人类p100蛋白与G3BP蛋白之间的结合与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:p100蛋白是一种多功能蛋白,是基因转录和pre-mRNA剪接加工的双重调控因子,由4个重复的葡萄球菌核酸酶同源性结构域SN片段和随后的Tudor-SN (TSN)结构域构成。本课题小组在前期的工作中利用p100蛋白作为诱饵钓取可以与之结合的蛋白时钓到了G3BP蛋白。由此,我们提出疑问:p100蛋白与G3BP蛋白之间的结合是在某一种特定的环境下偶然地存在还是一种稳定的细胞内结合?两种蛋白之间是直接结合还是需要其他的辅助成分进行桥接?与结合有关的结构区域各位于两种蛋白质的哪一个部分?为了解决这些疑问,我们开展了关于p100蛋白与G3BP蛋白之间的相互结合的研究工作,并对结合后的潜在功能进行了初步的探讨。
     方法:
     第一部分:p100蛋白与G3BP蛋白的结合研究。首先利用p100蛋白不同片段的GST融合蛋白钓取细胞内过表达的G3BP蛋白以确认我们前期研究工作中发现的二者之间的结合关系。为了确定二者之间的结合关系是否稳定,通过细胞内过表达的p100蛋白与G3BP蛋白之间及细胞内源性p100蛋白与G3BP蛋白之间的免疫共沉淀实验再次印证实验一的结果。最后利用免疫荧光实验观察二者在细胞内的定位情况。
     第二部分:p100蛋白与G3BP蛋白相互结合的功能片段的确定。首先根据G3BP的结构特点构建了表达G3BP不同结构域的GST-G3BP片段融合蛋白表达质粒和用于体外翻译的带有T7启动子的pcDNA3.1(+)-G3BP质粒。然后通过GST-Pull Down方法用GST-G3BP片段1-5融合蛋白体外翻译的p100蛋白,放射白显影的方法观察结果。反之,利用GST-p100片段融合蛋白钓取体外翻译的G3BP蛋白,从而确定二者之间相互结合的功能片段。为了进一步验证我们的实验结果,重复GST-pullDown实验部分,不同之处在于用GST融合蛋白钓取细胞内过表达的蛋白质,Western Blot方法检测。
     第三部分:p100蛋白与G3BP蛋白结合后的功能探讨。通过免疫免疫荧光方法观察共转染pEGFP-CI-G3BP与pRFP-p100/p100-SN/p100-TSN质粒的HeLa细胞给予亚砷酸盐刺激或热休克刺激后,两种蛋白质在细胞中的共定位情况,并确定共定位的功能片段。同时研究p100蛋白与G3BP蛋白结合后对细胞内mRNA代谢的影响:将COS7细胞分别转染p100或G3BP或共转p100与G3BP质粒,给予亚砷酸盐或45℃热休克刺激后观察细胞内RNA降解情况。
     结果:
     第一部分:无论是细胞内源性p100蛋白与G3BP蛋白之间还是细胞内过表达的p100蛋白与G3BP蛋白质之间都可以发生共沉淀,表明p100蛋白和G3BP蛋白可以稳定结合。在转染后的细胞内观察到p100蛋白与G3BP蛋白在细胞内的定位基本一致,主要分布于胞浆内,少量p100蛋白分布于胞核内。
     第二部分:p100蛋白的SN片段可以与G3BP蛋白的多个片段结合,包括NTF2-like片段、PxxP模序、RRM片段,RGG片段结合不稳定。而p100蛋白的TSN片段和TD片段及G3BP蛋白的酸性氨基酸富集区片段则与二者之间的结合无关。
     第三部分:转染后的细胞给予亚砷酸盐刺激或热休克刺激后,胞浆内开始出现绿色和红色的荧光颗粒,二种荧光颗粒在胞浆中的定位基本一致。随着刺激时间的延长,颗粒的数量和体积不断发生变化。P100蛋白的SN片段在细胞内可形成与G3BP共定位的颗粒,而TSN片段和空载体pEGFP-CI和pRFP在胞浆内不能形成明显的颗粒状结构。热休克刺激去除后,颗粒的数量和体积有一定的减少,其中红色颗粒的消散比较明显。
     细胞转染了p100或G3BP或共转p100与G3BP后,细胞内提取到RNA与未转染细胞之间无明显差异。各组细胞在给予亚砷酸盐或45℃热休克前后的RNA代谢情况也未有明显差异。
     结论:通过研究证实,G3BP与p100蛋白在细胞内、外均可结合,不需要辅助因子的参与。二者之间的结合是由G3BP的NTF2-like片段、PxxP模序、RRM片段和p100蛋白的SN片段介导的。应激状态下,p100蛋白与G3BP蛋白共同参与了应激颗粒的形成,介导p100蛋白进入应激颗粒的是SN片段。
Objectives:
     p100is a multiple functions Protein which is a co-factor of transcription and pre-mRNA splicing. It has4repeated SN domains and a Tudor-SN(TSN)domain. We has done a lot of research on p100recent years. We found that G3BP is one of the proteins pulled down by p100protein in our previous research. It is not known if the proteins interact in some specific situation or in common conditions, if they combine to each other directly or indirectly, or if the interaction needs some co-factors. Nor is it known which domain(s) mediates the interaction. So we carry out the following study on the mechanisms and functional consequences of the interaction between p100and G3BP proteins.
