微囊化卵巢颗粒细胞长期体外培养及同种异体体内移植的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝经及绝经后期是妇女卵巢功能消失及其后的一段很长的时期。绝经所带来的一系列症状严重影响了妇女的自信心和生活质量,尤其是对那些POF和卵巢切除手术的年轻妇女。
     对绝经期的更年期综合征,临床上通常采用的是激素替代治疗(HRT)或雌激素替代治疗(ERT),来弥补雌激素缺乏所带来的一系列症状。但HERS和WHI的两份报告对HRT的受益/风险比的重新进行界定使全球范围内的HRT在过去的几年的应用产生了停滞甚至是倒退。因此,探讨可行的内源性激素替代治疗方法对解决无生育要求的绝经妇女,特别是对POF的妇女意义重大。
     细胞移植技术可以用于治疗人类某种蛋白或激素缺乏的疾病。细胞微囊化技术可以克服细胞移植治疗中的免疫排斥反应。以往对细胞微囊化移植的研究主要集中于胰岛、嗜铬细胞、肝细胞、甲状旁腺细胞、甲状腺细胞等治疗内分泌/代谢疾病和神经系统疾病,而对同样具有内分泌功能的卵巢颗粒细胞微囊化治疗绝经后的雌激素缺乏相关症状的研究目前国内外尚无报道。
     为探讨微囊化卵巢颗粒细胞移植治疗绝经综合征的可行性,本研究主要从以下几个方面进行了研究:1.卵巢颗粒细胞的获取及体外活性和功能的研究;2.微囊化卵巢颗粒细胞的制备及体外活性和功能的研究;3.微囊化卵巢颗粒细胞异体移植对同种异体去势大鼠内分泌功能和生殖系统的影响;为临床上POF及绝经妇女微囊化卵巢颗粒细胞的同种异体移植提供理论基础。
     第一部分卵巢颗粒细胞的获取及体外活性和功能的研究
     目的:观察卵巢颗粒细胞长期在体外无血清培养体系中形态和内分泌功能的改变,探讨卵巢颗粒细胞在无血清体系中最长生存时间和生物学活性。
     方法:1从26日龄未成年雌性SD大鼠获取原代卵巢颗粒细胞,采用FSHR对颗粒细胞进行免疫组化鉴定;
     2 WST方法测定颗粒细胞在不同浓度FSH(0,2.5,25, 100ng/ml)刺激48小时后的OD值,判断颗粒细胞对FSH刺激的增殖反应;
     3卵巢颗粒细胞长期体外培养45天,培养液中加添不同浓度的FSH(0,2.5,25ng/ml),显微镜下观察颗粒细胞的形态和数量的变化,ELISA法检测颗粒细胞培养液上清中E2和P的分泌。
     结果:1免疫组化的结果提示卵巢颗粒细胞的FSHR位于细胞浆,获得的颗粒细胞的FSHR的阳性率>90%;
     2 WST方法检测到,体外培养的卵巢颗粒细胞的增殖对不同浓度的FSH(0,2.5,25,50,100ng/ml)呈剂量依赖性;WST作用后颗粒细胞的OD值随FSH浓度的增大而增大,FSH 100ng/ml组OD值最高,与其他组相比差异有显著性(P<0.05);
     3原代卵巢颗粒细胞24-48小时贴壁,贴壁后的成短梭形或多角形。第7-9天,细胞伸展成长梭形并完全融合;培养的第9天到第20天左右,细胞连接成片状,状态良好。从体外培养的第21天开始,细胞开始萎缩,凋亡,逐渐变得如干枯状,数量减少;至培养的第30天,细胞数量减少明显,剩余的细胞簇所占面积大约占六孔板每个孔面积的1/6至1/8左右。培养的第31天至45天,细胞凋亡的进程加快,到培养的第45天时,颗粒细胞大部分已解体,细胞结构消失。FSH2.5ng/ml和25ng/ml组未见明显加快颗粒细胞贴壁和融合,减慢颗粒细胞凋亡的作用。
     4颗粒细胞在体外培养的第3,9,15,21,27,33,39和45天E2的分泌水平不同,差异有显著性(P<0.001),而不同浓度的FSH对颗粒细胞分泌E2的影响差异也有显著性(P=0.01)。FSHOng/ml组和FSH2.5ng/ml组培养的卵巢颗粒细胞在培养的第9天,E2的分泌达到最高峰(2244.6~2369.9) pg/ml,与培养的第3天相比差异有显著性(P<0.05);培养的第15天到第39天内,E2水平保持较高水平,变化不大;到第45天时,颗粒细胞E2的分泌水平降至第3天水平(P>0.05)。FSH25ng/ml组,在体外培养的第3天E2水平即达到最高峰2244.6pg/ml,第9天到第39天E2的分泌维持高水平,与第3天比差异无显著性(P>0.05)。第45天E2水平降低至1869 pg/ml,显著低于第3天(P<0.05)。颗粒细胞体外培养第3天时E2的分泌水平对FSH浓度成剂量依赖性的增加,在FSH25ng/ml组分泌水平最高达2244.6pg/ml,差异有显著性(P=0.016)。
     5颗粒细胞在体外培养的第3,9,15,21,27,33,39和45天P的分泌水平不同,差异有显著性(P=0.039);FSH浓度对颗粒细胞分泌P的影响差异也有显著性(P=0.035)。在FSHOng/ml组中,颗粒细胞在培养的第9天达到最高峰1.07ng/ml(P=0.006),第15天开始下降,一直维持在(7.6~8.1)ng/ml左右直到体外培养的第45天;而在FSH2.5ng/ml和FSH25ng/ml组在各时间点颗粒细胞分泌的P水平差异无显著性(P>0.05)。在体外培养的第9天,FSH2.5ng/ml和FSH25ng/ml组P的产生量显著低于FSHOng/ml组,差异有显著性(P=0.021),其余各时间点不同浓度FSH对颗粒细胞产生P无显著影响(P>0.05)
     第二部分微囊化卵巢颗粒细胞的制备及体外活性和功能的研究
     目的:制备微囊化的卵巢颗粒细胞,探讨微囊化卵巢颗粒细体外培养的生物学特性。
     方法:1应用海藻酸钠和氯化钡采用“一步成囊法”制备微囊化卵巢颗粒细胞。
     2 WST方法测定微囊化颗粒细胞在不同浓度FSH(0,2.5,25,50, 100ng/ml)刺激48小时的OD值,判断颗粒细胞微囊化后对FSH刺激后的增殖反应。
     3对微囊化卵巢颗粒细胞进行长期体外培养60天,培养液中添加不同浓度的FSH(0,2.5,25ng/ml),显微镜下观察微囊及微囊内细胞的形态和数量的变化,ELISA方法检测微囊化细胞培养液上清中中E:和P的分泌情况。
     结果:1.结果显示所制备的微囊直径750-800μm,呈规则球形或椭球形,颗粒细胞在微囊内分布均匀。体外培养60天,微囊形态保持良好,微囊内颗粒细胞无明显增多,FSH添加对微囊内颗粒细胞数量无显著影响。
     2.通过WST方法检测到,微囊化卵巢颗粒细胞在体外培养48小时FSH各组间的OD值无显著性差异(P=0.876)。
     3.微囊化的卵巢颗粒细胞在体外培养的第3,9,15,21,27,33,39,45,51,57和60天E2的分泌水平相似,在各时间点的E2水平差异无显著性(P=0.184)。不同浓度的FSH对微囊内颗粒细胞分泌E2的影响差异也无显著性(P=0.481)。但在体外培养的第3天,FSH2.5ng/ml组微囊内颗粒细胞分泌E2水平显著高于FSH0ng/ml和FSH25ng/ml组,差异有显著性(P=0.005)
     4.微囊化的卵巢颗粒细胞在体外培养的第3,9,15,21,27,33,39,45,51,57和60天P的分泌水平不同,差异有显著性(P=0.002),而不同浓度的FSH对颗粒细胞分泌P的影响差异无显著性(P=0.069)。三组微囊化的卵巢颗粒细胞在培养的第15天时P的分泌增加显著(P=0.001),在体外培养的第21天达到分泌的高峰(P<0.001),培养的第45天时,P的分泌开始下降,但仍保持稳定到培养的第60天。
     第三部分微囊化卵巢颗粒细胞同种异体腹腔内移植对去势大鼠生殖系统和内分泌功能的影响
     目的:观察微囊化卵巢颗粒细胞异体移植对去势大鼠血清中E2和P的分泌及子宫内膜、阴道脱落细胞的影响,探讨微囊化卵巢颗粒细胞异体移植作为激素替代治疗的可行性。
     方法:12周龄成年SD大鼠分为4组,正常大鼠组,单纯去势组,微囊化卵巢颗粒细胞移植组、空微囊移植组。SD大鼠去势4周后腹腔内移入微囊化颗粒细胞和空微囊。移植后对各研究组的大鼠每10天尾静脉采血一次,分离大鼠血清,ELISA法统一测定血清中E2和P的水平;每天取阴道脱落细胞,在光镜下观察雌激素的影响;移植后60天,大鼠处死,采用HE染色方法对移植后大鼠的子宫进行染色,观察子宫内膜的变化。
