用户名: 密码: 验证码:
ChIFN-α基因遗传转化植物及提高烟草抗病毒能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病毒病是严重危害农业生产的重要病害之一,抗病品种的培育是防治植物病毒病的有效措施,为了揭示动物细胞因子对植物病毒的抗性作用及其在植物体内的保护机制,本论文报道了编码高效和广谱抗病毒干扰素的ChIFN-α基因遗传转化植物及提高烟草抗病性的研究。试验构建含有ChIFN-α基因的植物双元表达载体,采用农杆菌介导法将ChIFN-α基因导入植物细胞中,以组织化学鉴定和分子生物学鉴定技术筛选出转基因植株,研究转基因植株表达干扰素蛋白的生物学活性,并对转基因烟草对花叶病毒(TMV)的抗性及其生化、分子、细胞学机制和ChIFN-α基因表达对烟草生长及抗逆性的调控作用进行了较为全面深入的研究,取得结果如下:
     (1)植物表达载体构建及验证。构建了由35S驱动ChIFN-α基因的植物双元表达载体pSFChIFNR和pSFRLH,构建了以Napin驱动的ChIFN-α基因的pSWNRN植物双元表达载体。表达载体经生菜真空渗透瞬时表达系统检验目的基因的表达,通过GUS组织化学染色、ChIFN-α基因的PCR和RT-PCR检测,以及表达蛋白的ELISA和细胞病变抑制实验(CPE),证明35S和Napin启动子驱动的ChIFN-α基因均能在植物中获得表达,具有体外抗病毒的生物学活性,重组蛋白约占生菜总可溶蛋白的0.0004%,体外抗滤泡性口炎病毒(VSV)活性为8.2×10~2 AU·mg~(-1)。
     (2)植物遗传转化体系的建立。首次建立以油菜种子为材料的超声波辅助农杆菌介导的遗传转化方法。适宜的种子处理和转化条件为:超声波振幅/超声时间/侵染时间=5μm/0.5h/20h,获得转基因植株的周期(?)2月,该方法不需要复杂和消毒严格的组织培养操作,具有快速、简单、成本低廉和易于大规模转化等特点。建立百脉根真叶叶片、主茎和花茎作为外植体的遗传转化体系,优化MS+3.0mg·L~(-1) 6BA+0.1mg·L~(-1) NAA为百脉根愈伤诱导培养基,MS+0.3mg·L~(-1) KT为芽分化培养基,1/2MS+0.4mg·L~(-1) IBA为生根培养基,45.0mg·L~(-1)Kan作为抗性筛选浓度。该体系克服子叶和胚轴外植体细小、柔软而不易操作等不足,获得再生植株的周期为2.5-4.0个月,比报道的子叶和胚轴外植体转化体系短0.5-5.0个月。
     (3)ChIFN-α基因的植物转化与表达。通过农杆菌介导法将含ChIFN-α基因的植物表达载体pSFChIFNR、pSFRLH和pSWNRN分别导入烟草、油菜和百脉根植物中,经报告基因GUS组织化学染色及ChIFN-α基因的PCR、Southern blot和RT-PCR检测,ChIFN-α基因插入受体植物染色体基因组中,进行了正确转录表达。筛选出转基因烟草11株,转基因百脉根15株,转基因油菜26株。经Western blot、ELISA和CPE检测,重组ChIFN-α蛋白在转基因植物体内得到正确翻译表达,其在烟草和百脉根植物中分别约占总可溶蛋白的0.0003-0.0033%和0.00002-0.0001%:植物表达的ChIFN-α分子量为29.51kD:CPE实验证明转基因植株粗提蛋白具有抗病毒的生物学活性,能够保护鸡胚成纤维细胞(CEF)免受VSV的攻击,其体外抗病毒活性为5.01×10~3 IU·g~(-1)。
     (4)转基因烟草对TMV的抗性。对T_0代转基因及同批非转基因烟草对照苗进行烟草花叶病毒TMV接种试验,转基因烟草全部出现花叶病症的时间比非转基因对照推迟3-6d:转基因烟草在病毒侵染10d时的发病率为0,对照为60%,此时转基因植株的平均病情指数为50,非转基因对照为77.78;26d试验期内转基因烟草对TMV的相对防效平均为34.18%。说明转基因烟草植株在病毒侵染后表现出发病率低、发病时间推迟和病症减轻,首次证明转ChIFN-α基因烟草对TMV初期侵染具有一定抗性。
     (5)TMV接种对转基因烟草的防御酶活性影响。侵染前转基因烟草叶片中的过氧化物酶(POD)和超氧化物歧化酶(SOD)活性均高于对照植株,二者在转基因植株中的活性分别为10.6和77.67g~(-1)·min~(-1),在对照中为和46.63g~(-1)·min~(-1);TMV接种后POD活性在转基因烟草中先降低后升高,而对照中呈持续下降趋势,且低于转基因组;转基因组的SOD活性在侵染10d时平均为40.13g~(-1)·min~(-1),高于对照的25.24g~(-1)·min~(-1)。多酚氧化酶(PPO)活性在TMV接种0d时的转基因烟草叶片中为11.97g~(-1)·min~(-1),对照中为31.1g~(-1)·min~(-1);在侵染10d和28d的转基因叶片中分别为22.35和23.95g~(-1)·min~(-1),对照中为14和50g~(-1)·min~(-1);TMV接种前转基因烟草叶片中多酚氧化酶(PPO)的活性平均低于对照,但TMV接种0-10d内其酶活性在转基因植株中呈上升趋势,对照则逐渐下降,转基因植株表现出在病毒侵染初期没有产生应激和PPO合成增加现象。TMV接种后转基因植物中苯丙氨酸解氨酶(PAL)活性相对增幅低于对照,降幅快于对照。研究说明,ChIFN-α基因的导入促进了烟草体内POD、SOD和PPO三种防御酶活性的增高,但是和PAL活性的相关性不明显。
     (6)TMV接种对转基因烟草中抗病相关基因表达的影响。对接种TMV前后的烟草植株中的病程相关蛋白基因PR-la、N基因和促分裂原活化蛋白激酶基因MAPK的表达差异进行了荧光实时定量检测。TMV接种后烟草植株体内PR-la基因的转录活性呈先上升后下降趋势;侵染6d时,转基因植株中PR-la基因的转录活性较对照植株分别增强276.00倍和33.75倍;15d时转基因植株中PR-la的表达量分别比对照提高1.95倍和82.95倍。TMV接种后烟草植株体内抗病基因N基因和信号转导基因MAPK基因的表达均呈持续上升趋势:侵染6d时,转基因植株中N基因表达量分别为对照的1.20倍和0.01倍,15d时转基因植株中N基因的表达量分别比对照提高3.19倍和20.10倍;侵染6d时,转基因植株中MAPK基因表达量分别较对照提高5.51倍和2.63倍,15d时转基因植株中MAPK的表达量分别较对照组提高3.96倍和7.94倍。研究说明ChIFN-α基因参与了植物防御反应的调节过程,ChIFN-α基因的导入通过上调防卫基因(PR-la基因)、植物抗病基因(N基因)和信号转导基因(MAPK基因)的表达,从多个途径综合实现转基因烟草对TMV的抗性。对TMV侵染后烟草植株中ChIFN-α基因的表达检测得到,TMV接种后15d,转基因植株中ChIFN-α基因的相对表达量分别是接种前的17.89和2.09倍,表明ChIFN-α基因的表达受病毒侵染的诱导,植物体中ChIFN-α基因的作用途径与动物机体相似,病毒感染激活细胞中干扰素基因的表达,进一步促进机体抗病基因表达,从而建立机体的抗病毒状态。
     (7)TMV接种对转基因烟草叶绿体的影响。接种10d内转基因与对照植株中的叶绿素含量均呈现下降趋势,但对照组降幅大,降速快。侵染10d时对照叶片中叶绿素a含量下降40.94%,转基因组下降12.21%;对照中叶绿素b含量下降43.33%,转基因组中则增加了3.42%;叶绿素总量的下降在对照和转基因植株中分别为41.64%和9.77%。病毒侵染10d后对照植株中叶绿素含量开始上升并逐渐接近转基因组,但28d时其平均含量仍低于转基因组。转基因植株在受到病毒侵染后,其体内叶绿素含量变化幅度不大;对照植物体内叶绿素含量的迅速降低,说明病毒侵染后其叶绿体可能被破坏。以8-10叶期的烟草组培苗接种TMV,对病毒侵染15d和25d的病叶进行细胞超微结构观察,样品细胞内的叶绿体、线粒体和细胞壁等细胞器或组织都出现不同程度的解体,但与转基因烟草细胞的损伤相比较,对照发病重,发展快。对照细胞中出现病毒粒子从细胞质向叶绿体的转移,表明转基因烟草叶片中,叶绿体受到病毒攻击时间晚于对照,转基因植株可能通过推迟病毒对叶绿体的破坏和损伤而延迟花叶病症的出现。植物叶片中叶绿素的含量变化和细胞学的研究说明,ChIFN-α对受体植物叶绿体具有一定的保护作用,在病毒侵染初期能抑制病毒的复制。
     (8)ChIFN-α基因表达对植物的调控作用。通过对转基因烟草植株农艺性状(株高、发芽和生根)及非生物胁迫影响(水涝和高温环境)的研究,结果表明转入ChIFN-α基因对植物生长没有产生有害影响,受体烟草品系种性未发生改变。ChIFN-α基因的导入能够促进植物生长和早期根系发育以及具有抗逆调控作用。转ChIFN-α基因烟草的早期根系形成快,发育好,促进植物营养吸收和生长健壮,提高了烟草的抗病性。转基因烟草对水涝和高温的耐受性优于对照植株,ChIFN-α基因的表达可以改善水涝条件下的种子萌发和促进转基因植株合成热激蛋白,增加对植物的抗逆保护作用,提高植物抗病性。
     (9)ChIFN-α蛋白的生物学活性分析。采用生物信息学手段,在APD和NCBI两个数据库进行抗性预测和同源性比较,发现ChIFN-α具有两亲性,倾向于形成跨膜结构、α螺旋以及β折叠结构,和植物防御素等抗性蛋白结构相似,具有作为植物抗性药物筛选的潜力。ChIFN-α氨基酸序列与APD数据库中的9个防御素及抗菌植物蛋白等具有较高相似性(>25%),表明在植物体内表达ChIFN-α会对植物产生一定的保护作用。ChIFN-α与植物DNA损伤修复、核糖核酸酶、病程相关蛋白和抗病毒蛋白等均有一定的相似性,也说明其具有抗植物病毒病的药物运用潜力。ChIFN-α蛋白序列与生物体中参与生命活动和信号转导的一些蛋白质具有30%以上的同源性,提示ChIFN-α的作用方式可能通过促进植物体的代谢过程或参与诱导植物系统防御的信号转导而间接发生作用。生物信息学分析证实了本研究关于转ChIFN-α基因烟草对TMV的生理生化、分子水平、细胞学水平及植物调控的抗性机制等方面的研究结果。
     以上研究表明ChIFN-α是一类在植物体内具有抗病毒信息的候选药物,ChIFN-α基因导入植物细胞后,对叶绿素的稳定及POD、SOD和PPO三种植物防御酶活性具有调节作用,在TMV侵染时可以上调PR-la、N和MAPK三种抗病或调节基因的表达,通过促进植物早期生长,提高其非生物胁迫耐性,增强其抗病力,提高了转基因烟草植株对TMV的抗性。本研究为转基因生物农药的研制提供了一定依据,为培育自身具有抗逆作用,同时又可以提高动物免疫力的农作物或牧草新品种,以及转基因植物生物反应器的研究奠定了一定基础。
The control of viral disease in plants has become an importance-area of research in plant breeding by genetic engineering technology.ChIFN-αis a pleiotropic cytokine that possess powerful and wide-range of antiviral properties through multiple pathways.In this thesis, ChIFN-αgene was transformed into tobacco,Brassica napus L.and Lotus japonicus plants for obtaining transgenic lines with antiviral activity.Expression of ChIFN-αgene in transgenic tobacco plants conferred immunity to tobacco mosaic virus(TMV) infection.The possible resistance mechanism of biochemistry,molecule,cell morphology and plant regulation against TMV were studied.The results were list following.
     (1) The construction and verification of plant expression vector with ChIFN-αgene.