     Methods:
     Part Ⅰ:Interactions of p100and G3BP proteins in cells. First, we used the GST-p100fusion protein to pull down G3BP protein and coimmunoprecipitaion of G3BP and p100to confirm our previous observation. We also studied the colocalization of p100and G3BP by immunofluorescence microscopy.
     Part Ⅱ:Identification of interaction domains of p100and G3BP.
     1. We constructed several recombinant plasmids including5GST fusion constructs with different G3BP domains and one pcDNA3.1(+)-G3BP as template for in vitro translation.
     2. GST fusion proteins with various fragments of either G3BP or p100were used to pull down in vitro translated full length p100or G3BP labeled with35S to identify the interaction domains of p100and G3BP. Western Blot xperiments were also used to confirm the specific interactions of p100and G3BP.
     Part Ⅲ:Functional studies of the interactions between p100and G3BP in cells under stress.
     1. We transfected pEGFP-CI-G3BP and pRFP-p100/p100-SN/p100-TSN plasmids into HeLa cells, then treated the cells with arsenite or heat shock and observed the colocalization of green and red fluorescence.
     2. Effect of mRNA metabolism by the association of p100and G3BP. We transfected COS7cells with pEGFP-G3BP or pSG5-p100or both and treated cells with arsenite or heat shock. Total RNA was extracted and used to study mRNA degradation.
     Results
     Part Ⅰ:We observed the partial colocalization of G3BP green fluorescence, which is mainly located in cytoplasm especially near the nucleus membrane, and p100red fluorescence, which spreads throughout the whole cell. Coimmunoprecipitation and Western Blot experiments also confirmed the interaction of both over-express and endogenous G3BP and p100.
     Part Ⅱ:We found that p100can bind to several domains, especially domain3and4of G3BP. The interaction between domain5of G3BP and p100was unstable, and probably unspecific. Domain2can not mediate the interaction. SN domain of p100mediates the interaction. The TSN and TD domains do not participate the interaction.
     Part Ⅲ:After arsenite or heat shock treatment, some green particles colocalized with the red ones. The number and size of particles increased with time. The SN domain, but not the TSN domain, of p100behaved the same way as the full length p100protein. We didn't detect any difference in mRNA metabolism after transfection of various combination of plasmids after stress treatment.
     Conclusions:The interaction of G3BP and p100is direct and specific. The interacting domains are NTF2-like domain (domainl)、PxxP motif (domain3、RRM domain (domain4) of G3BP and SN domain of p100. G3BP is involved in stress granule formation and p100protein were recruited to the granules which is mediated by the SN domain.
引文
1. Callebaut I, Mornon JP. The human EBNA-2 coactivator pi00:multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development [J]. Biochem J,1997, 321(Pt 1):125-132.
    2. Murzin AG. OB (oligonucleotide/oligosaccharide binding)-fold :common structural and functional solution for non-homologous sequences[J], EMBO J,1993,12:861-867.
    3. Tuuli V, Jie Y, Riitta P, et al. The transcriptional co-activator protein p100 recruits histione acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6 [J]. J Biological Chem,2005,280: 14989-14996.
    4. Orphanides, G., Lagrange,T. and Reinberg,D. The general transcription factors of RNA polymerase Ⅱ [J]. Genes Dev.,1996,10:2657-2683.
    5. Kirsi P., Jie Yang, and Olli silvennoinen.Tudor and Nuclease-Like Domains Containing Protein p100 Function as Coactivators for Signal Transducer and Activator of Transcription 5 [J].Molecular Endocrinology,2003,17:1805-1814.
    6. Sontheimer E J and Steitz J A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome [J].Science,1993,262:1989-1996.
    7. Tuuli Valineva, Jie Yang, Riitta Palovuori, and Olli Silvennoinen.The Transcriptional Co-activator Protein p100 Recruits Histone Acetyltransferase Activity to STAT6 and Mediates Interaction between the CREB-binding Protein and STAT6 [J].Biological chemistry,2005,280:14989-14996,
    8. Nakajima,T., Uchida,C., Anderson,S.F., et al. RNA helicase A mediates associate-on of CBP with RNA polymerase Ⅱ [J]. Cell,1997,90:1107-1112.
    9. Zhou,K., Choe,K.T., Zaidi,Z., et al.RNA helicase A interacts with dsDNA and topoisomerase Ⅱ alpha[J]. Nucleic Acids Res.,2003,31:2253-2260.
    10. Tuuli Valineva, Jie Yang and Olli Silvennoinen.Characterization of RNA helicase A as component of STAT6-dependent enhanceosome [J].Nucleic Acids Research,2006,34:3938-3946.
    11. Grosschedl,R. Higher-order nucleoprotein complexes in transcription:Analogies with site-specific recombination [J]. Curr. Opin.Cell Biol.,1995,7:362-370.
    12. Thanos,D. and Maniatis,T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome [J]. Cell,1995,83:1091-1100.
    13. Carey,M. The enhanceosome and transcriptional synergy [J].Cell,1998,92:5-8.
    14. Ptashne,M. and Gann,A. Transcriptional activation by recruitment [J]. Nature, 1997,386:569-577.
    15. Naar,A.M., Lemon,B.D. and Tjian,R. Transcriptional coactivator complexes[J].Annu. Rev. Biochem.,2001,70:475-501.
    16. Zhang,S. and Grosse,F. Multiple functions of nuclear DNA helicase Ⅱ(RNA helicaseA) in nucleic acid metabolism [J]. Acta Biochim.Biophys. Sin. (Shanghai),2004,36:177-183.