     结果:1移植后60天,大鼠处死后发现所移植微囊大部分粘附、包裹在腹腔脏器表面;回收的微囊形态完整,无破裂,表面被成纤维细胞、巨噬细胞等包裹。
     2移植后大鼠体内随移植时间变化,E2分泌水平有显著性差异(P<0.001),各分组间E2分泌水平也有显著性差异(P=0.001)。微囊化卵巢颗粒细胞移植组大鼠在移植后的第30天,E2的水平达最高峰,接近正常组大鼠的E2的水平(P>0.05)。微囊化卵巢颗粒细胞移植组大鼠移植后第30天和第40天的E2的水平显著高于移植前水平(P=0.001,P=0.021),而其他时间E2的水平与移植前无显著差异(P>0.05)。微囊化卵巢颗粒细胞移植对去势大鼠的P分泌无影响。
     3去势大鼠子宫内膜变薄、腺体萎缩,微囊化卵巢颗粒细胞移植后子宫内膜增厚不明显,但内膜内出现腺体,腺腔较小
     4微囊化卵巢颗粒细胞移植组的阴道脱落细胞与正常大鼠的发情前期或发情后期的表现相似,但无周期性变化。
     结论
     1.卵巢颗粒细胞微囊化前后均可在体外无血清培养体系中长期存活,并保持内分泌功能,可以作为产生内源性雌激素来源的细胞用于细胞移植。
     2.颗粒细胞微囊化前后,E2分泌量差异显著,可能与微囊化过程和微囊材料的生物相容性有关。
     3.FSH对颗粒细胞促进E2分泌作用显著,但对微囊化后的颗粒细胞促进E2分泌作用有限,可能与微囊限制了颗粒细胞的增殖有关。
     4.微囊化卵巢颗粒细胞异体移植后可以使去势大鼠血清中E2阶段性升高,对去势大鼠的生殖系统有雌激素样作用,改善去势大鼠的“低雌状态”,有可能成为绝经后激素替代治疗一种新的治疗手段。
Menopausal symptoms have a strong impact on self-esteem and quality of postmenopausal women life, especially for young premature ovarian failure (POF) women. Hormone replacement therapy (HRT) is used clinically, but its risks and benefits need to be carefully weighed. Organ and cells transplantations are accepted treatment of end-stage organ failure with endogenous hormone, but immunological rejection is the most important issues those faced. Microencapsulation protects transplanted grafts from immune attack, preserving grafts physical function and it seems to be a promising method for organ or cells transplantations alternative. Growing evidence have shown that endocrine glands, such as, pancreatic islets, parathyroid, and other functional cells are appropriate to be microencapsulated to treat the relative diseases. Especial noticeably, it has been used in clinic to treat diabetes and patients with symptomatic persisting postoperative hypoparathyroidism in clinic with microencapsulated human islets and microencapsulated parathyroid recently.
     The successful microencapsulated human islets and parathyroid allotransplantation opened opportunities for other endocrine disorders with similar pathogenesis.
     To explore the feasibility of treatment with microencapsulated ovarian granulosa cells in postmenopausal women, The present study planned to be carried out from three aspects as follows:1.investigate the morphologic and functional changes of ovarian granulosa cells in long-term culture in vitro; 2.evaluate the morphology and function of microencapsulated ovarian granulosa cells in vitro study; 3.determine the effect of microencapsulated ovarian granulosa cells on endocrine and reproductive system in ovarectomized rats after allogenetic transplantation.
     Part I The activity and function of ovarian granulosa cells in vitro study
     Objective:To observe the morphology and the endocrine function of ovarian granulosa cells in serum-free system, and to find out the longest survival time and biological activity of ovarian granulosa cells in serum-free culture system in vitro
     Methods:primary ovarian granulosa cells were obtained from 26 days SD rats and identified by immunohistochemistry with FSHR. Proliferations of granulosa cells were assessed by WST with different concentrations of FSH (0,2.5,25,100 ng/ml) stimulated for 48 hours.Ovarian granulosa cells were cultured in vitro for 45 days, with different concentrations of FSH(0,2.5,25 ng/ml) added.The morphology and the volume of granulose cells were observed under the microscope. The E2 and P secretion of the granulosa cells were detected by ELISA
     Results:
     1. FSHR localizes in cytoplasm of ovarian granulosa cells, the positive rate of FSHR was more than 90% ovarian granulose cells obtained.