     pSFChIFNR,pSFRLH and pSWNRN of plant expression vectors carrying ChIFN-αgene were constructed.Then they were transformed into lettuce using an agro-infiltrated transient expression system.The results of GUS histochemical staining,reverse transcriptase polymerase chain reaction(RT-PCR),enzyme-linked immunosorbent assay(ELISA) and cytopathic effect (CPE) inhibition assay showed that the agro-infiltrated lettuce expressed ChIFN-αwith the maximum antiviral activity of about 8.2×10~2 AU·mg~(-1) of total soluble protein.The expression level was 0.0004%of total soluble protein in lettuce plants.
     (2) Establishment of transformation systems in Brassica napus L.and Lotus japonicus plants with ChIFN-αgene.
     A simplified genetic transformation method was set use seed as the explant in Brassica napus L.firstly.It shows that the transgenic Brassica napus L.could be easily obtained in a short of time without tissue culture procedure.A nother genetic transformation system of Lotus japonicus to obtain transgenic plants only 2.5-4.0 months was optimized using leaves,main stem and flower stalk explants.
     (3) Plant transformation and expression of ChIFN-αgene.
     Expression vectors of pSFChIFNR、pSFRLH and pSWNRN carrying ChIFN-αgene were transformed to tobacco,Brassica napus and Lotus japonicus plants by Agrobacterium-mediated transformation.The results of GUS histochemical staining,genome polymerase chain reaction (PCR),southern blot,RT-PCR,western blot,ELISA and CPE inhibition assay showed that 11 transgenic tobaaco lines,15 transgenic Lotus japonicus lines,and 26 transgenic Brassica napus L. lines had been selected respectively.ChIFN-αin transgenic plants had the markedly mRNA and protein expression and ChIFN-αwas integrated into plants genome.The results of ELISA showed that the expression level of recombinant protein of ChIFN-αwas 0.0003-0.0033%and 0.00002-0.0001%of total soluble protein in transgenic tobacco and Lotus japonicus plants respectively.The biological activity of ChIFN-αprotein from transgenic tobacco plants was 5.01×10~3 IU·g~(-1) of tobacco tissue in vitrol.
     (4) TMV resistance research in transgenic tobacco plants.
     The disease resistance of transgenic plant was further studied for plant protection.Transgenic tobacco had a certain resistance to tobacco mosaic virus(TMV) infection.After infection with TMV,the transgenic plants enhanced the disease resistance,delayed disease symptoms and reduced leaf lesions to different extent.
     (5) Effect of TMV infection on activities of defense enzymes in transgenic plants.
     Expression of ChIFN-αgene improved the activities of defense enzymes of peroxidase (POD),superoxide dismutase(SOD),and polyphenol oxidase(PPO) in transgenic tobacco plants. The activity of the POD and SOD in transgenic tobacco leaves was better than the CK before infection with TMV.When inoculated by the TMV,the POD activity in transgenic tobacco leaves increased at first and then decreased and it was found to be continuously decreased at the same time as the CK plants.The 40.13g~(-1)·min~(-1) of SOD activity in transgenic tobacco leaves was higher than the 25.24g~(-1)·min~(-1) of CK after 10 days infection with TMV.The PPO level was lower than that of CK,however,the POD activity in transgenic tobacco leaves increased continuously and it continuous decrease in CK after infection by TMV.The results also showed that PAL activity had no significant correlation with the expression of ChIFN-αgene.
     (6) Effects of TMV infection on related resistance genes in transgenic tobacco plants.
     PR-la、N and MAPK genes of y3 and y12 transgenic lines at different periods of TMV infection were all up-regulated and they were higher than in non-transgenic controls.When inoculated by the TMV,the PR-la expression in tobacco plants increased at first and then decreased and the enhanced amplitudes in transgenic plants were higher than CK plants.The PR-la expression levels of y3 and y12 lines were 276.00,33.75 times and 1.95,82.95 times of control lines in 6 and 15 days of TMV infection respectively.The transcriptional quantity of N and MAPK genes in tobacco increased continuously after infection by TMV.However,comparison of transgenic lines vs control of non-transgenic lines showed that up-regulated amplitudes of the former was better than the latter.The N expression levels of y3 and y12 lines were 1.20,0.01 times and 3.19,20.10 times of control lines in 6 and 15 days of TMV infection respectively.The MAPK expression levels of y3 and y12 lines were 5.51,2.63 times and 3.96,7.94 times of control lines in 6 and 15 days of TMV infection respectively.Therefore,it was considered that the ChIFN-αgene had a close relationship with the resistance or regulative genes in tobacco plants. The ChIFN-αgene might regulate the related gene expression after TMV infection.The continuous elevation of transcriptional level of ChIFN-αgene was also observed in transgenic tobacco infected with TMV.The ChIFN-αexpression levels in y3 and y12 transgenic lines were 17.89 and 2.09 times of control line in 15 days of TMV infection respectively.This result suggested that there had same mechanisms between the cell protection mechanism of ChIFN-αin plant and animal bodies.