    17. Lee,C.G. and Hurwitz,J. A new RNA helicase isolated from HeLa cells that cata-lytically translocates in the 30 to 50 direction [J].Biol. Chem.,1992,267: 4398-4407.
    18. Zhang,S. and Grosse,F. Nuclear DNA helicase Ⅱ unwinds both DNA and RNA [J].Biochemistry,1994,33:3906-3912.
    19. Nakajima,T., Uchida,C., Anderson,S.F., et al. RNA helicase A mediates associate-on of CBP with RNA polymerase Ⅱ [J]. Cell,1997,90:1107-1112.
    20. Zhou,K., Choe,K.T., Zaidi,Z., et al.RNA helicase A interacts with dsDNA and topoisomerase Ⅱ alpha[J]. Nucleic Acids Res.,2003,31:2253-2260.
    21. Anderson,S.F., Schlegel,B.P., Nakajima,T., et al. BRCA1 protein is linked to the RNA polymerase Ⅱ holoenzyme complex via RNA helicase A[J]. Nat. Genet., 1998,19:254-256.
    22. Pellizzoni,L., Charroux,B., Rappsilber,J., et al.A functional interaction between the survivalmotor neuron complex and RNA polymerase Ⅱ[J]. Cell Biol.,2001, 152:75-85.
    23. Zhang,S., Herrmann,C. and Grosse,F. Pre-mRNA and mRNA binding of human nuclear DNA helicase Ⅱ (RNA helicase A) [J]. Cell. Sci.,1999, 112(Pt7):1055-1064.
    24. Graveley BR. Sorting out the complexity of SR protein functions [J]. RNA,2000, 6:1197-1211.
    25. Zhou Z, Licklider LJ, Gygi SP, et al. Comprehensive proteomic analysis of the human spliceosome[J]. Science,2002,419:182-185.
    26.步天栩.转录激活因子-人类P100蛋白参与pre-mRNA剪接加工的分子机制[D].天津:天津医科大学,2006
    27. Hicks MJ, Yang CR, Kotlajich MV, et al. Linking Splicing to pol Ⅱ transcription stabilizes pre-mRNAs and influences Splicing Patterns[J]. PLoS Biol,2006,4: el47
    28. Sunbin L, Reinhard R, Hans PV, et al. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP [J]. RNA,2006,12:1418-1430.
    29. Nath N, Wang S, Betts V, et al. Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases[J]. Oncogene,2003, 22:5986-5994
    30.何津岩.人类p100蛋白对HeLa细胞周期的影响及其机制研究[D].天津:天津医科大学,2008
    31. Bartel DP. MicroRNAs:MicroRNAs:Genomics, biogenesis, mechanism, and function. [J]Cell.2004,116:281-297
    32. Zhou X, Ruan J, Wang G and Zhang W. Characterization and identification of microRNA core promoters in four model species. [J]PLoS Computational Biology,2007,3:412-423
    33. Lee Y, Kim M, Han J, Yeom K, Lee S, Baek SH and Kim VN. MicoRNA genes are transcribed by RNA polemerase Ⅱ. [J]EMBO J.,2004,23:4051-4060
    34. Yang J, Aittomaki S, Pesu M, Carter K, Saarinen J, Kalkkinen N, Kieff E, Silvennoinen O. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase Ⅱ. [J]EMBO J.2002,21:4950-4958.
    35. Valineva t, Yang J, Palovuori R, Silvennoinen O. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. [J]J. Biol. Chem. 2005,15:14989-14996
    36. Connell MA, Keegan LP. Drosha versus ADAR:wrangling over pri-miRNA. [J] Nat. Struct. Mol. Biol.2006,13:3-4
    37. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. [J]Nat. Struct. Mol. Biol.2006,13:13-21
    38. Chia-LungLi,Wei-ZenYang,Yi-PingChen andHannaS.Yuan. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. [J] Nucleic Acids Res.2008,36:3579-3589
    39. Parker, F., Maurier, F., Delumeau, I., Duchesne, M., Faucher, D.,Debussche, L., Dugue, A., Schweighoffer, F. and Tocque, B. A ras-gtpase-activating protein sh3-domain-binding protein. [J]Mol. Cell Biol.1996,16:2561-2569.
    40. Ribbeck, K., Lipowsky, G, Kent, H., Stewart, M. And gorlich, D.. Ntf2 mediates nuclear import of ran. [J]EMBO J,1998,17:6587-6598.
    41. Kennedy, D., Ramsdale, T., Mattick, J. and Little, M. An rna recognition motif in wilms'tumour protein (wtl) revealed by structural modelling. [J]Nat Genet 1996,12:329-331.