     2. Proliferations of granulosa cells response to FSH were in a dose-dependent style and OD value of FSH 100ng/ml group is the highest (P<0.05).
     3. The time for attachment of primary ovarian granulosa cells was about 24 to 48 hours after harvested. Cellular fusion rate was about 100% on culture day 7-9.No visible changes occurred during the culture days 9-20. From day 21, cellular atrophy and apoptosis began to appear.Compared to the cells on day 9,only about 1/6 to 1/8 cells left on day 30, and most of cells disintegrated and cell structure disappear on the day 45. FSH had no significant effect on speeding up the adherence, integration or the role on cell apoptosis.
     4. Significant differences of E2 level were found between the culture day 3,9,15,21,27,33,39,45 (P<0.001) and among FSH groups(P= 0.01). In FSHOng/ml and FSH2.5ng/ml groups, E2 secretion reached the peak (2244.6~2369.9) pg/ml on day 9 (P<0.05). On day 45, E2 level reduced to the level of day 3 (P> 0.05).On the day 3, E2 secretion were dose-dependent to FSH,and reached maximum in FSH 25ng/ml group (P = 0.016).
     5. Significant differences of P level were found among FSH groups (P= 0.035). In FSHOng/ml group, P secretion reached peak 1.07ng/m on day 9 (P= 0.006), and began to decrease on day 15, but maintained at (7.6~8.1) ng/ml level until day 45. Little difference was found during culture in FSH2.5ng/ml and FSH25ng/ml groups (P> 0.05).But on day 9, P level in FSH2.5ng/ml and FSH25ng/ml group were significantly lower than that of FSHOng/ml group (P= 0.021).
     PartⅡThe activity and the function of microencapsulated granulosa cells in vitro study
     Objective:To observe the morphology and the endocrine function of microencapsulated granulosa cells in vitro study.
     Methods:Granulosa cells were microencapsulated in alginate-barium microcapsules and culutured in vitro. Proliferations of granulosa cells in microcapsules were assessed by WST with different concentrations of FSH (0,2.5,25,100 ng/ml) stimulated for 48 hours. Microencapsulated granulosa cells cultured in vitro for 60 days, with different concentrations of FSH (0,2.5,25 ng/ml) added. Observation of Morphology and the volume of granulose cells in microcapsules were done under the microscope. The E2 and P secretion of the microencapsulated granulosa cells were detected by ELISA method.
     Results:
     1. Microcapsules obtained appeared like a sphere, with diameter of 750-800μm and smooth appearance.The microencapsulated granulosa cells survived over 60 days in microcapsules and responded little to FSH in vitro.
     2. No significant difference of OD value was found among FSH groups in WST test (P=0.876).
     3.No significant difference of E2 level was found among the culture days 3,9,15,21,27,33,39,45,51,57and 60 (P=0.184) and among FSH groups (p=0.481). But on day 3, E2 secretion in FSH 2.5ng/ml group was significantly higher than those of FSH0 ng/ml and FSH 25 ng/ml group (P=0.005).
     4. Significant differences of P level were found among the culture days 3,9,15,21,27, 33,39,45,51,57,60 (P=0.002),but no similar difference was found among FSH groups (P=0.069). P level significantly increased on day 15(P=0.001), reached to the peak on day 21(P<0.001), reduced on day 45 in all groups. From day 45, P level kept stable until day 60.
     PartⅢThe effect of microencapsulated granulosa cells on reproductive system and endocrine function of ovarectomized rats in vivo after allogeneic transplantation
     Objective:To explore the feasibility of the alternative of HRT with microencapsulated granulosa cells allogenetic transplantation in postmenopausal women
     Methods:Adult SD rats of 12 weeks were divided into 4 groups:normal group (N),ovarectomized only group (OVX),ovarectomized+microencapsulated granulosa cells transplantation group (OVX+T), ovarectomized+hollow microcapsule transplantation group (OVX+HT). Transplantation was carried out 4 weeks after rats ovarectomized.Observation period was 60 days. Blood sampling from tail vein was used to determine the level of E2 and P every 10 days after transplantation.Vaginal exfoliate cells were observed under light microscope every day after transplantation.The uterus of rats were collected for HE staining 60 days after transplantation, to evaluate the changes of endometrium and glands.
     Results:
     1.60 days after transplantation, the microcapsules remained intact structurally, and most of the microcapsules adhered and wrapped on the surface of peritonea viscera.
     2. E2 levels of OVX+T group reached the peak on day 30 after transplantion, nearing to the level of normal group (P>0.05). The levels of E2 on day 30 and 40 were significantly higher than the level before transplantation (P= 0.001, P= 0.021 respectively). Microencapsulated granulosa cells transplanted had no effect on P secretion in ovariectomized rats.
     3. Endometrium of OVX rats was thin and the gland disappeared after OVX. In OVX+T group, no significant endometrial thickened was found. However, glands with small glandular cavity in endometrium occurred again.
     4. Vaginal exfoliated cells of rats in OVX+T group were similar to those of late proestrus and estrus in normal group, but without cyclical changes.
     Conclusions:
     1 The survival time of ovarian granulosa cells in vitro is up to 45 days in serum-free culture. FSH stimulates E2 secretion of granulosa cells, but had no effect on P secretion.
     2 Granulosa cells microencapsulated survive and maintain endocrine function in the microcapsules at least 60days.The effect of FSH on E2 stimulation of microencapsulated ovarian granulosa cells is limited, and FSH has no effect on P secretion of granulosa cells in microcapsules.