     (7) Effects of TMV infection on chloroplast changes in the transgenic tobacco plants.
     Transgenic tobacco had a certain resistance to tobacco mosaic virus(TMV) in the infection initial stage.After infection with TMV,the chlorophyll content was found to be continuously decreased in the transgenic or non-transgenic lines.Nevertheless,the change of chlorophyll content in transgenic plant was obviously superior to the CK.The decrease of chlorophyll a of 10d TMV infection was 12.21%and 40.94%in transgenic and CK tobacco plants respectively. Meanwhile,the changes of chlorophyll b were 43.33%(reduction) and 3.42%(increase),and the decline of total chlorophyll were 41.64%and 9.77%in CK and transgenic tobacco plants respectively.The chlorophyll content of CK was found to be continuously increased and close to the transgenic plants after 10d of TMV infection,however,the CK average content was still lower than the chlorophyll of transgenic plants.The result showed that chloroplast of CK was damaged rapidly when inoculated by the TMV.The electron microscopic observation results also showed that ChIFN-αmight protect chloroplast of transgenic tobacco leaves.The cell ultrastructure of the transgenic plant from 15 and 25days TMV infection showed the disease course was severe and rapid in control plants of 8-10 leaves stage.In addition,virus transfer was observed from cytoplasm to chloroplast in cells of control leaf but not in transgenic leaves.
     (8) The regulatory effects of ChIFN-αgene expression in transgenic tobacco plants.
     Agronomic characters determination of plant height and root growth showed,introduced ChIFN-αgene had any harmful effect on tobacco cells,in contrary to promote the plant growth and root system development.ChIFN-αalso improves the ability to resist waterlogging for ameliorating the germination status under stress with water and resist high temperature by up-regulating the synthesis of heat shock proteins in transgenic tobacco plants.
     (9) The bioinformatics analysis of ChIFN-αactivity.
     ChIFN-αcan use as one potential antibacterial or antiviral drug in plant.The results of bioinformatics analysis showed that ChIFN-αwas one kind of transmembrane protein withα-helical andβfolding structure,and was similar to some of defensins or other antibacterial proteins in plants.In addition,the amino acid sequence of ChIFN-αwas also similar to some of regulatory or resistance proteins such as DNA damage repair,ribonuclease,pathogenesis-related proteins,antiviral protein and so on.ChIFN-αmay participate in the metabolic process and signal transduction of system defense for that there was certain similarity among ChIFN-αand other related proteins in plant body.Findings of above resistance mechanism of biochemistry,molecule, cell morphology and plant regulation against TMV in transgenic tobacco were confirmed by the bioinformatics analysis.
     The above results would prove helpful to produce antiviral resistant plant.It also provides some information about potential animal pharmaceutical applications in transgenic plants,which may lead a new way to prevent infectious diseases or improve the immune function of birds by direct oral administration in poultry fields.
引文
1.丁勇,吴乃虎,陈春霞.基因工程与农业[M].北京:科学技术出版社,1994,164-176.
    2.万多荣,殷娴,江一希,陈晓博,张海燕,肖尊安.转基因烟草的pap基因表达及其抗病毒生理的初步研究[J].北京师范大学学报(自然科学版),2008,44(4):411-416.
    3.文才艺,吴元华,张艳红.过氧化物酶活性与烟草脉坏死病抗性的关系[J].华中师范大学学报(自然科学版),2001,35(3):334-337.
    4.王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    5.王利国,马祁,天然产物对植物病毒的抑制作用[J].中国生物防治,2000,16(3):127-130.
    6.王杰,张成林,王德好,伍万荣,王秀美,贾宗友,李纯,何云霞,胡易冰.感染病毒的葡萄、辣椒、烟草叶片过氧化物酶的初步研究[J].安徽农业大学学报,1997,24(4):323-327.
    7.王燕萍,曹俊剑,刘海礁,崔红.PAP基因cDNA克隆及烟草转基因研究[J].河南农业大学学报,2006,40(2):130-132.
    8.邓文生,杨希才,康良仪,田波.特异切割马铃薯纺锤形块茎类病毒负链的多价核酶的构建和体外活性测定[J].病毒学报,2000,16(4):370-373.
    9.付鸣佳,吴祖建,林奇英,谢联辉.金针菇中一种抗病毒蛋白的纯化及其抗烟草花叶病毒特性[J].福建农林大学学报(自然科学版),2003,32(1):84-88.
    10.白云凤,杨红春,曲琳,郑军,张锦鹏,王茅雁,谢婉,周小梅,王国英.抗甘蔗花叶病毒的无标记反向重复转基因玉米[J].作物学报,2007,33(6):973-978.
    11.刘力,陈声祥,邱并生,康良仪,田波.抗水稻条纹叶枯病毒核酶的设计、克隆及体外活性测定[J].中国病毒学,1996,11(2):157-163.
    12.刘小红,张红伟,刘昕,刘欣洁,谭振波,荣廷昭.MDMV CP基因的克隆及其转基因玉米的研究[J].生物工程学报,2005,21(1):144-148.
    13.刘小红,荣廷昭,谭振波.甘蔗花叶病毒外壳蛋白基因的克隆及系列表达载体的构建[J].吉林农业大学学报,2007,29(2):133-138.
    14.刘陟,杜林方,张年辉,邓光兵,余懋群,陈家任,胡厚芝,万波.宁南霉素诱导烟草酸性病程相关蛋白的研究[J].应用与环境生物学报,2005,11(5):549-553.
    15.刘晓玲,宋云枝,刘红梅,温孚江,朱常香,白庆荣.马铃薯X病毒25 kD运动蛋白基因 和外壳蛋白基因介导的抗病性研究[J].作物学报,2005,31(7):827-832.
    16.刘新垣.干扰素研究进行时--干扰素基因工程回顾与展望[J].中国处方药,2003,6:44-47.
    17.刘利华,林奇英,谢华安,谢联辉.病程相关蛋自与植物抗病性研究[J].福建农业学报,1999,14(3):53-58.
    18.孙洁霖,张朝春,周丽,杨希才.专一切割苹果锈果类病毒多体自切割核酶的克隆和转录物的体外活性测定[J].生物工程学报,2002,18(5):588-592.
    19.孙国昌,杜新法,柴荣耀,孙漱沅.水稻稻瘟病防治策略和21世纪研究展望[J].植物病理学报,1998,28(4):289-292.
    20.朱西儒,张海保,张云开,覃秉益,张秀华.香蕉花叶病病原病毒及其卫星RNA的研究[J].广西科学院学报,1999,(15):16-10.
    21.朱桢.转基因水稻植株再生及外源α-干扰素cDNA的表达[J].中国科学(B辑),1992(2):149-155.
    22.邢德峰,李新玲,徐香玲,任南琪,赵阳国.农杆菌介导法获得抗病毒病转基因大白菜[J].哈尔滨工业大学学报,2006,38(5):793-796.
    23.陈国菊,石丽,雷建军,曹必好,曾国平.中国商陆抗病毒蛋白基因的克隆及其转化辣椒[J].园艺学报,2008,35(6):847-852.
    24.陈定虎,王锡锋,李莉,周广和.美洲商陆抗病毒蛋白真核表达载体的构建及在毕赤酵母中的表达[J].农业生物技术学报,2003,11(2):183-186.
    25.陈炬,孙勇如,李向辉,曾伟强,李玉英,侯云德.人α-干扰素cDNA在转化的烟草植株中表达[J].中国科学(B辑),1990,3:253-260.
    26.陈捷.植物病理生理学[M].沈阳:辽宁科学技术出版社,1994.
    27.何永明,丁秀英,丛林晔,郭光,陈淑君,张军.β-氨基丁酸诱导烟草产生PR蛋白及对TMV的抑制作用[J].植物病理学报,2007,37(3):271-277.