    42. Macara, I. Transport into and out of the nucleus. [J]Microbiol Mol. Biol. Rev. 2001,65:570-594
    43. Booker, G, Gout, I., Downing, A., Driscoll, P., Boyd, J., Waterfield, M.And Campbell, L. Solution structure and ligand-binding site of the sh3 domain of the p85-alpha subunit of phosphatidylinositol 3-kinase. [J]Cell 1993,73:813-822
    44. Saksela, K., Cheng, G. And Baltimore, D. Proline-rich (pxxp) motifs in hiv-1 nef bind to sh3 domains of a subset of src kinases and are required for the enhancement growth of nef+ viruses but not for downregulation of cd4. [J] EMBO J 1995,14:484-491.
    45. Birney, E., Kumar, S. and Krainer, A.R. Analysis of the rna-recognition motif and rs and rgg domains:Conservation in metazoan pre-mrna splicing factors. [J] Nucleic Acids Res 1993,21:5803-5816.
    46. Kennedy, D., Wood, S., Ramsdale, T., Tam, P., Steiner, K. And Mattick, J. Identification of a mouse homolog of the human ras-gap-sh3-domain binding protein and structural confirmation that these proteins contain an rna recognition motif. [J]Biomed. Pept. Prot. & Nuc. Acids 1997,3:93-99.
    47. Burd, C. And Dreyfuss, G. Conserved structures and diversity of functions of rna-binding proteins. [J]Science 1994,265:615-621
    48. Gallouzi, I.E., Brennan, C.M., Stenberg, M.G., Swanson, M.S., Eversole, A., Maizels, N. And Steitz, J A. Hur binding to cytoplasmic mrna is perturbed by heat shock. [J]Proc Natl Acad Sci USA 2000,97:3073-3078.
    49. Angenstein, F., Evans, A., Settlage, R., Moran, S., Ling, S., Klintsova, A., Shabanowitz, J., Hunt, D. And Greenough, W. A receptor for activated c kinase is part of messenger ribonucleoprotein complexes associated with polya-mrnas in neurons. [J]J Neuroscience 2002,22:8827-8837.
    50. Ross, J. Mrna stability in mammalian cells. [J]MicroBiol. Rev.1995,59: 423-450.
    51. Tourriere, H., Gallouzi, I., Chebli, K., Capony, J., Mouaikel, J., Vander Geer, P. And Tazi, J. Rasgap-associated endoribonuclease g3bp; selective rna degradation and phosphorylation-dependent localisation. [J] Mol. Cell Biol.2001,21: 7747-7760.
    52. Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier JInhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. [J]ol Biol Cell.2006,17:4212-4219
    53. Guitard, E., Parker, F., Millon, R., Abecassis, J. And Tocque, B. G3bp is overexpressed in human tumours and promotes s-phase entry. [J] Cancer Lett. 2001,162:213-221.
    54. Strutt, D. Frizzled signalling and cell polarisation in drosophila and vertebrates. [J]Development,2003,130:4501-4513.
    55. French, J., Stirling, R., Walsh, M. And Kennedy, D. The expression of ras-gtpase activating protein sh3 domain-binding proteins, g3bps, in human breast cancers. [J]Histochem J.2002,34:223-231.
    56. Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. [J]Genes Dev.2007,21:3381-3394
    57. Anderson, P. and Kedersha, N, Stress granules:the Tao of RNA trige. [J]Cell, 2007,33:114-150
    58. Anderson, P. and Kedersha, N. Stressful initiations. [J] J. Cell Sci.2002,115: 3227-3234
    59. Beckham CJ, Parker R. P bodies, stress granules, and viral life cycles. [J]Cell Host Microbe.2008,3:206-212
    60. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs.[J] RNA. 2005;11:371-382
    61. Sheth U, Parker R,Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. [J] Science.2003,300:805-808.
    62. Zhou H, Yang L, Li H, Li L, Chen J. Residues that affect human Argonaute2 concentration in cytoplasmic processing bodies. [J] Biochem Biophys Res Commun.2009,378:620-624
    63. Bhattacharyya SN, Habermacher R, Martine U, Closs El, Filipowicz W. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. [J]Cold Spring Harb Symp Quant Biol.2006,71:513-521.
    64. Parker, R. and Sheth, U. P bodies and the control of mRNA translation and degradation. [J]Mol. Cell 2007,25:635-646
    65. Eulalio, A. et al. P bodies:at the crossroads of posttranscriptional pathways. [J]Nat. Rev. Mol. Cell Biol.2007,8:9-22
    66. Wilczynska, A. et al. The translational regulator CPEB1 provides a link between dcpl bodies and stress granules. [J]J. Cell Sci.2005,118:981-992
    67. Kedersha, N. et al. Stress granules and processing bodies are dynamically liked sites of mRNP remodeling. [J] J. Cell Biol.2005,169:871-884
    68. Zekri L, Chebli K,Tourriere H, Nielsen FC, Hansen TV, Rami A, Tazi J. Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. [J]Mol Cell Biol.2005,25:8703-8716.
    69. Leung, A.K. and Sharp, P.A. microRNAs:a safeguard against turmoil? [J]Cell 2007,130:581-585
    70. Leung, A.K. et al. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. [J]Proc. Natl. Acad. Sci. U. S. A.2006,103:18125-18130
    71. Carballo, E. et al. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. [J]Science 1998,281:1001-1005
    72. Fenger-Gron, M. et al. Multiple processing body factors and the ARE binding protein TTP activatemRNAdecapping. [J]Mol. Cell 2005,20:905-915
    73. Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL. Molecular architecture of the human pre-mRNA 3' processing complex [J]Mol Cell.200933:365-376.