     3 Microencapsulated granulosa cells survive in vivo at least 60 days. Microencapsulated ovarian granulosa cells increase E2 level of OVX rats transiently, improve the the state of estrogen deficiency on reproductive system in OVX rats
引文
1. Collins P, Rosano G, Casey C, et al. Management of cardiovascular risk in the peri-menopausal woman:a consensus statement of European cardiologists and gynaecologists. Eur Heart J 2007;28:2028-2040
    2. Meirow D. Reproduction post-chemotherapy in young cancer patients. Mol Cell Endocrinol 2000; 169:123-131
    3. Poniatowski BC, Grimm P, Cohen G. Chemotherapy-induced menopause:a literature review. Cancer Invest 2001;19:641-648
    4. Davis SR. Premature ovarian failure. Maturitas 1996;23:1-8
    5. Haukvik UK, Dieset I, Bjoro T, Holte·H, Fossa SD. Treatment-related premature ovarian failure as a long-term complication after Hodgkin's lymphoma. Ann Oncol 2006;17:1428-1433
    6. Notelovitz M. Clinical opinion:the biologic and pharmacologic principles of estrogen therapy for symptomatic menopause. MedGenMed 2006;8:85
    7. Hsia J, Simon JA, Lin F, et al. Peripheral arterial disease in randomized trial of estrogen with progestin in women with coronary heart disease:the Heart and Estrogen/Progestin Replacement Study. Circulation 2000; 102:2228-2232
    8. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women:principal results From the Women's Health Initiative randomized controlled trial. JAMA 2002;288:321-333
    9. von Wolff M, Donnez J, Hovatta O, et al. Cryopreservation and autotransplantation of human ovarian tissue prior to cytotoxic therapy-a technique in its infancy but already successful in fertility preservation. Eur J Cancer 2009;45:1547-1553
    10. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980;210:908-910
    11. Sun AM, Goosen MF, O'Shea G. Microencapsulated cells as hormone delivery systems. Crit Rev Ther Drug Carrier Syst 1987;4:1-12
    12. Lee CH, Wang YJ, Kuo SM, Chang SJ. Microencapsulation of parathyroid tissue with photosensitive poly(L-lysine) and short chain alginate-co-MPEG Artif Organs 2004;28:537-542
    13. Hasse C, Schrezenmeir J, Stinner B, et al. Successful allotransplantation of microencapsulated parathyroids in rats. World J Surg 1994; 18:630-634
    14. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates:proof of concept. Transplantation 2006;81:1345-1353
    15. Abalovich AG, Bacque MC, Grana D, Milei J. Pig pancreatic islet transplantation into spontaneously diabetic dogs.Transplant Proc 2009;41:328-330
    16. Orive G, Hernandez RM, Gascon AR, et al. Cell encapsulation:promise and progress. Nat Med 2003;9:104-107
    17. Calafiore R, Basta G, Luca G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes:first two cases. Diabetes Care 2006;29:137-138
    18. Hasse C, Klock G, Schlosser A, Zimmermann U, Rothmund M. Parathyroid allotransplantation without immunosuppression. Lancet 1997;350:1296-1297
    1. Vardanyan M, Parkin E, Gruessner C, Rodriguez Rilo HL. Pancreas vs. islet transplantation:a call on the future. Curr Opin Organ Transplant; 2010;15(1): 124-130
    2. Nawrot I, Wozniewicz B, Tolloczko T, et al. Allotransplantation of cultured parathyroid progenitor cells without immunosuppression:clinical results. Transplantation 2007;83:734-740
    3. Okamoto T, Fujimoto Y, Obara T, et al. Trial of thyroid autotransplantation in patients with Graves' disease whose remnant thyroid has unintentionally been made too small at subtotal thyroidectomy. Endocrinol Jpn 1990;37:95-101
    4. Yoshizaki T, Furukawa M, Sato H. Thyroid allograft after total thyroidectomy in a rat model. Auris Nasus Larynx 1994;21:237-242
    5. Patino JF, Fenn JE. A successful transplant of embryonic adrenal tissue in a patient with Addison's disease. Yale J Biol Med 1993;66:3-10
    6. Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Glin Chim Acta 2000;293:157-166
    7. Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 1997;18:739-773
    8. Andreu C, Parborell F, Vanzulli S, Chemes H. Tesone M. Regulation of follicular luteinization by a gonadotropin-releasing hormone agonist:relationship between steroidogenesis and apoptosis. Mol Reprod Dev 1998;51:287-294
    9. Yu Y, Li W, Han Z, et al. The effect of follicle-stimulating hormone on follicular development, granulosa cell apoptosis and steroidogenesis and its mediation by insulin-like growth factor-I in the goat ovary. Theriogenology 2003;60:1691-1704
    10. Peluso JJ, Pappalardo A. Progesterone regulates granulosa cell viability through a protein kinase G-dependent mechanism that may involve 14-3-3sigma. Biol Reprod 2004;71:1870-1878
    11. Danilovich NA, Bartke A, Winters TA. Ovarian follicle apoptosis in bovine growth hormone transgenic mice. Biol Reprod 2000;62:103-107
    12. Woodruff TK, Lyon RJ, Hansen SE, Rice GC, Mather JP. Inhibin and activin locally regulate rat ovarian folliculogenesis. Endocrinology 1990;127:3196-3205
    13. Mao J, Smith MF, Rucker EB, et al. Effect of epidermal growth factor and insulin-like growth factor I on porcine preantral follicular growth, antrum formation, and stimulation of granulosal cell proliferation and suppression of apoptosis in vitro. J Anim Sci 2004;82:1967-1975
    14. Glamoclija V, Vilovic K, Saraga-Babic M, Baranovic A, Sapunar D. Apoptosis and active caspase-3 expression in human granulosa cells. Fertil Steril 2005;83:426-431
    15. Foghi A, Teerds KJ, van der Donk H, Dorrington J. Induction of apoptosis in rat thecal/interstitial cells by transforming growth factor alpha plus transforming growth factor beta in vitro. J Endocrinol 1997;153:169-178
    16. Kim JM, Boone DL, Auyeung A, Tsang BK. Granulosa cell apoptosis induced at the penultimate stage of follicular development is associated with increased levels of Fas and Fas ligand in the rat ovary. Biol Reprod 1998;58:1170-1176
    17. Tilly JL, Tilly KI, Kenton ML, Johnson AL. Expression of members of the bcl-2 gene family in the immature rat ovary:equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology 1995;136:232-241
    18. Tilly KI, Banerjee S, Banerjee PP, Tilly JL. Expression of the p53 and Wilms' tumor suppressor genes in the rat ovary:gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic follicles. Endocrinology 1995;136:1394-1402
    19. Billig H, Chun SY, Eisenhauer K, Hsueh AJ. Gonadal cell apoptosis: hormone-regulated cell demise. Hum Reprod Update 1996;2:103-117
    20 胡蓉,张晓梅,郗向红.AMH对体外培养人卵巢黄素化颗粒细胞分泌功能的影响.宁夏医学杂志,2009,31(10):868-870.