    28.沈奇,高媛媛,赵德刚.油菜植株再生和农杆菌介导遗传转化的影响因素[J].山地农业生物学报,2006,25(5):377-381.
    29.宋云枝,李玲玲,朱常香,温孚江,温孚凯.芜菁花叶病毒山东分离物外壳蛋白基因的克隆及序列分析[J].中国农业科学,2005,38(3):504-510.
    30.宋风鸣,郑重,葛秀春.活性氧及膜酯过氧化在植物-病源物互作中的作用[J].植物生理学通讯,1996,32(5):377-385.
    31.张志良.植物生理学实验指导[M].北京:高等教育出版社,2008.
    32.张卓然.培养细胞学与细胞培养技术[M].上海:上海科学技术出版社,2004.
    33.张根义,徐武,李安生,李鸣,张敬.人的β干扰素基因在烟草中整合及表达[J].农业生物技术学报,1996,4(4):335-340.
    34.张海燕,周奕华,党本元,蓝海燕,宋桂英,王兰岚,刘桂珍,张丽华,陈正华,田颖川.将商陆抗病毒蛋白(PAP)cDNA导入油菜获得抗病毒转基因植株[J].科学通报,1998,43(23):25-34.
    35.张增艳,姚乌兰,李宏涛,辛志勇.大麦和小麦抗病性的分子基础研究进展[J].麦类作物学报,2005,25(6):139-143.
    36.张恒木,陈剑平,程晔.烟草抗烟草花叶病毒基因N的研究[J].浙江农业学报,2001,13(2):55-60.
    37.张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:人民教育出版社,2000.
    38.李玉峰,李峰,艾武,宋敏训,黄兵,马秀丽.鸡α干扰素基因的克隆及序列分析[J].山东家禽,2003,11:12-13.
    39.李全义,王金生,姚堃,方中达.人α干扰素对烟草花叶病毒在植物体内症状的抑制作用[J].病毒学报,1989,3(5):274-276.
    40.李晔,吴元华,赵秀香.不同供Fe水平下受TMV感染的烟草中几种防御酶活性变化[J].安徽农业科,2006,34(17):4237-4238.
    41.杨建华,王华林,于善谦,章道道.核酶转基因载体的构建及在烟草原生质体中对TMV 感染的抑制作用[J].复旦大学学报(自然科学版),1998,37(4):547-550.
    42.杨辉,沈火林,朱鑫,程杰山,韩清霞,辛秀琛.防御酶活性、木质素和总酚含量与辣椒抗黄瓜花叶病毒的关系[J].中国农学通报,2006,22(5):369-373.
    43.汪明,吴志光,夏春.肉鸡IFN-alpha基因的克隆、序列分析以及在大肠杆菌中的表达[J].农业生物技术学报,2000,8(4):377-381.
    44.肖艳,吴明昊,李育农.退绿叶斑病毒(CLSV)对苹果属植物过氧化物酶活性及同工酶的影响[J].西南农业大学学报,1992,14(2):101-105.
    45.何晨阳,王金生.植物过敏反应中的生理生化变化[J].植物生理学通讯,1996.32(2):150-154.
    46.邱国华,张建民,叶长明,李宝健,高乔婉.表达病毒CP基因的转基因南方烟草的攻毒试验[J].中山大学学报(自然科学版),1999,39(S1):82-85.
    47.周鹏,赵志英,郑学勤.人a-干扰紊2b基因转化番茄、番木瓜的研究(Ⅰ)-人a-干扰紊2b基因植物表达载体构建方法的研究[J].热带作物学报,1998,19(1):52-57.
    48.罗静,陈伟,庄木,李艳红,王晓武,刘玉梅,杨丽梅,张扬勇,方智远.芜菁花叶病毒CP基因反向重复植物表达载体的构建及遗传转化[J].中国蔬菜,2007(2):10-12.
    49.郑光宇.WMV-2感染引起甜瓜植株苯丙氨酸解氨酶和叶绿素的变化[J].喀什师范学院学报,2005,26(6):48-50.
    50.苗则彦,赵奎华,刘长远,梁春浩,林风.葡萄抗感白腐病品种PAL酶、PPO酶和SOD 酶活性比较[J].沈阳农业大学学报,2003,34(3):177-180.
    51.金波,陈集双.两株黄瓜花叶病毒卫星RNA的竞争与共存研究[J].微生物学报,2005,45(2):209-212.
    52.郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2005
    53.赵志英,周鹏,曾宪松,郑学勤.核酶基因转化番木瓜的研究[J].热带作物学报,1998,19(2):20-25.
    54.赵学敏.植物抗病毒基因工程研究进展[J].现代农业科技,2008,16:46-49.
    55.赵春颖,王凤茹,李兴红.抗病毒剂VA诱导烟草产生PR蛋白及对TMV侵染的抗性[J].华北农学报,2002,17(增刊):50-55.
    56.赵荣乐.黄瓜花叶病毒感染引起甜瓜植株苯丙氨酸解氨酶和叶绿素的变化[J].吉林大学学报(自然科学版),2006,27(3):78-81.
    57.赵志样,刘二明,黄红梅,李小娟,高必达.防御酶在水稻抗瘟性中的作用[J].湖南农业大学学报(自然科学版),2007,33(6):744-746.
    58.赵桂琴,Paul Chu.用农杆菌介导将WCMV基因导入白三叶的研究[J].华南农业大学学报增刊Ⅱ,2004,25:1-4.
    59.赵桂琴,慕平,Paul Chu.苜蓿花叶病毒外壳蛋白基因在白三叶中的表达及转基因植株的抗病性分析[J].农业生物技术学报,2005,13(2):230-234.
    60.郝再彬,仓晶,徐仲等.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004.
    61.洪健,陈集双,李德葆.不同CMV分离物侵染寄主的超微结构变化[J].中国病毒学,2000,15(1):66-72.
    62.候玉霞,李重九,刘仪,蔡祝南,费菁.抗病毒剂对烟草花叶病毒与烟草叶绿体互作的影响[J].植物保护,1998,(2):10-13.
    63.凌承德.干扰素的基本原理与临床应用[J].人民军医,1995,5(426):49-51.
    64.唐嘉义,张泽.抗TSWV转基因烟草植株的初步研究[J].植物病理学报,2002,32(3):285-286.
    65.夏春,刘津,汪明.一新亚型及干扰素基因的克隆与表达及其抗病毒活性[M].第四届中国畜牧兽医青年科技工作者学术研讨会论文集,2001:163-167.
    66.夏春,汪明,朱凌云,刘津,吴志光,郭玉璞.惠阳胡须鸡IFN-α基因克隆和序列分析[J].畜牧兽医学报,2000,31(6):563-566.
    67.徐秉良,商鸿生,王旭.黄瓜花叶病毒和烟草花叶病毒在双抗转基因线辣椒内的增殖[J].中国病毒学,2002,17(3):243-247.
    68.徐翠莲,胡文明.核糖体失活蛋白及其抗病毒转基因研究[J].安徽农业科学,2007,35(35):11416-11419.
    69.晏立英,许泽永,陈坤荣,Rob,G;Marcel,P.反向重复RNA介导转基因烟草对花生条纹病毒抗性[J].农业生物技术学报,2007,15(4):702-707.
    70.殷培军,马志卿,冯俊涛,杨少雄,张兴.VFB诱导烟草叶片生理生化变化与TMV抗性的关系[J].西北农业学报,2005,14(2):91-95.
    71.郭兴启,李菡,张杰道,竺晓平,王洪刚.表达马铃薯Y病毒外壳蛋白基因的转基因烟草抗病机制[J].应用环境生物学报,2003,9(4):372-376.
    72.郭兴启,温孚江,朱汉城.烟草感染马铃薯Y病毒(PVY)后光合作用的变化规律[J].浙江大学学报(农业与生命科学版),2000,26(1):75-78.
    73.曹永长,吕英姿,毕英佐.鸡α干扰素基因的克隆和鉴定[J].中国预防兽医学报,2001,23(4):259-261.
    74.梁琼,燕永亮,侯明生.不同玉米品种抗感MRDV与防御酶活性的关系[J].华中农业大学学报,2003,22(2):114-116.
    75.曾富华,黄真池.不同诱导因子对膜脂过氧化与对超微结构影响的关系[J].湖南农业大学学报(自然科学版),2007,33(5):546-551.
    76.黄学跃,赵立红,刘勇,李天福,陈萍.黄瓜花叶病毒诱导烟草抗病性的生化研究[J].云南大学学报(自然科学版),1999,3:236-238.