    74. Pomerance, M., Thang, M., Tocque, B. and Pierre, M. The rasgtpase-activating protein sh3 domain is required for cdc2 ctivation and mos induction by oncogenic as in xenopus oocytes independently of mitogenactivated protein kinase activation. [J]Mol. Cell Biol.1996,16:3179-3186.
    75. Leblanc, V., Delumeau, I. and Tocque, B. Ras-gtpase activating protein inhibition specifically induces apoptosis of tumour cells. [J]Oncogene 1999,18:4884-4889.
    76. Gregory RI, Chendrimada TP,Cooch N, et al. Human RISC couples micro RNA biogenesis and posttranscriptional gene silencing[J]. Cell,2005,123:631-640
    77. Kim K, Lee YS, Carthew R. Conversion of pre-RISC to holo-RIAX by Ago2 during assembly of RNAi complexes [J]. RNA,2007,13:22-29
    78. Kociok, N., Esser, P., Unfried, K., Parker, F., Schraermeyer, U., Grisanti, S., Toque, B. And Heimann, K. Upregulation of the ras-gtpase activating protein (gap)-binding protein (g3bp) in proliferating rpe cells. [J] J Cell Biochem 1999, 74:194-201.
    79. Whitfield, M., Sherlock, G, Saldanhz, A., Murray, J., Ball, C.,Alexander, K., Matese, J., Perou, C., Hurt, M., Brown, P. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumours. [J]Mol Biol Cell 2002,13:1977-2000.
    80. Dang, C. C-myc target genes involved in cell growth, apoptosis and metabolism. [J]Mol Cell Biol.1999,19:1-11.
    81. Dang, C., Resar, L., Emison, E., Kim, S., Li, Q., Prescott, J., Wonsey, D. And Zeller, K. Function of the c-myc oncogenic transcription factor. [J]Exp Cell Res. 1999,253:63-77.
    82. Grill B, Wilson GM, Zhang KX, Wang B, Doyonnas R, Quadroni M, Schrader JW. Activation/division of lymphocytes results in increased levels of cytoplasmic activation/proliferation-associated protein-1:prototype of a new family of proteins. [J] J Immunol.2004,172:2389-2400.
    83. Wang B, David MD, Schrader JW. Absence of caprin-1 results in defects in cellular proliferation. [J] J Immunol.2005,75:4274-4282.
    84. Solomon S, Xu Y, Wang B, David MD, Scubert P, Kennedy D and Schrader JW Distinct Structural Features of Caprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2_Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mrnas. [J] Mol Cel Bio,2007,27:2324-2342
    85. Doma, M.K., and Parker, R. RNA quality control in eukaryotes. [J]Cell 2007,131: 660-668.
    86. Isken, O., and Maquat, L.E. The multiple lives of NMD factors:balancing roles in gene and genome regulation. [J]Nat.Rev. Genet.2008,9:699-712.
    87. Rougemaille, M., Villa, T., Gudipati, R.K., and Libri, D. mRNA journey to the cytoplasm:attire required. [J]Biol. Cell 2008,100,327-342.
    88. Shyu, A.B., Wilkinson, M.F., and van Hoof, A. Messenger RNA regulation:to translate or to degrade. [J] EMBO J.2008,27:471-481.
    89. Houseley J, Tollervey D. The many pathways of RNA degradation. [JJCell. 2009,136:763-776
    90. Eulalio, A., Huntzinger, E., and Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. [J] Cell 2008,132:9-14.
    91. Wu, L., and Belasco, J.G. Let me count the ways:mechanisms of gene regulation by miRNAs and siRNAs. [J]Mol. Cell 2008,29:1-7.
    92. Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes:pathways and enzymes.[J] Crit Rev Biochem Mol Biol.2004,39:197-216
    93. Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. [J] Nat Struct Mol Biol.2004:11:121-127
    94. Cougot, N. Babajko, S. and Seraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. [J]J Cell Bio.2004,165:31-40
    95. Keene, J. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. [J]Proc. Natl. Acad. Sci. USA 2001,98:7018-7024.
    96. Keene, J. And Tenenbaum, S. Eukaryotic mrnps may represent posttranscriptional operons. [J] Mol Cell.2002,9:1161-1167.
    97. Atlas, R., Behar, L., Elliott, E. and Ginzburg, I. The insulin-like growth factor mrna binding-protein imp-1 and the ras-regulatory protein g3bp associate with tau mrna and hud protein in differentiated pl9 neuronal cells. [J]J Neurochem 2004,89:613-626.
    1 Kennedy D, French J, Guitard E, et al. Characterization of G3BPs:tissue specific expression, chromosomal localisation and rasGAP(120) binding studies. [J] J Cell Biochem,2001,84:173-187.
    2 Ribbeck, K, Lipowsky, G, Kent, H, Stewart, M. and Gorlich, D. Ntf2 mediates nuclear import of ran. [J] EMBO J,1998.6587-6598.
    3 Kennedy, D., Wood, S., Ramsdale, T., Tam, P., Steiner, K. and Mattick, J. Identification of a mouse homolog of the human ras-gap-sh3-domain binding protein and structural confirmation that these proteins contain an rna recognition motif. [J] Biomed. Pept. Prot.& Nuc. Acids 1997,3:93-99.