    21. Gong JG, Campbell BK, Bramley TA, et al. Suppression in the secretion of follicle-stimulating hormone and luteinizing hormone, and ovarian follicle development in heifers continuously infused with a gonadotropin-releasing hormone agonist. Biol Reprod 1996;55:68-74
    22 FSH和胰岛素对牛卵泡颗粒细胞长期培养的影响。中国草食动物,2004,24(4):16-18.
    23. Liu WK, Burleigh BD, Ward DN. Steroid and plasminogen activator production by cultured rat granulosa cells in response to hormone treatment. Mol Cell Endocrinol 1981;21:63-73
    24. Shores EM, Picton HM, Hunter MG. Differential regulation of pig theca cell steroidogenesis by LH, insulin-like growth factor I and granulosa cells in serum-free culture. J Reprod Fertil 2000;118:211-219
    1. Black SP, Constantinidis I, Cui H, et al. Immune responses to an encapsulated allogeneic islet beta-cell line in diabetic NOD mice. Biochem Biophys Res Commun 2006;340:236-243
    2. Schneider S, Feilen PJ, Brunnenmeier F, et al. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 2005;54:687-693
    3. Abalovich AG, Bacque MC, Grana D, Milei J. Pig pancreatic islet transplantation into spontaneously diabetic dogs. Transplant Proc 2009;41:328-330
    4. Elliott RB, Escobar L, Tan PL, et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc 2005;37:3505-3508
    5. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates:proof of concept. Transplantation 2006;81:1345-1353
    6. Calafiore R, Basta G, Luca G, et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc 2006;38:1156-1157
    7. Calafiore R, Basta G, Luca G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes:first two cases. Diabetes Care 2006;29:137-138
    8. Lee CH, Wang YJ, Kuo SM, Chang SJ. Microencapsulation of parathyroid tissue with photosensitive poly(L-lysine) and short chain alginate-co-MPEG. Artif Organs 2004;28:537-542
    9. Hasse C, Schrezenmeir J, Stinner B, et al. Successful allotransplantation of microencapsulated parathyroids in rats. World J Surg 1994; 18:630-634
    10. Hasse C, Klock G, Schlosser A, Zimmermann U, Rothmund M. Parathyroid allotransplantation without immunosuppression. Lancet 1997;350:1296-1297
    11. Sun AM, Goosen MF, O'Shea G. Microencapsulated cells as hormone delivery systems. Crit Rev Ther Drug Carrier Syst 1987;4:1-12
    12. Emerich DF, Thanos CG, Goddard M, et al. Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis 2006;23:471-480
    13. Zhang HL, Wu JJ, Ren HM, et al. Therapeutic effect of microencapsulated porcine retinal pigmented epithelial cells transplantation on rat model of Parkinson's disease. Neurosci Bull 2007;23:137-144
    14. Jeon Y, Kwak K, Kim S, et al. Intrathecal implants of microencapsulated xenogenic chromaffin cells provide a long-term source of analgesic substances. Transplant Proc 2006;38:3061-3065
    15. Schrezenmeir J, Kirchgessner J, Gero L, et al. Effect of microencapsulation on oxygen distribution in islets organs. Transplantation 1994;57:1308-1314
    16. Rayat GR, Rajotte RV, Ao Z, Korbutt GS. Microencapsulation of neonatal porcine islets:protection from human antibody/complement-mediated cytolysis in vitro and long-term reversal of diabetes in nude mice. Transplantation 2000;69:1084-1090
    17. Kulseng B, Thu B, Espevik T, Skjak-Braek G. Alginate polylysine microcapsules as immune barrier:permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant 1997;6:387-394
    18. Omer A, Duvivier-Kali VF, Trivedi N, et al. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice. Diabetes 2003;52:69-75
    19. Read TA, Sorensen DR, Mahesparan R, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001;19:29-34
    20. Thorsen F, Read TA, Lund-Johansen M, Tysnes BB, Bjerkvig R. Alginate-encapsulated producer cells:a potential new approach for the treatment of malignant brain tumors. Cell Transplant 2000;9:773-783
    21. Jiang Q, Zhang SZ, Peng JP, Wang XL. Preparation and in vitro studies of microencapsulated cells releasing human tissue inhibitor of metalloproteinase-2. J Zhejiang Univ Sci B 2005;6:859-864
    22.潘月龙,郑树,彭佳萍,等。微囊化Maspin基因修饰细胞对乳腺癌细胞Bcap37运动及粘附功能的影响.中华肿瘤杂志,2005,27(6:)342—346.
    23.严春晓,郑伟,傅红星,等。微囊化新生大鼠卵巢组织体外及异体移植.细胞生物学杂志,2006,28:763-767.
    1. Zimmermann H, Zimmermann D, Reuss R, et al. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005;16:491-501
    2. Omer A, Duvivier-Kali VF, Trivedi N, et al. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice. Diabetes 2003;52:69-75
    3. Hasse C, Klock Q Schlosser A, Zimmermann U, Rothmund M. Parathyroid allotransplantation without immunosuppression. Lancet 1997;350:1296-1297
    4. Soon-Shiong P, Heintz RE, Merideth N, et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994;343:950-951
    5. Calafiore R, Basta G, Luca G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes:first two cases. Diabetes Care 2006;29:137-138
    6. Hasse C, Schrezenmeir J, Stinner B, et al. Successful allotransplantation of microencapsulated parathyroids in rats. World J Surg 1994; 18:630-634
    7. Abalovich AG, Bacque MC, Grana D, Milei J. Pig pancreatic islet transplantation into spontaneously diabetic dogs. Transplant Proc 2009;41:328-330
    8. Zhang HL, Wu JJ, Ren HM, et al. Therapeutic effect of microencapsulated porcine retinal pigmented epithelial cells transplantation on rat model of Parkinson's disease. Neurosci Bull 2007;23:137-144
    9. Singh M, Meyer EM, Millard WJ, Simpkins JW. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 1994;644:305-312
    10. de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006;27:5603-5617
    11. Zhang WJ, Laue C, Hyder A, Schrezenmeir J. Purity of alginate affects the viability and fibrotic overgrowth of encapsulated porcine islet xenografts. Transplant Proc 2001;33:3517-3519
    12. Dionne KE, Colton CK, Yarmush ML. Effect of oxygen on isolated pancreatic tissue. ASAIO Trans 1989;35:739-741
    13. Dionne KE, Colton CK, Yarmush ML. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 1993;42:12-21
    14. Mueller-Klieser WF, Sutherland RM. Influence of convection in the growth medium on oxygen tensions in multicellular tumor spheroids. Cancer Res 1982;42:237-242
    15. Mueller-Klieser W, Freyer JP, Sutherland RM. Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br J Cancer 1986;53:345-353
    16. de Vos P, Hamel AF, Tatarkiewicz K. Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 2002;45:159-173
    17. De Vos P, Hillebrands JL, De Haan BJ, Strubbe JH, Van Schilfgaarde R. Efficacy of a prevascularized expanded polytetrafluoroethylene solid support system as a transplantation site for pancreatic islets. Transplantation 1997;63:824-830
    18. de Vos P, Marchetti P. Encapsulation of pancreatic islets for transplantation in diabetes:the untouchable islets. Trends Mol Med 2002;8:363-366
    19. De Vos P, De Haan B, Pater J, Van Schilfgaarde R. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 1996;62:893-899
    20. Haque T, Chen H, Ouyang W, et al. Investigation of a new microcapsule membrane combining alginate, chitosan, polyethylene glycol and poly-L-lysine for cell transplantation applications. Int J Artif Organs 2005;28:631-637
    21. de Groot M, Keizer PP, de Haan BJ, et al. Microcapsules and their ability to protect islets against cytokine-mediated dysfunction. Transplant Proc 2001;33:1711-1712
    22. Korbutt GS, Mallett AG, Ao Z, Flashner M, Rajotte RV. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following transplantation. Diabetologia 2004;47:1810-1818
    23. Petruzzo P, Pibiri L, De Giudici MA, et al. Xenotransplantation of microencapsulated pancreatic islets contained in a vascular prosthesis:preliminary results. Transpl Int 1991;4:200-204
    24. Foster JL, Williams G, Williams LJ, Tuch BE. Differentiation of transplanted microencapsulated fetal pancreatic cells. Transplantation 2007;83:1440-1448
    25 潘月龙,郑树,彭佳萍,等.微囊化Maspin基因修饰细胞对乳腺癌细胞Bcap37运动及粘附功能的影响.中华肿瘤杂志,2005,27(6:)342—346.