    77.黄培堂,王嘉玺,朱厚础.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    78.黄粤,马荣群,翟晓灵,岳文辉,潘忠强,李梅,崔健,李显日.辣椒温和斑点病毒(PMMV)外壳蛋白基因的克隆和序列测定[J].植物生理学通讯,2005,41(2):205-207.
    79.彭晏辉,雷娟利,黄黎锋,喻景权.马铃薯Y病毒侵染对叶绿体超微结构、光合和荧光 参数的影响[J].植物病理学报,2004,34(1):32-36.
    80.董炜博,严敦余,郭兴启,竺晓平.感染花生条纹病毒(PStV)后花生生理生化性状变化的研究[J].植物病理学报,1997,27(3):281-285.
    81.董炜博,石延茂,赵志强,严敦余.花生感染条纹病毒(PStV)后叶片细胞超微结构研究[J].花生科技,2000,2:1-4.
    82.覃玥,陈集双,金波.卫星RNA SatC382对辅助病毒的影响[J].植物病理学报,2005,35(2):129-133.
    83.智海剑,盖钧镒,郭东全,王延伟.对大豆花叶病毒不同抗性类型品种的细胞超微结构特征[J].南京农业大学学报,2005,28(1):6-10.
    84.廖俊杰,李进进,许继勇.番茄双抗烟草花叶病毒和黄瓜花叶病毒的基因工程研究[J].中国农学通报,2005,21(8):28-32.
    85.臧威,孙剑秋,张淑园,张兰兰.植物诱导抗病性及其机理的研究现状[J].种子,2006,25(9):45-50.
    86.滕卫丽,李文滨,韩英鹏,王春英.大豆抗感品种(系)接种SMV1叶片细胞超微结构变化的比较[J].作物杂志,2008,(1):34-36.
    87.燕飞,郑银英.农杆菌介导法获得转pac1基因小麦并表现对大麦黄矮病毒的抗性[J].科学通报,2006,51(16):1906-1912.
    88.薛春生,肖淑芹,王国英,高增贵,刘限,陈捷.玉米与矮花叶病毒互作对防御反应酶系活性的影响[J].种子,2005,24(3):6-10.
    89.Ahlquist,P.RNA-Dependent RNA Polymerases,Viruses and RNA Silencing.Science,2002,296(17):1270-1273.
    90.Ananthakrishnan,G.;Xia,X.D.;Amutha,S.;Singer S.;Muruganantham,M.;Yablonsky,S.;Fischer,E.;Gaba,V.Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro.Plant Cell Reports,2007,26:267-276.
    91.Beranova,M.;Rakousky',S.;Vavrova,Z.;Skalicky,T.Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax.(Linum usitatissimum L.).Plant Cell,Tissue and Organ Culture,2008,94:253-259.
    92.Balachandran,S.;Osmond,C.B.;Daley,P.F.Diagnosis of the earlies strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means by chlorophyll fluorescence imaging. Plant Physiology, 1994, 104(3): 1059-1065.
    93. Baulcombe, D. C.; Saunders, G. R.; Bevan, M. W.; Mayo, M. A.; Harrison, B. D.; Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature, 1986,21:446-449.
    94. Baulcombe, D. C.; English, J. J. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Plant Molecular Biology, 1996, 32: 79-88.
    95. Beachy, R. N. In Plant Gene Research: Temporal and spatial regulation of plant genes. New York: Springer-Verlag, 1990: 313-327.
    96. Boston, R. S.; Viitanen, P. V.; Vierling, E. Molecular chaperones and protein folding in plants. Plant Molecular Biology, 1996, 32: 191-222.
    97. Bradford, M. M. A rapid and sensitive method for the quantation of microgram quantities in protein utilizing the principle of protein dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    98. Fredericksen, B. L.; Keller, B.C.; Fornek, J.; Katze, M. G.; Gale, M. J. Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves both RIG-I and MDA5 Signaling through IPS-1. Journal of Virology, 2008, 82(2): 609-616.
    99. Callaway, A.; Giesman-Cookmeyerd.; Gillock, E. T.; Sit, T. L.; Lotnmel, S. A. The multifunctional capsid proteins of plant RNA viruses.Annual Review of Phytopathology, 2001, 39: 419-460.
    100. Chen, T. L.; Lin, Y. L.; Lee, Y. L.; Yang, N. S.; Chan, M. T. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. Transgenic Research, 2004, 13: 499-510.
    101. Chen, Z. C.; White, R. F.; Antoniw, J. F.; Lin, Q. Effect of pokeweed antiviral protein (PAP) on the infection of plant virus. Plant Pathology, 1991,40: 612-620.
    102. Chenk, P. W.; Snaar Jagalska, B. E. Signal perception and transduction:the role of protein kinases. Biochimica et Biophysica Acta, 1999, 1449: 1-24.
    103. Cheong, Y. H.; Moon, B. C.; Kim, J. K.; Kim, C. Y.; Kim, M. C.; Kim, I. H.; Park, C. Y.; Kim, J. C.; Park, B. O.; Koo, S. C.; Yoon, H. W.; Chung, W. S.; Lim, C. O.; Lee, S. Y.; Cho, M. J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiology, 2003,132: 1961-1972.
    104. Cooper, B.; Lapidot, M.; Heick, J. A. A defective movment protein of TMV in transgenic plants confers resistance to multiple viruses whereas tha functional analog increases susceptibility. Virology, 1995, 206: 307-313.
    105. Comelissen, B. J. C.; Van Huijsduijen, R. A. M. H.; Van Loon, L. C.; Bol, J. F. Molecular characterization of messenger RNAs for 'pathogenesis-related' proteins 1a, 1b and 1c, induced by TMV infection of tobacco. European Molecular Biology Organization journal, 1986, 5(1): 37-40.
    106. Denecke, J.; Carlsson, L. E.; Vidal, S.; Hoglund, A. S.; Ek, B.; van Zeijl, M. J.; Sinjorgo, K. M.; Palva, E. T. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell, 1995, 7(4): 391-406.
    107. Dinesh Kumar, S. P.; Whitham, S.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proceedings of the National Academy of Sciences of the United States, 1995,92:4175-4180.
    108. During, K.; Hippe, S.; Kreuzaler, F.; Schell, J. Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Molecular Biology, 1990, 15(2): 281-293.
    109. Erickson, F. L.; Dinesh-Kumar, S. P.; Holzberg, S.; Ustach, C. V; Dutton, M.; Handley, V; Corr, C.; Baker, B. J. Interactions between tobacco mosaic virus and the tobacco N gene. Philosophical Transactions of the Royal Society of London, Series B, 1999, 29; 354 (1383): 653-658.
    110. Fecker, L. F.; Koenig, R.; Obermeier, C. Nicotiana benthamiana plants expressing beet necrotic yellowvein virus (BNYW) coat protein-specific scFv are partially protected against the establishment of the virus inthe early stages of infection and its pathogenic effectsin the late stages of infection. Archives of virology, 1997, 142(9): 1857-1863.
    111. Fujimoto, H.; Itoh, K.; Yamamoto, M.; Kyozuka, J.; Shimamoto, K. Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Bio/Technology, 1993, 11: 1151-1155.
    112. Feldmann, K. A. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. The Plant Journal, 1991, 1: 71-82.
    113. Gallie, D. R.; Feder, J. N.; Schimke, R. T.; Walbot, V. Post-transcriptional regulation in higher eukaryotes: The role of the reporter gene in c ontrolling expression. Molecular and General Genetics, 1991, 228: 258-264.
    114. Golemboski, D. B.; Lomonossoff, G. P.; Zaitlin, M. Plants transfonned with tobacco mosaic virus nonstructural gene sequence are resistant to the virus. The Proceedings of the National Academy of Sciences, 1990, 87: 6311-6315.
    115. Goulden, M.; Kohm, B.; Kohm, B.; Cruz, S.; Kavanagh, T.; Baulcombe, D. A feature of the coat protein of potato virus X affects both induced virus resistance in potato and viral fitness. Virology, 1993, 197: 293-302
    116. Golemboski, D. B.; Lomonossoff, G. P.; Zaitlin, M. Plants transfonned with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. The Proceedings of the National Academy of Sciences, 1990, 87(16): 6311-6315.
    117. Hamilton, R. I. Defense triggered by previous invaders: Viruses. (In: Plant Disease). New York: Academic Press, 1980: 279-303.
