Yoneyama K.. Non-viral sequences at the 5'termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. Journal of General virology,1996, (77):541-546.
    Shimizu T., Yoshii M., Wei T., Hirochik H., Omura T.. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnology Journal,2009, (7):24-32
    Shimizu T., Nakazono-Nagaoka E., Uehara-Ichiki T., Sasaya T., Omura T.. Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnology Journal,2010,1-10
    Shinkai A.. Studies on insect transmissions of rice virus disease in Japan. The Bulletin Institute of Agriculture Science, Series C,1962, (14):1-112
    Shinkai A.. Present situation of rice stripe disease. Plant Protection (Japan),1985, (11): 503-507
    Sijen T., Fleenor J., Simmer F.. On the role of RNA Amplification in dsRNA-triggered gene silencing. Cell,2001,107(4):465-476
    Smith H. A., Swaney S. L., Parks T. D., Wernsman E. A., Dougherty W. G.. Transgenic plant virus resistance mediated by untranslatable sense RNAs:Expression, regulation and fate of nonessential RNAs. The Plant Cell,1994, (6):1441-1453
    Smith N. A., Singh S. P., Wang M., Stoutjesdijk P. A., Green A. G., Waterhouse P. M.. Gene expression:Total silencing by intron-spliced hairpin RNAs. Nature,2000, (407):319-320
    Soellick T. R., Uhrig J. F., Bucher G. L., Kellmann J. W., Schreier P. Y.. The movement protein NSm of tomato spotted wilt tospovirus (TSWV):RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proceedings of National Scientific Academic of USA,2000, (97):2373-2378
    Song E., Lee S. K., Dykxhoorn D. M., Novina C. Zhang D., Crawford K., Cerny J., Sharp P. A., Lieberman J.,Manjunath N., Shankar P.. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J. Virol., 2003, (77):7174-7181
    Stewart M. G., Banerjee N.. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews,1999,63(1):128-148
    Stoutjesdijk P. A., Singh S. P., Liu Q., Hurlstone C. J., Waterhouse P. A., Green A. G. HpRNA-Mediated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing. Plant physiology,2002, (129):1723-1731
    Swaney S., Powers H., Goodwin J., Rosales L. S., Dougherty W. G. RNA-mediated resistance with nonstructural genes from the tobacco etches virus genome. MPMI,1995, 8(6):1004-1011
    Tabara H., Sarkisslan M., Kelly W. The rde-lgene RNA interference and transponson silencing in C. elegans. Cell,1999, (99):123-133
    Takahashi M., Toriyama S., Kikuchi Y, Hayakawa T., Ishihama A.. Complementarity between the 5'- and 3'-terminal sequences of rice stripe virus RNAs. Journal of General virology, 1990, (71):2817-2821
    Takahashi M., Toriyama S., Hamamatsu C., Ishihama A.. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. Journal of General virology,1993,74(4):769-773
    Takahashi M., Goto C., Matsuda I., Toriyama S.. Expression of rice stripe virus 22.8k protein in insect cells. Annuals of phytopathological society of Japan,1999,65(3):337
    Tijsterman M., Ketting R. F., Okihara K. L., Sijen T., Plasterk R. H. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science,2002, (295):694-697
    Toriyama S.. Rice stripe virus. CMI/ABB. Description of plant viruses,1983, (269):15
    Toriyama S.. An RNA-dependent RNA polymerase associated with the filamentous nuleoproteins of rice stripe virus. Journal of General Virology,1986, (67):1247-1255
    Toriyama S., Takahashi M., Sano Y, Shimizu T., Ishihama A.. Nucleotide sequence of RNA 1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. Journal of General virology,1994, (75):3569-3579
    Uyeda I, Ando Y, Murao K.. High resolution genome typing and genomic reassortment events of rice dwarf phytoreovirus. Virology,1995,212(1):724-727
    Van der Krol A. R., Mur L. A., de Lange P., Mol J. N, Stuitje A. R.. Inhibition of flower pigmentation by antisense CHS genes:promoter and minimal sequence requirements for the antisense effect. Plant Molecular Biology,1990, (14):457-466
    Van der Vlugt R. A. A., Ruiter R. K., Goldback R.. Evidence for sense RNA-mediated virus resistance to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol. Biology,1992, (20):631-639
    Van der Wilk F., Willink D. P. L., Huisman M. J., Huttinga H., Goldbach R.. Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plant inhibits viral infection. Plant Mol. Biol.,1997, (17):431-439
    Vaucheret H., Beclin C., Fagard M.. Post-transcriptional gene silencing in plants. J. Cell Sci., 2001,114(17):3083-3091.