    26 de Vos P, van Hoogmoed CG, van Zanten J, et al. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 2003;24:305-312.
    1. O'Shea GM, Sun AM. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes 1986;35:943-946
    2. Kulseng B, Skjak-Braek G, Ryan L, et al. Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 1999;67:978-984
    3. Zhang WJ, Laue C, Hyder A, Schrezenmeir J. Purity of alginate affects the viability and fibrotic overgrowth of encapsulated porcine islet xenografts. Transplant Proc 2001;33:3517-3519
    4. Klock G, Pfeffermann A, Ryser C, et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials 1997;18:707-713
    5. Schrezenmeir J, Hyder A, Vreden M, Laue C, Mueller-Klieser W. Oxygen profile of microencapsulated islets:effect of immobilised hemoglobin in the alginate matrix. Transplant Proc 2001;33:3511-3516
    6. Duvivier-Kali VF, Omer A, Parent RJ, O'Neil JJ, Weir GC. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001;50:1698-1705
    7. Kobayashi T, Aomatsu Y, Iwata H, et al. Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation 2003;75:619-625
    8. Aomatsu Y, Nakajima Y, Ohyama T, et al. Efficacy of agarose/polystyrene sulfonic acid microencapsulation for islet xenotransplantation. Transplant Proc 2000;32:1071-1072
    9. Silva CM, Ribeiro AJ, Figueiredo M, Ferreira D, Veiga F. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J 2005;7:E903-913
    10. Coradin T, Nassif N, Livage J. Silica-alginate composites for microencapsulation. Appl Mierobiol Biotechnol 2003;61:429-434
    11. Lanza RP, Jackson R, Sullivan A, et al. Xenotransplantation of cells using biodegradable microcapsules. Transplantation 1999;67:1105-1111
    12. Tobias CA, Dhoot NO, Wheatley MA, et al. Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats. J Neurotrauma 2001;18:287-301
    13. Prakash S, Martoni C. Toward a new generation of therapeutics:artificial cell targeted delivery of live cells for therapy. Appl Biochem Biotechnol 2006; 128:1-22
    14. Sun Y, Ma X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996;98:1417-1422
    15. Schneider S, Feilen PJ, Brunnenmeier F, et al. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 2005;54:687-693
    16. Calafiore R, Basta G, Luca G, et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc 2006;38:1156-1157
    17. Calafiore R, Basta G, Luca G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes:first two cases. Diabetes Care 2006;29:137-138
    18. Lin L, Song Y, Song C, Xu P. Successful xenotransplantation of microencapsulated newborn pig parathyroid cells in the treatment of hypoparathyroidism in rats. Chin Med J (Engl) 2003;116:1161-1165
    19. Lee CH, Wang YJ, Kuo SM, Chang SJ. Microencapsulation of parathyroid tissue with photosensitive poly(L-lysine) and short chain alginate-co-MPEG. Artif Organs 2004;28:537-542
    20. Picariello L, Benvenuti S, Recenti R, et al. Microencapsulation of human parathyroid cells:an "in vitro" study. J Surg Res 2001;96:81-89
    21. Hasse C, Klock G, Schlosser A, Zimmermann U, Rothmund M. Parathyroid allotransplantation without immunosuppression. Lancet 1997;350:1296-1297
    22. Tai IT, Sun AM. Microencapsulation of recombinant cells:a new delivery system for gene therapy. FASEB J 1993;7:1061-1069
    23. Roberts T, De Boni U, Sefton MV. Dopamine secretion by PC 12 cells microencapsulated in a hydroxyethyl methacrylate—methyl methacrylate copolymer. Biomaterials 1996; 17:267-275
    24. Xue Y, Gao J, Xi Z, et al. Microencapsulated bovine chromaffin cell xenografts into hemiparkinsonian rats:a drug-induced rotational behavior and histological changes analysis. Artif Organs 2001;25:131-135
    25. Xue YL, Wang ZF, Zhong DG, et al. Xenotransplantation of microencapsulated bovine chromaffin cells into hemiparkinsonian monkeys. Artif Cells Blood Substit Immobil Biotechnol 2000;28:337-345
    26. Yoshida H, Date I, Shingo T, et al. Stereotactic transplantation of a dopamine-producing capsule into the striatum for treatment of Parkinson disease:a preclinical primate study. J Neurosurg 2003;98:874-881
    27. Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003;181:115-129
    28. Tobias CA, Han SS, Shumsky JS, et al. Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 2005;22:138-156
    29. Dhoot NO, Tobias CA, Fischer I, Wheatley MA. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 2004;71:191-200
    30. Kim YM, Jeon YH, Jin GC, Lim JO, Baek WY. Immunoisolated chromaffin cells implanted into the subarachnoid space of rats reduce cold allodynia in a model of neuropathic pain:a novel application of microencapsulation technology. Artif Organs 2004;28:1059-1066
    31. Chang PL, Shen N, Westcott AJ. Delivery of recombinant gene products with microencapsulated cells in vivo. Hum Gene Ther 1993;4:433-440
    32. Chang TM. Artificial cell biotechnology for medical applications. Blood Purif 2000;18:91-96
    33. Xu W, Liu L, Charles IG Microencapsulated iNOS-expressing cells cause tumor suppression in·mice. FASEB J 2002;16:213-215
    34. Zheng S, Xiao ZX, Pan YL, Han MY, Dong Q. Continuous release of interleukin 12 from microencapsulated engineered cells for colon cancer therapy. World J Gastroenterol 2003;9:951-955
    35. Hao S, Su L, Guo X, Moyana T, Xiang J. A novel approach to tumor suppression using microencapsulated engineered J558/TNF-alpha cells. Exp Oncol 2005;27:56-60
    36. Samel S, Keese M, Lux A, et al. Peritoneal cancer treatment with CYP2B1 transfected, microencapsulated cells and ifosfamide. Cancer Gene Ther 2006;13:65-73
    37. Mai Q Nguyen TH, Morel P, et al. Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Xenotransplantation 2005; 12:457-464