    118. Handberg, K.; Stougaard, J. Lotus japonicus, an autogamous, diploid legume species forclassical and molecular genetics. Plant Journal, 1992,2: 487-496.
    119. Harrison, B. D.; Mayo, M. A.; Baulcombe, D. C. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature, 1987, 328: 799-802.
    120. Hemmer, O.; Oncino, C.; Fritsch, C. Efficient replication of the in vitrotranscripts from cloned cDNA of tomato black ring virus satellite RNA requires the 48 k satellite RNA-encoded protein. Virology, 1993, 194: 800-806.
    121. Hiatt, A.; Cafferkey, R.; Bowdish, K. Production of antibodies in transgenic plants. Nature, 1989, 342(6245): 76-78.
    122. Higo, K.; Saito, Y.; Higo, H. Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Bioscience Biotechnology and Biochemistry, 1993, 57: 1477-1481.
    123. Horsch, R.B.; Fry, J. E.; Hoffmann, N. L.; Eichholtz, D.; Rogers, S. G.; Fraley, R. T. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231.
    124. Heinlein, M. The spread of Tobacco mosaic virus infection: insights into the cellular mechanism of RNA transport. Cellular and Molecular Life Sciences, 2002, 59(1): 58-82.
    125. Huisman, M. J.; Broxterman, H. J.; Schellekens, H.; van Vloten-Doting, L. Human interferon does not protect cowpea plant cell protoplasts against infection with alfalfa mosaic virus .Virology, 1985, 143(2): 622-625.
    126. Hurst, C. D.; Knight, A.; Bruce, I. J. PCR detection of genetically modified soya and maize in foodstuffs. Molecular Breeding, 1999, 5: 579-586.
    127. Isaacs, A.; Lindenmann, J. Virus interference: I. The interferon. Proc. Roy. Soc. London 1957, B147: 258-267.
    128. Jarosinski, K. W.; Jia, W.; Sekellick, M. J.; Marcus, P. I.; Schat, K. A. Cellular responses in chickens treated with IFN-alpha orally or inoculated with recombinant Marek's disease virus expressing IFN-alpha. Journal of Interferon and Cytokine Research, 2001, 21(5): 287-296.
    129. Johnson, L. B.; Cunnigham, B. A. Peroxidase activity in healthy and leaf-rust-infected Wheat leaves. Phytochemist, 1972, 11:547-551.
    130. Kaido, M.; Mori, M.; Mise, K.; Okuno, T.; Furusawa, I. Inhibition of brome mosaic virus (BMV) amplification in protoplasts from transgenic tobacco plants expressing replicable BMV RNAs. Journal of General Virology, 1995, 76, 2827-2833.
    131. Karaca, K.; Sharma, J. M.; Winslow, B. J.; Junker, D. E.; Reddy, S.; Cochran, M.; McMillen, J. Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine, 1998, 16: 1496-1503.
    132. Khoudi, H.; Laberge, S.; Ferullo, J. M.; Bazin, R.; Darveau, A.; Castonguay, Y.; Allard, G.; Lemieux, R.; Vezina, L. P. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnology and Bioengineering, 1999, 64(2): 135-143.
    133. Kiehntopf, M.; Esquivel, E. L.; Brach, M.A.; Herrmann, F. Clinical applications of ribozymes. Lancet, 1995, 345(8956): 1027-1031.
    134. Kochs, G.; Garcia-Sastre, A.; Martinez-Sobrido, L. Multiple anti-interferon actions of the influenza A virus NS1 protein. Journal of Virology, 2007, 81(13): 7011-7021.
    135. Kong, L. R.; Anderson, J. M.; Ohm, H. Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome, 2005, 48: 29-40.
    136. Kulaeva, O. N.; Fedina, A. B.; Burkhanova, E. A.; Karavaiko, N. N.; Karpeisky, M. Ya.; Kaplan, I. B.; Taliansky, M. E.; Atabekov, J. G. Biological activities of human interferon and 2-5' oligoadenylates in plants. Plant Molecular Biology, 1992, 20(3): 383-393.
    137. Kurstak, E. Handbook of Plant Virus Infections and Comparative Diagnosis [M]. Elsevier/North-Holland: Biomedical Press, 1981: 258-277.
    138. Lam, Y. H.; Wong, Y. S.; Wang, B.; Wong, R. N. S.; Yeung, H. W; Shaw, P. C. Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Science, 1996, 114: 111-117.
    139. Leelavathi, S.; Reddy, V. S. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Molecular Breeding, 2003, 11: 49-58.
    140. Levy, A. M.; Heller, E. D.; Leitner, G..; Davidson, I. Effect of native chicken interferon on MDV replication. Acta Virology, 1999,43(2-3): 121-127.
    141. Lindbo, J. A.; Silva-Rosales, L.; Proebsting, W. M.; Dougherty, W. G. Induction of a hifhly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell, 1993, 5(12): 1749-1759.
    142. Liu, J. S.; Hsu, Y. H.; Huang, T. Y.; Lin, N. S. Molecular evolution and phylogeny of satellite RNA associated with bamboo mosaic potexvirus. Journal of molecular evolution, 1997, 44: 207-213.
    143. Lombari, P.; Ercolano, E.; El Alaoui, H.; Chiurazzi, M. A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Reports,2003,21: 771-777.
    144. Malmgaard, L. Induction and regulation of IFNs during viral infections. Journal of Interferon and Cytokine Research, 2004, 24(8): 439- 454.
    145. Marcus, P. I.; Van, H. L.; Sekellick, M. J. Interferon action on avian viruses I Oral administration of chicken interferon-alpha ameliorates new castle disease. Journal of Interferon and Cytokine Research, 1999, 19(8): 881-885.
    146. Matikainen, S.; Paananen, A.; Miettinen, M.; Kurimoto, M.; Timonen, T.; Julkunen, I.; Sareneva, T. IFN-α and IL-18 synergistically enhance IFN-y production in human NK cells: differential regulation of Stat4 activation and IFN-γ gene expression by IFN-α and IL-12. European Journal of Immunology, 2001, 31(7): 2236-2245.
    147. Melnick, J.; Aviel, S.; Argon, Y. The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. Journal of Biological Chemistry, 1992, 267(30): 21303-21306.
    148. Missiou, A.; Kalantidis, K.; Boutlal, A.; Tzortzakaki, S.; Tabler, M.; Tsagris, M. Generation of transgenic potato plants highly resistant to potato virus Y(PVY)through RNA silencing.Molecular Breeding, 2004, 14: 185-197.
    149. Mo, C. W.; Cao, Y. C.; Lim, B. L. The in vivo and in vitro effects of chicken interferon alpha on infectious bursal disease virus and new castle disease virus infection. Avian Diseases, 2001,45(2): 389-399.
    150. Mori, M.; Mise, K.; Okuno, T; Furusawa, I. Expression of brome mosaic virus-encoded replicase genes in transgenic tobacco plants. Journal of General Virology, 1992, 73: 169-172.
    151. Murry, L. E.; Elliott, L. G.; Capitant, S. A.; West, J. A.; Hanson, K. K.; Scarafia, L.; Johnston, S.; DeLuca-Flaherty, C.; Nichols, S.; Cunanan, D.; Dietrich, P. S.; Mettler, J. I.; Dewald, S.; Warnick, D. A.; Rhodes, C.; Sinibaldi, R. M.; Brunke, K. J. Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/technology, 1993, 11(13): 1559-1564.
    152. Muradow, A.; Petrasovit, L.; Davidson, A.; Scott, K. J. A cDNA clone for a pathogenesis-related protein 1 from barely. Physics in Medicine and Biology, 1993, 23: 439-442.
    153. Negrouk, V; Eisner, G.; Lee, H. I.; Han, K.; Taylor, D.; Wong, H. C. Highly efficient transient expression of functional recombinant antibodies in lettuce. Plant Science, 2005, 169 (3): 433-438.
    154. Neves-Borges, A. C.; Collares, W. M.; Pontes, J. A.; Breyne, P.; Farinelli, L.; de Oliveira, D. E. Coat protein RNA-mediated protection against Andean potato mottle virus in transgenic tobacco. Plant Science, 2001, 160: 699-712.
    155. Niu, J. S.; Liu, R.; Zheng, L. Expression Analysis of W heat PR-1, PR-2, PR. S Activated by Bgt and SA, and Powdery Mildew Resistance. Journal of Triticeae Crops, 2007, 27 (6): 1132-1137.