    4 Macara, I. Transport into and out of the nucleus. [J]Microbiol Mol. Biol. Rev. 2001,65:570.
    5 Prigent, M., Barlat, I., Langen, H. And Dargemont, C. Ikba and ikba/nfkb complexes are retained in the cytoplasm through interaction with a novel partner, rasgap sh3-binding protein 2. [J] J. Biol. Chem.2000,275:36441-36449.
    6 Ren, R., B. J. Mayer, P. Cicchetti, and D. Baltimore. Identification of a ten-amino acid proline-rich SH3 binding site. [J] Science 1993.259:1157-1161
    7 Kennedy, D., Ramsdale, T., Mattick, J. and Little, M. An rna recognition motif in wilms' tumour protein (wtl) revealed by structural modelling. [J] Nat Genet 1996,12:329-331.
    8 Booker, G, Gout, I., Downing, A., Driscoll, P., Boyd, J., Waterfield, M. and Campbell, L. Solution structure and ligand-binding site of the sh3 domain of the p85-alpha subunit of phosphatidylinositol 3-kinase.[J]cell.1993,73:813-822.
    9 Mussachio, A., T. Gibson, V. P. Lehto, and M. Saraste. SH3—an abundant protein domain in search of a function. [J] FEBS Lett.1992.307:55-61.
    10 Wu, H., A. B. Reynolds, S. B. Kanner, R. R. Vines, and J. T. Parsons. Identification and characterization of a novel cytoskeleton-associated pp60src substrate. [J] Mol. Cell. Biol.1991.11:5113-5124.
    11 Saksela, K., Cheng, G. and Baltimore, D. Proline-rich (pxxp) motifs in hiv-1 nef bind to sh3 domains of a subset of src kinases and are required for the enhancement growth of nef+ viruses but not for downregulation of cd4. [J] EMBO J 1995,14:484-491.
    12 Kennedy, D., French, J., Guitard, E., Ru, K., Tocque, B. and Mattick, J. Characterisation of g3bps:Tissue specific expression, chromosomal localisation and rasgap120 binding studies. [J] J. Cell Biol.2001,84:173-187.
    13 Parker, F., Maurier, F., Delumeau, I., Duchesne, M., Faucher, D.,Debussche, L., Dugue, A., Schweighoffer, F. And Tocque, B. A ras-gtpase-activating protein sh3-domain-binding protein. [J] Mol. Cell Biol.1996,16:2561-2569.
    14 Burd, C. And Dreyfuss, G. Conserved structures and diversity of functions of rna-binding proteins. [J] Science 1994,265:615-621.
    15 Ghisolfi, L., Joseph, G, Amalric, F. And Erard, M. The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its rna-helix-destabilizing properties. [J] J Biol Chem 1992,267:2955-2959.
    16 Mayeda, A., Munroe, J., Caceres, J. And Krainer, A.R. Function of conserved domains of hnrnp al and other hnrnp a/b proteins. [J]EMBO J.1994,13: 5483-5495.
    17 Nichols, R., Wang, X., Tang, J., Hamilton, J., High, F., Herschman, H. And Rigby, W. The rgg domain in hnrnpa2 affects subcellular localisation. [J] Exp Cell Res. 2000,256:522-532.
    18 Costa, M., Ochem, A., Staub, A. And Falaschi, A. Human DNA helicase viii:A DNA and rna helicase corresponding to the g3bp protein and element of the ras transduction pathway. [J] Nucleic Acids Res.1999,27:817-821.
    19 French, J., Stirling, R., Walsh, M. And Kennedy, D. The expression of ras-gtpase activating protein sh3 domain-binding proteins, g3bps, in human breast cancers. [J] Histochem J.2002,34:223-231.
    20 Tourriere, H., Gallouzi, I., Chebli, K., Capony, J., Mouaikel, J., Vander Geer, P. And Tazi, J. Rasgap-associated endoribonuclease g3bp; selective rna degradation and phosphorylation-dependent localisation. [J] Mol. Cell Biol.2001,21: 7747-7760.
    21 Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E. And Tazi, J. The rasgap-associated endoribonuclease g3bp assembles stress granules. [J] J Cell Biol 2003,160:823-831.
    22 Gallouzi, I., Parker, F., Chebli, K., Maurier, F., Labourier, E., Barlat, I., Capony, J., Tocque, B. And Tazi, J. A novel phosphorylation-dependent rnase activity of gap-sh3 binding protein:A potential link between signal transduction and rna stability. [J] Mol. Cell Biol.1998,18:3956-3965.
    23 Cohen, M., Stutz, F., Belgareh, N., Haguenauer-Tsapis, R. Anddargemont, C. Ubp3 requires a cofactor, bre5, to specifically deubiquitinate the copii protein, sec23. [J] Nat Cell Biol 2003,5:661-667.
    24 Smith, A., Brownawell, A. And Macara, I. Nuclear import of ran is mediated by the transport factor ntf2. [J] Curr. Biol.1998,25:1403-1406.
    25熊舜斌,唐朝宇,许根俊.Ras的结构和功能及其参与的信号传导.[J]生物化学与生物物理进展,1995,22:482-486
    26 Gigoux, V., L'Hoste, S., Raynaud, F., Camonis, J. And Garbay, C. 0.Identification of aurora kinases as rasgap src homology 3 domain-binding proteins. [J] J Biol Chem.2002,277:23742-23746.