    38. Aoki T, Koizumi T, Kobayashi Y, et al. A novel method of cryopreservation of rat and human hepatocytes by using encapsulation technique and possible use for cell transplantation. Cell Transplant 2005; 14:609-620
    39. Sun T, Chan ML, Quek CH, Yu H. Improving mechanical stability and density distribution of hepatocyte microcapsules by fibrin clot and gold nano-particles. J Biotechnol 2004; 111:169-177
    40. Ma HL, Hung SC, Lin SY, Chen YL, Lo WH. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 2003;64:273-281
    41. Nuttelman CR, Tripodi MC, Anseth KS. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 2004;68:773-782
    42. Grunder T, Gaissmaier C, Fritz J, et al. Bone morphogenetic protein (BMP)-2 enhances the expression of type Ⅱ collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 2004;12:559-567
    43. Mercier NR, Costantino HR, Tracy MA, Bonassar LJ. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials 2005;26:1945-1952
    44. Van Raamsdonk JM, Ross CJ, Potter MA, et al. Treatment of hemophilia B in mice with nonautologous somatic gene therapeutics. J Lab Clin Med 2002; 139:35-42
    45. D'Souza MJ, Jin Z, Oettinger CW. Treatment of experimental septic shock with microencapsulated antisense oligomers to NF-kappaB. J Interferon Cytokine Res 2005;25:311-320
    46. Li Y, Lin CM, Cai XN, Li GQ. Reconstruction of human hair dermal papilla with microencapsulation in vitro. J Dermatol Sci 2005;38:107-109
    47. Robitaille R, Dusseault J, Henley N, Rosenberg L, Halle JP. Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology 2003;144:3037-3045
    48. De Vos P, Van Straaten JF, Nieuwenhuizen AG, et al. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 1999;48:1381-1388
    49. de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006;27:5603-5617
    50. Petruzzo P, Pibiri L, De Giudici MA, et al. Xenotransplantation of microencapsulated pancreatic islets contained in a vascular prosthesis:preliminary results. Transpl Int 1991;4:200-204
    51. Darquy S, Pueyo ME, Capron F, Reach G Complement activation by alginate-polylysine microcapsules used for islet transplantation. Artif Organs 1994; 18:898-903
    52. De Vos P, De Haan B, Pater J, Van Schilfgaarde R. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 1996;62:893-899
    53. Gao W, Demirci G, Strom TB, Li XC. Stimulating PD-1-negative signals concurrent with blocking CD 154 co-stimulation induces long-term islet allograft survival. Transplantation 2003;76:994-999
    54. Zawalich WS, Zawalich KC. Enhanced activation of phospholipase C and insulin secretion from islets incubated in fatty acid-free bovine serum albumin. Metabolism 2008;57:290-298
    55. Haque T, Chen H, Ouyang W, et al. Investigation of a new microcapsule membrane combining alginate, chitosan, polyethylene glycol and poly-L-lysine for cell transplantation applications. Int J Artif Organs 2005;28:631-637
    56. Orive G, Hernandez RM, Rodriguez Gascon A, et al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004;22:87-92
    57. Cardozo AK, Proost P, Gysemans C, et al. IL-lbeta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 2003;46:255-266
    58. de Groot M, Keizer PP, de Haan BJ, et al. Microcapsules and their ability to protect islets against cytokine-mediated dysfunction. Transplant Proc 2001;33:1711-1712
    59. Korbutt GS, Mallett AG, Ao Z, Flashner M, Rajotte RV. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following transplantation. Diabetologia 2004;47:1810-1818
    60. Foster JL, Williams G, Williams LJ, Tuch BE. Differentiation of transplanted microencapsulated fetal pancreatic cells. Transplantation 2007;83:1440-1448
    61. Hasse C, Bohrer T, Barth P, et al. Parathyroid xenotransplantation without immunosuppression in experimental hypoparathyroidism:long-term in vivo function following microencapsulation with a clinically suitable alginate. World J Surg 2000;24:1361-1366
    62. Hasse C, Zielke A, Klock Q et al. Amitogenic alginates:key to first clinical application of microencapsulation technology. World J Surg 1998;22:659-665
    1 Costello MF, Eden JA. A systematic review of the reproductive system effects of metformin in patients with polycystic ovary syndrome. Fertil Steril 2003; 79:1-13.
    2 Parsanezhad ME, Alborzi S, Zarei A,et al. Insulin resistance in clomiphene responders and no-responders with polycystic ovarian disease and therapeutic effects of metformin. Int J Gynecol Obstet 2001;75:43-50.
    3 Omid K, Jason P. Helliwell, et al. Two weeks of metformin improves clomiphene citrate induced ovulation and metabolic profiles in women with polycystic ovary syndrome. Fertil Steril 2006,85:1448-1451.
    4 Abbas M, Gannon M. The use of metformin as first line treatment in polycystic ovary syndrome. Ir Med J.2008,101(2):51-3.
    5 Rausch ME, Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, et al. Predictors of pregnancy in women with polycystic ovary syndrome. J Clin Endocrinol Metab.2009,94(9):3183-4.
    6 Li TC, Makris M, Tomsu M, Tuckerman E, Laird S. Recurrent miscarriage:aetiology, management and prognosis. Hum Reprod Update 2002; 8:463-481.
    7 Rai R, Backos M, Rushworth F, Regan L. Polycystic ovaries and recurrent miscarriage—a reappraisal. Hum Reprod 2000;15:612-615.
    8 Wang JX, Davies MJ, Norman RJ. Polycystic ovarian syndrome and the risk of spontaneous abortion following assisted reproductive technology treatment. Human Reproduction (Oxford, England) 2001; 16:2606-2609
    9 Glueck CJ, Wang P, Fontaine RN et al. Plasmonogen inhibitor activity:an independent risk factor for the high miscarriage rate during pregnancy in women with polycystic ovary syndrome. Metabolism 1999; 48:1589-1595.