    156. Ohya, K..; Matsumura, T.; Ohashi, K..; Onuma, M.; Sugimoto, C. Expression of two subtypes of human IFN-alpha in transgenic potato plants. Interferon and Cytokine Research, 2001, 21: 595-602.
    157. Ohya, K.; Itchoda, N.; Ohashi, K.; Onuma, M.; Sugimoto, C.; Matsumura, T. Expression of biologically active human tumor necrosis factor-alpha in transgenic potato plant. Interferon and Cytokine Research, 2002, 22: 371-378.
    158. Ohya, K.; Matsumura, T.; Itchoda, N.; Ohashi, K.; Onuma, M.; Sugimoto, C. Ability of orally administered IFN-α-containing transgenic potato extracts to inhibit Listeria monocytogenes Infection. Interferon and Cytokine Research, 2005, 25(8): 459-466.
    159. Okamoto, D.; Nielsen, S. V. S.; Albrechtsen, M. General resistance against potato virus Y introduced into a cometercial potato cultivar by genetic transformation with PVY~N coat protein gene. Potato Research, 1996, 39: 271-282.
    160. Oldach, K. H.; Becker, D.; Lorz, H. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molecular Plant-Microbe Interactions, 2001, 14 (7): 832-838.
    161. Orchansky, P.; Rubinstein, M.; Sela, I. Human Interferons Protect Plants from Virus Infection. Proceedings of the National Academy of Sciences U S A, 1985,79(7): 2278-2280.
    162. Osbourn, J. K.; Sarkar, S.; Wilson, T. M. Complementation of coat protein-defective TMV mutants intransgenic tobaccoplants expressing TMV coat protein. Virology, 1990, 179: 921-925.
    163. Otsuki, Y.; Shimomura, T.; Takebe, I. Tobacco mosaic virus multiplication and expression of the N gene in necrotic responding tobacco varieties. Virology, 1972, 50 (1): 45-50.
    164. Pavingerová, D.; Ond(?)ej, M. Improvement of Arabidopsis thaliana seed transformation efficiency. Biologic plantarum, 1995, 37: 467-471.
    165. Park, C. J.; Kim, K. J.; Shin, R.; Park, J. M.; Shin, Y. C.; Paek, K. H. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 2004, 37: 186-198.
    166. Pei, J.; Sekellick, M. J.; Marcus, P. I.; Choi, I. S.; Collisson, E. W. Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. Interferon and Cytokine Research, 2001, 21(12): 1071-1077.
    167. Pellegrini, L.; Rohfritsch, O.; Fritig, B.; Legrand, M. Phenylalanineammonia-lyase in tobacco. Plant Physiol, 1994, 106: 877-886.
    168. Peng, R. H.; Yao, Q. H.; Xiong, A. S.; Cheng, Z. M.; Li, Y. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Reports, 2006, 25: 124-132.
    169. Perlok, F. J.; Fuchs, R. L.; Dean, D. A.; McPherson, S. L.; Fischhoff, D. Modification of the coding sequence enhances plant expression of insect control protein genes [J]. Proceedings of the National Academy of Sciences, 1991, 88: 3324-3328.
    170. Powell, A. P.; Nelson, R. S.; De, B.; Hoffmann, N.; Rogers, S. G.; Fraley, R. T.; Beachy, R. N.; Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232: 738-743.
    171. Powell, P. A.; Sanders, P. R.; Turner, N.; Fraley, R. T.; Beachy, R. N.; Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology, 1990, 175(1): 124-130.
    172. Palukaitis, P.; Roossinck, M. J. Spontaneous change of a benign satellite RNA of cucumber mosaic virus to a pathogenic variant. Nature Biotechnology, 1996, 14: 1264 -1268 .
    173. Prins, M.; Haan, P. D.; Luyten, R.; Veller, M. V; Grinsven, M. Q. V; Goldbach, R. Broad resistance to tospovirus in transgenic tobacco plants expressing three-tospoviral gene sequence. Moleculor Plant-Microbe Interaction, 1995, 8 (1): 85-91.
    174. Plachy, J.; Weining, K. C.; Kremmer, E.; Puehler, F.; Hala, K.; Kaspers, B.; Staeheli, P. Protective effects of type I and type II interferons toward Rous sarcoma virus-induced tumors in chickens. Virology, 1999, 256(1): 85-91.
    175. Qiu, W.; Scholthof, K. B. Invitro-andinvivo-generated defective RNAs of satellite panicum mosaic virus define cis-acting RNA elements required for replication and movement. Journal of Virology, 2000, 74: 2247-2254.
    176. Rasmussen, J. R. Systemic induction of salicylic acid accumulation in cucumberafter inoculation with Pseudomonas syringaepv.syringae. Plant Physiol, 1991, 97: 1342-1347.
    177. Reichman, M.; Devash, Y.; Suhadolnik, R. J.; Sela, I. Human leukocyte interferon and the antiviral factor (AVF) from virus-infected plants stimulate plant tissues to produce nucleotides with antiviral activity. Virology, 1983, 128(1): 240-244.
    178. Reimann-Philipp, U.; Beach, R. U. Coat protei-mediated resistance in transgenic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters.Molecular Plant Microbe Interact, 1993, 6(3): 323-330.
    179. Rosso, M. N.; Schouten, A.; Roosien, J.; Borst-Vrenssen, T.; Hussey, R. S.; Gommers, F. J.; Bakker, J.; Schots, A.; Abad, P. Expression and Functional Characterization of a Single Chain FV Antibody Directed against Secretions Involved in Plant Nematode Infection Process. Biochemical and Biophysical Research Communications, 1996,220(2): 255-263.
    180. Ruttanapumma, R.; Nakamura, M.; Takehara, K. High level expression of recombinant chicken interferon-alpha using baculovirus. The Journal of Veterinary Medical Science, 2005, 67(1): 25-28.
    181. Sano, T.; Nagayama, A.; Ogawa, T.; Ishida, I.; Okada, Y. Transgenic potato expressing a double-strandedRNA-specific ribo nuclease is resistant toPotato spindle tuber viroid. Nature Biotechnology, 1997, 15(12): 1290-1294.
    182. Sawahel, W.A. The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation. Cellular and Molecular Biology Letters, 2002, 7(1): 19-29.
    183. Schultz, U.; Kaspers, B.; Rinderle, C.; Sekellick, M. J.; Marcus, P. I.; Staeheli, P.; Recombinant chicken interferon: a potent antiviral agent that lacks intrinsic macrophage activating factor activity. European Journal of Immunology, 1995, 25(3): 847-851.
    184. Schultz, U.; Rinderle, C.; Sekellick, M. J.; Marcus, P. I.; Staeheli, P. Recombinant chicken interferon from Escherichia coli and transfected COS cells is biologically active. European Journal of Biochemistry, 1995b, 229(1): 73-76.
    185. Stratmann, J. W.; Ryan, CA. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proceedings of the National Academy of Sciences of the United States, 1997, 94: 11085-11089.
    186. Ruttanapumma, R.; Nakamura, M.; Takehara, K. High level expression of recombinant chicken interferon-alpha using baculovirus. The Journal of Veterinary Medical Science, 2005, 67, 25-28.
    187. Scorza, R.; Callahan, A.; Lew, L.; Damsteegt, V.; Webb, K.; Ravelonandro, R. Post-transciptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox poty virus coat protein gene. Transgenic Research, 2001, 10: 201-209.
    188. Sekellick, M. J.; Ferrandino, A. F.; Hopkins, D. A.; Marcus, P. I. Chicken interferon gene: cloning, expression, and analysis. Journal of Interferon Research, 1994, 14(2): 71-79.
    189. Sick, C.; Schultz, U.; Staeheli, P. A family of genes coding for two serologically distinct chicken interferons. Journal of Biological Chemistry, 1996, 271: 7635-7639.
    190. Smith, H. A.; Swaney, S.L.; Parks, T. D.;Wernsman, E. A.; Dougherty, W. G. Transgenic plant virus resistance mediated by untranslatable sense RNAs: Expression,regulation and fate of nonessential RNAs. Plant Cell, 1994, 6: 1441-1453.
    191. Smith, N. A.; Singh, S. P.; Wang, M. B.; Stoutjesdijk, P. A.; Green, A. G.; Waterhouse, P. M. Total silencing by intron-spliced hairpin RNAs/Nature, 2000,407(602): 319-320.