    27 Liu, Y., Deth, R. And Devys, D. Sh3 domain-dependent associaton of huntingtin with epidermal growth factor receptor signaling complexes. [J] J. Biol. Chem. 1997,272:8121-8124.
    28 Tocque, B., Delumeau, I., Parker, F., Maurier, F., Multon, M. And Schweighoffer, F. Ras-gtpase activating protein (gap):A putative effector for ras. [J]Cell Signaling1997,9:153-158.
    29 Duchesne, M., Schweighoffer, F., Parker, F., Clerc, F., Frobert, Y, Thang, M. And Tocque, B. Identification of the sh3 domain of gap as an essential sequence for ras-gap-mediated signaling. [J] Science 1993,259:525-528.
    30 Pomerance, M., Thang, M., Tocque, B. And Pierre, M. The rasgtpase-activating protein sh3 domain is required for cdc2 ctivation and mos induction by oncogenic as in xenopus oocytes independently of mitogenactivated protein kinase activation. [J] Mol. Cell Biol.1996,16:3179-3186.
    31 Leblanc, V., Delumeau, I. And Tocque, B. Ras-gtpase activating protein inhibition specifically induces apoptosis of tumour cells. [J] Oncogene1999,18: 4884-4889.
    32 Leblanc, V., Tocque, B. And Delumeau, I. Ras-gap controls rhomediated cytoskeletal reorganisation though its sh3 domain. [J] Mol. Cell Biol.1998,18: 5567-5578.
    33 Medema, R., De Laat, W., Martin, G, Mccormick, F. And Bos, J. ().Gtpase-activating protein sh2-sh3 domains induce gene expression in a rasdependent fashion. [J] Mol Cell Biol 1992,12:3425-3430.
    34 Agrawal, V. And Kishan, K. Promiscuous binding nature of sh3 domains to their target proteins. [J] Protein Pept Lett.2002,9:185-193.
    35 Isken, O., and Maquat, L.E. The multiple lives of NMD factors:balancing roles in gene and genome regulation. [J]Nat. Rev. Genet.2008,9:699-712.
    36 Rougemaille, M., Villa, T., Gudipati, R.K., and Libri, D. mRNA journey to the cytoplasm:attire required. [J]Biol. Cell 2008,100,327-342.
    37 Shyu, A.B., Wilkinson, M.F., and van Hoof, A. Messenger RNA regulation:to translate or to degrade. [J] EMBO J.2008,27:471-481.
    38 Angenstein, F., Evans, A., Settlage, R., Moran, S., Ling, S., Klintsova, A., Shabanowitz, J., Hunt, D. And Greenough, W. A receptor for activated c kinase is part of messenger ribonucleoprotein complexes associated with polya-mrnas in neurons. [J] J Neuroscience2002,22:8827-8837.
    39 Ciesielski-Treska, J., Ulrich, G. And Aunis, D. Protein kinase c-induced redistribution of the cytoskeleton and phosphorylation of vimentin in cultured brain macrophages. [J] J Neurosci Res 1991,29:362-378.
    40 Atlas, R., Behar, L., Elliott, E. And Ginzburg, I. The insulin-like growth factor mrna binding-protein imp-1 and the ras-regulatory protein g3bp associate with tau mrna and hud protein in differentiated p19 neuronal cells. [J] J Neurochem 2004,89:613-626.
    41 Avila, J., Lucas, J., Perez, M. And Hernandez, F. Role of tau protein in both physiological and pathological conditions. [J] Physiol Rev.2004,84:361-384.
    42 Ross, J. Mrna stability in mammalian cells. [J]MicroBiol. Rev.1995,59:423-450.
    43 Jacobson, A. And Peltz, S. Interrelationships of the pathways of mrna decay and translation in eukaryotic cells. [J] Annu. Rev. Biochem.1996,65:693-739.
    44 Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes:pathways and enzymes.[J] Crit Rev Biochem Mol Biol.2004,39:197-216
    45 Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. [J] Nat Struct Mol Biol.2004; 11:121-127
    46 Cougot, N. Babajko, S. and Seraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. [J]J Cell Bio.2004,165:31-40
    47 Lee, C., Leeds, P. And Ross, J. Purification and characterisation of a polysome-associated endoribonuclease that degrades c-myc mrna in vitro. [J] J Biol Chem 1998,273:25261-25271.
    48 Lemm, I. And Ross, J. Regulation of c-myc mrna decay by translational pausing in a coding region instability determinant. [J]Mol Cell Biol 2002,22:3959-3969.
    49 Brewer, G. And Ross, J. Poly(a) shortening and degradation of the 3'a+urich sequences of human c-myc in a cell free system. [J] Mol Cell Biol1988,8: 1697-1708.
    50 Irvine, K. Stirling, R. Hume, D. and Kennedy, D. Rasputin, more promiscuous than ever:a review of G3BP. [J] Int. J. Dev. Biol.2004,48:1065-1077
    51 Chen, C., Gherzi, R., Ong, S., Chan, E., Raijmakers, R., Pruijn, G, Stoecklin, G, Moroni, C., Mann, M. And Karin, M. Au binding proteins recruit the exosome to degrade are-containing mrnas. [J]Cell 2001,107:451-464.