    Vazquez R., Vas C., Hopp H. E.. RNA-mediated virus resistance. Curr. Opin. Biotechnol., 2002, (13):167-172.
    Wang M. B., Abbott D. C., Waterhouse P. M.. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular plant pathology,2000, (1):347-356
    Washio 0., Ezuka A., Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease Ⅱ. Genetic study on resistance to stripe disease in Japanese upland rice. Japan Journal of Breeding,1968a, (18):96-101
    Washio O., Ezuka A., Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease Ⅲ. Genetic studies on resistance to stripe disease in foreign varieties. Japan Journal of Breeding,1968b, (18):167-172
    Washio O., Ezaka A., Sakurai Y. Studies on the breeding of rice varieties to stripe disease. Varietial difference in resistance to stripe disease. Japan Journal of Breeding,1967,17(1): 91-98
    Waterhouse P. M., Graham M. W.. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. (USA),1998,(95):13959-13964
    Wesley S. V., Helliwell C. A., Smith N. A., Wang M., Rouse D. T., Liu Q., Gooding P. S., Singh S. P., Abbott D., Stoutjesdijk P. A., Robinson S. P., Gleave A. P., Green A. G, Waterhouse P. M.. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J.,2001, (27):581-590
    Westerhout E. M., Berkhout B.. A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic. Acids Res.,2007, (35):4322-4330
    White K. A, Morris T. J.. Nonhomologous RNA recombination in tombusvirus RNAs: generation and evolution of defective interfering RNAs by stepwise deletions. Journal of Virology,1994a,68(1):14-24
    Winston W., Molodowitch C., Hunter C.. Systemic RNAi in C. elegans requires the putative transmembrane prote in SID-1. Science,2002,295(5564):2456-2459
    Xiong R., Wu J., Zhou Y, Zhou X.. Identification of a movement protein of the tenuivirus rice stripe virus. Journal of Virology,2008,82(24):12304-11
    Xiong R., Wu J., Zhou Y., Zhou X.. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology,2009,387(1):29-40
    Yamaguchi T., Yasuo S., Ishi M.. Studies on rice stripe disease, Ⅲ. Study on varieties resistance to stripe disease of riee plant. J. Vent. Agr. Exp. Sta.1965, (8):109-160
    Yamashita S., Doi Y, Yora K.. Intercelluar appearance of rice stripe virus. Annuals of the phytopathological society of Japan,1985,51(5):637-641
    Zamore P. D.. Ancient Pathways Programmed by Small RNAs. Science,2002,296 (17): 1265-1269
    Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P.. RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000 (101): 25-33
    Zeng Y, Cullen B. R.. RNA interference in human cells is restricted to the cytoplasm. RNA, 2002,8(7):855-860
    Zhang H. M., Wu R.. Effcient regeneration of transgenic plant from rice protoplast sand correctly regulated expression of the foreign gene in the Plant. Theor. Appl. Genet.,1988, (76):835-840
    Zhu C. X, Song Y. Z, Yin G. H, Wen F. J.. Induction of RNA-mediated Multiple Virus Resistance to Potato virus Y, Tobacco mosaic virus and Cucumber mosaic virus. J. Phytopathology,2009, (157):101-107
    Zhu Y, Hayakawa T., Toriyama S., Takahashi M.. Complete nucleotide sequence of RNA 3 of rice stripe virus:an ambisense coding strategy. Journal of General virology,1991, (72): 763-767
    Zhu Y., Hayakawa T., Toriyama S.. Complete nucleotide sequence of RNA 4 of rice stripe virus isolate T and comparison with another isolate and with maize stripe virus. Journal of General virology,1992,(73):1309-1312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700