    192. Song, L.; Zhao, D. G.; Wu, Y. J.; Li,Y. Transient expression of chicken alpha interferon gene in lettuce. Journal of Zhejiang University Science, 2008, 9: 351-355.
    193. Stam, M.; De bruinr R.; Kenter, S.; van der Hoom, R. A. L.; van Blokland, R.; Mol, J. N. M.; Rooter, J. M. Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. The Plant Journal, 1997,12: 63-82.
    194. Stiller, J.; Martirani, L.; Tuppale, S.; Chian, R. J.; Chiurazzi, M.; Gresshoff, P. M. High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. Journal of Experimental Botany, 1997,48: 1357-1365.
    195. Tanaka, K.; Sugahara, K. Role of superoxide dismutase in defence against SO2toxicity and an increase in superoxide dismutase activity with SO_2 fumigation. Plant Cell Physiol, 1980, 21:601-611.
    196. Tavladoraki, P.; Benvenuto, E.; Trinca, S.; De Martinis, D.; Cattaneo, A.; Galeffi, P. Transgenic plants expressing a functional single chain Fv antibody are specifically protected from virus attack. Nature, 1993, 366: 469-472.
    197. Takabatake, R.; Seo, S.; Mitsuhara, I.; Tsuda, S.; Ohashi, Y. Accumulation of the two transcripts of the N gene, conferring resistance to tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death. Plant and Cell Physiology, 2006, 47 (2): 254-261.
    198. Toguri, T.; Ogawa, T.; Kakitani, M.; Tukahara, M.; Yoshioka, M. Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora) plants with a disease resistance gene (pac1). Plant Biotechnology, 2003,20 (2): 121-127.
    199. TomLinson, J. A. Epidemiology and control ofvirus diseases ofvegetable. Annals of Applied Biology, 1987, 110:661-681.
    200. TomLinson, J. A.; Walke, V. M.; Flewett, T. H. The inhibition of infection by cucumbermoscic virus and influenza virusby extractof Phytolacca americana. Journal of General Virology, 1974, 22: 225-232.
    201. Truve, E.; Aaspollu, A.; Honkanen, J.; Puska, R.; Mehto, M,; Hassi, A.; Teeri, T. H.; Kelve, M.; Seppanen, P.; Saarma, M. Transgenic Potato Plants Expressing Mammalian 2'-5' Oligoadenylate Synthetase are Protected From Potato Virus X Infection Under Field Conditions. Bio/Technology, 1993, 11: 1048-1052.
    202. Turner, N. E.; Hwang, D. J.; Bonness, M. C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. The Proceedings of the National Academy of Sciences, 1997, 94: 3866-3871.
    203. van Huijsduijnen, R. A. M. H.; Cornelissen, B. J. C.; van Loon, L. C.; van Boom, J. H.; Tromp, M.; Bol, J. F. Virus-induced synthesis of messenger RNAs for precursors of pathogenesis-related proteins in tobacco. European Molecular Biology Organization Journal, 1985,4(9): 2167-2171.
    204. Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 1997, 103: 753-765.
    205. Van Loon, L. C.; Rep, M.; Pieterse, C. M. J. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006,44: 135-162.
    206. Van Loon, L. C.; Pierpoint, W. S.; Boiler, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter, 1994, 12: 245-264.
    207. Van Loon, L. C.; Van Stien, E. A. The families of pathogenesisrelated proteins, their activities, and compara-five analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 1999, 55: 85-97.
    208. Vaquero, C.; Sack, M.; Chandler, J.; Drossard, J.; Schuster, F.; Monecke, M.; Schillberg, S.; Fischer, R. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proceedings of the National Academy of Sciences, 1999, 96 (20): 11128-11133.
    209. Vicente, M.; DE Fazio, G.; Menezes, M. E.; Golgher, R. R. Inhibition of Plant Viruses by Human Gamma Interferon. Journal of Phytopathology, 1986, 19(1): 25-31.
    210. Vivanco, J. M.; Querci, M.; Salazar, L. F. Antiviral and antiviroid activity of MAPcontaining extracts from Mirabilis jalapa roots. Plant Disease, 1999, 83:1116-1121.
    211. Wang, M. B.; Abbott, D. C.; Waterhouse, P. M. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 2000, 1(6): 347-356.
    212. Wang, P.; Zoubenko, O.; Turner, N. E. Reduced toxicity and board-spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein IL Plant Molecular Biology, 1998, 38: 957-964.
    213. Watanabe, Y.; Ogawa, T.; Takahashi, H.; Ishida, I.; Takeuchi, Y.; Yamamoto, M.; Okada, Y. Resistance againstmultiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Letters, 1995, 372: 165-168.
    214. Waterhouse, P. M.; Graham, M. W.; Wang, M. B. Virus resis-tance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, 1998, 95: 13959-13964.
    215. Waterhouse, P. M.; Wang, M. B.; Finnegan, E. J. Role of short RNAs in gene silencing. Trends in Plant Science, 2001,6(7): 297-301.
    216. Wei, Q.; Peng, G.Q.; Jin, M. L.; Zhu, Y. D.; Zhou, H. B.; Guo, H. Y.; Chen, H. C. Cloning, prokaryotic expression of chicken interferon-alpha gene and study on antiviral effect of recombinant chicken interferon-alpha. Sheng Wu Gong Cheng Xue Bao, 2006, 22(5): 737-743.
    217. Wesley, S. V; Helliwell, C. A.; Smith, N. A.; Wang, M. B.; Rouse, D. T; Liu, Q.; Gooding, P. S.; Singh, S. P.; Abbott, D.; Stoutjesdijk, P. A.; Robinson, S. P.; Gleave, A. P.; Green, A.; G, Waterhouse, P. M. Construct design for efficient, effective and highthroughputgene silencing in plant.Plant Journal, 2001, 27(6): 581-590.
    218. Whitham, S.; Mc-Cormick, S.; Baker, B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proceedings of the National Academy of Sciences of the United States, 1996, 93 (16): 8776-8781.
    219. Whitham, S.; Dinesh-Kumar, S. P.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994,78(6): 1101-1115.
    220. Wilson, T. M. A. Strategies to protect crop plmLts against viruses: Pathogen-derived resistance blossoms. The Proceedings of the National Academy of Sciences, 1993, 90: 3134-3141.
    221. Xia, C.; Liu, J.; Wu, Z. G.; Lin, C. Y.; Wang, M. The interferon-a genes from three chicken lines and its effects on H9N2 influenza viruses. Animal Biotechnology, 2004, 15(1): 77-88.
    222. Yang, K. Y.; Liu, Y.; Zhang, S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proceedings of the National Academy of Sciences of the United States, 2001, 98 (2): 741-746.
    223. Yie, Y.; Zhao, E; Zhao, S. Z.; Liu, Y. Z.; Liu, Y. L.; Tien, P. High resistance to cucumber mosaic virus conferred by satellite RNA and coat protein in transgenic commercial tobacco cultivar G-140. Molecular Plant Microbe Interact, 1992, 5(6): 460-465.
    224. Yu, L.; Niu, J. S.; Ma, Z. Q.; Chen, P.D.; Liu, D. J. Cloning,mapping and protein expression analysis of wheat thaumatin protein gene (TaTLP1). Journal of Genetics and Genomics, 2003, 30:49-55.
    225. Zarling, J. M.; Moran, P. A.; Haffar, O.; Sias, J.; Ledbetter, J.; Uckun, F. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+cells bymonoclonal antibodies. Nature, 1990, 347: 92-95.
    226. Zhen, Z.; Hughes, K. W.; Huang, L.; Sun, B. L.; Liu, C. M.; Li, Y. I.; Hou, Y. D.; Li, X. H. Expression of human a-interferon cDNA in transgenic rice plants. Plant Cell, Tissue and Organ Culture, 1994, 36: 197-204.
    227. Zhou, X. J.; Lu, S.; Xu, Y. H.; Wang, J. W.; Chen, X. Y. A cotton cDNA (GaPR-10)encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science, 2002, 162 (4): 629-636.
    228. Zhu, J. H.; Zhu, C. X.; Wen, F. J.; Song, Y. Z. Comparison of resistance to potato virus Y mediated by direct and inverted repeats of the coat protein gene segments in transgenic tobacco plants. Acta Phytopathologica Sinica, 2004, 34(2): 133-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700