    10 Glueck CJ,Wang P, Goldenberg N & Sieve-Smith L. Pregnancy outcomes among women with polycystic ovary syndrome treated with metformin. Human Reproduction (Oxford, England) 2002; 17:2858-2864.
    11 Jakubowicz DJ, Iuorno MJ, Jakubowicz S et al. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism 2002; 87:524-529.
    12 Stefano Palomba, Angela Falbo, Francesco Orio,et al. Metformin hydrochloride and recurrent miscarriage in a woman with polycystic ovary syndrome. Fertil Steril, 2006; 85:1511.e3-5.
    13 Palomba S, Orio F Jr, Falbo A, Russo T, Tolino A, Zullo F. Plasminogen activator inhibitor 1 and miscarriage after metformin treatment and laparoscopic ovarian drilling in women with polycystic ovary syndrome. Fertil Steril 2005; 84:761-765.
    14 Glueck CJ, Prenikoff J, Aregawi D, Wang P. Prevention of gestational diabetes by metformin plus diet in patients with polycystic ovary syndrome.Fertil Steril 2007 August 2; E pub ahead of print.
    15 Glueck CJ, Wang P, Kobayashi S, Phillips L, Sieve-Smith H.Metformin therapy throughout pregnancy reduces the development of gestational diabetes in women with polycystic ovary syndrome.Fertil Steril 2002;77:520-525.
    16 Glueck CJ, Wang P, Goldenberg L, Sieve-Smith N. Pregnancy outcomes among women with polycystic ovary syndrome treated with metformin. Hum Reprod 2002; 17:2858-2864.
    17 Glueck CJ, Bornovali S, Pranikoff J, Goldenberg N, Dharashivkar P,Wang S. Metformin, pre-eclampsia, and pregnancy outcomes in women with polycystic ovary syndrome. Diabet Med 2004; 21:829-836.
    18 Glueck CJ, Goldenberg N, Wang P, Loftspring A, Sherman M.Metformin during pregnancy reduces insulin, insulin resistance, insulin secretion, weight, testosterone and development of gestational diabetes:prospective longitudinal assessment of women with polycystic ovary syndrome from preconception throughout pregnancy. Hum Reprod 2004; 19:510-521.
    19 Henry NA, Beischer OA. Long-term implications of gestational diabetes for the mother. Baillieres Clin Obstet Gynaecol 1991;5:461-483.
    20 Lo JC, Feigenbaum SL, Escobar GJ, Yang J, Crites YM, Ferrara A. Increased prevalence of gestational diabetes mellitus among women with diagnosed polycystic ovary syndrome:a population-based study. Diabetes Care 2006; 29:1915-1917.
    21 Charles J. Glueck, Joel Pranikoff, et al. Prevention of gestational diabetes by metformin plus diet in patients with polycystic ovary syndrome. Fertil Steril,2008; 89:625-634.
    22 Glueck CJ, Goldenberg N, Pranikoff J, Loftspring M, Sieve L, Wang P.Height, weight, and motor-social development during the first 18 months of life in 126 infants born to 109 mothers with polycystic ovary syndrome who conceived on and continued metformin through pregnancy. Hum Reprod 2004; 19:1323-1330.
    23 Vanky E, Salvesen KA, Heimstad R, et al. Metformin reduces pregnancy complications without affecting androgen levels in pregnant polycystic ovary syndrome women:results of a randomized study. Hum Reprod,2004,19: 1734-1740
    24 Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J,et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002; 51:2796-2803.
    25 Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Meigs JB, et al. Population-based incidence rates and risk factors for type 2 diabetes in white individuals:the Bruneck study. Diabetes 2004; 53:1782-1789.
    26 Goldfine AB, Bouche C, Parker RA, Kim C, Kerivan A, Soeldner JS, et al. Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proc Natl Acad Sci U S A 2003; 100:2724-2729.
    27 Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, et al. Effect of pioglitazone on pancreatic beta-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes 2006; 55:517-522.
    28 Knowler WC, Barrett-Conner E, Fowler SE et al. (Diabetes Prevention Program Research Group).Reduction in incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine 2002; 346:393-403.
    29 Charles J. Glueck, Naila Goldenberg, et al. An observational study of reduction of insulin resistance and prevention of development of type 2 diabetes mellitus in women with polycystic ovary syndrome treated with metformin and diet. Metabolism Clinical and Experimental 57 (2008) 954-960.
    30 Glueck CJ, Moreira A, Goldenberg N, Sieve P, Wang L. Pioglitazone and metformin in obese women with polycystic ovary syndrome not optimally responsive to metformin. Hum Reprod 2003; 18:1618-1625.
    31 Luque-Ramirez M, Alvarez-Blasco F, Mendieta-Azcona C, Botella-Carretero JI, Escobar-Morreale HF. Obesity is the major determinant of the abnormalities in blood pressure found in young women with the polycystic ovary syndrome. J Clin Endocrinol Metab 2007;92:2141-2148.
    32 Luque-Ramirez M, Mendieta-Azcona C, Alvarez-Blasco F, Escobar-Morreale HF. Androgen excess is associated with the increased carotid intima-media thickness observed in young women with polycystic ovary syndrome (PCOS). Hum Reprod 2007;22:3197-3203.
    33 Diamanti-Kandarakis E, Spina G, Kouli C, Migdalis I. Increased endothelin-1 levels in women with polycystic ovary syndrome and the beneficial effect of metformin therapy. J Clin Endocrinol Metab 2001;86:4666-4673.
    34 Sahin Y, Unluhizarci K, Yilmazsoy A, Yikilmaz A, Aygen E,Kelestimur F. The effects of metformin on metabolic and cardiovascular risk factors in nonobese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 2007;67:904-908.
    35 Manuel LR, Covadonga MA, Francisco AB,et al. Effects of metformin versus ethinyl-estradiol plus cyproterone acetate on ambulatory blood pressure monitoring and carotid intima media thickness in women with the polycystic ovary syndrome. Fertil Steril 2008,article on line
    36 Ibanez L, Jaramillo A, Ferrer A, de Zegher F. Absence of hepatotoxicity after long-term, low-dose flutamide in hyperandrogenic girls and young women. Hum Reprod 2005;20:1833-6.
    37 Susmeeta T,Sharma MBBS, John E. Nestler. Prevention of diabetes and cardiovascular disease in women with PCOS:Treatment with insulin sensitizers. Best Practice & Research Clinical Endocrinology & Metabolism2006:20(2), 245-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700