    52 Houseley J, Tollervey D. The many pathways of RNA degradation. [J]Cell. 2009,136:763-776
    53 Eulalio, A., Huntzinger, E., and Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. [J] Cell 2008,132:9-14.
    54 Wu, L., and Belasco, J.G. Let me count the ways:mechanisms of gene regulation by miRNAs and siRNAs. [J]Mol. Cell 2008,29:1-7.
    55 Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. [J]Genes Dev.2007,21:3381-3394
    56 Grill B, Wilson GM, Zhang KX, Wang B, Doyonnas R, Quadroni M, Schrader JW. Activation/division of lymphocytes results in increased levels of cytoplasmic activation/proJiferation-associated protein-1:prototype of new family of proteins. [J] J Immunol.2004,172:2389-2400.
    57 Wang B, David MD, Schrader JW. Absence of caprin-1 results in defects in cellular proliferation. [J]J Immunol.2005,75:4274-4282.
    58 Solomon S, Xu Y, Wang B, David MD, Scubert P, Kennedy D and Schrader JWDistinct Structural Features of Caprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2_, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mrnas. [J]Mol Cel Bio,2007,27:2324-2342
    59 Guitard, E., Parker, F., Millon, R., Abecassis, J. And Tocque, B. ().G3bp is overexpressed in human tumours and promotes s-phase entry. [J] Cancer Lett. 2001,162:213-221.
    60 Kociok, N., Esser, P., Unfried, K., Parker, F., Schraermeyer, U., Grisanti, S., Toque, B. And Heimann, K. Upregulation of the ras-gtpase activating protein (gap)-binding protein (g3bp) in proliferating rpe cells. [J]J Cell Biochem 1999, 74:194-201.
    61 Whitfield, M., Sherlock, G, Saldanhz, A., Murray, J., Ball, C.,Alexander, K., Matese, J., Perou, C., Hurt, M., Brown, P. et al.Identification of genes periodically expressed in the human cell cycle and their expression in tumours. [J]Mol Biol Cell 2002,13:1977-2000.
    62 Dang, C. C-myc target genes involved in cell growth, apoptosis and metabolism. [JJMol Cell Biol.1999,19:1-11.
    63 Dang, C., Resar, L., Emison, E., Kim, S., Li, Q., Prescott, J., Wonsey, D. And Zeller, K. Function of the c-myc oncogenic transcription factor. [J]Exp Cell Res. 1999,253:63-77.
    64 Kim MM, Wiederschain D, Kennedy D, Hansen E and Yuan ZM. ().Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding protein(G3BP).[J] Oncogene.2007,26:4209-4215
    65 Barnes, C.J., Li, F., Mandal, M., Yang, Z., Sahin, A.A. And Kumar, R. Heregulin induces expression, atpase activity and nuclear localization of g3bp, a ras signaling component, in human breast tumors. [J]Cancer Res 2002,62: 1251-1255.
    66 Yeung, Y., Wang, Y., Einstein, D., Lee, P. And Stanley, E. Colonystimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. [J]J Biol Chem 1998,273: 17128-12137.
    67 Liu, Y, Zheng, J., Fang, W., You, J., Wang, J., Cui, X. And Wu, B. ().Identification of metastasis associated gene g3bp by differential display in human cancer cell sublines with different metastatic potentials g3bp as highly expressed in non-metastatic. [J]Chin Med J (Engl) 2001,114:35-38.
    68 Hanahan, D. And Weinberg, R.A. The hallmarks of cancer. [J]Cell 2000,100: 57-70.
    69 Schmitz, A.A., Govek, E.E., Bottner, B. And Van Aelst, L. Rho gtpases: Signaling, migration and invasion. [J]Exp Cell Res 2000,261:1-12.
    70 Sonenberg, N. And Gingras, A. The mrna 5'cap-binding protein eif4e and control of cell growth. Curr. [J]Op. Cell Biol.1998,10:268-275.
    71 Sueoka, E., Goto, Y, Sueoka, N., Kai, Y, Kozu, T. And Fujiki, H. ().Heterogeneous nuclear ribonucleoprotein bl as a new marker of early detection for human lung cancers. [J]Cancer Res 1999,59:1404-1407.
    72 Stoecklin, G, Gross, B., Ming, X.F. And Moroni, C. A novel mechanism of tumor suppression by destabilizing au-rich growth factor mrna. [J]Oncogene 2003,22: 3554-3561.
    73 Malumbres, M. And Pellicer, A. Ras pathways to cell cycle control and cell transformation. [J]Front. Biosci.1998,3:887-912
    74 Chen, G. And Goeddel, D. Tnf-rl signaling:A beautiful pathway. [J]Science 2002, 296:1634-1635.
    75 Gray, D., Inazawa, K., Gupta, A., Wong, R., Ueda, R. And Takahashi, T.Elevated expression of unph, a proto-oncogene at 3p21.3, in human lungtumors. [J]Oncogene 1995,10:2179-2183.
    76 May, M. And Ghosh, S. Signal transduction through nf-kb. [J]Immunology Today 1998,19:80.
    77 Whiteside, S. And Israel, A. Ikappab proteins:Structure function and regulation. [J]Cancer Biol.1997,8:75-82.
    78 Huang, T., Kudo, N., Yoshida, M. And Miyamoto, S. A nuclear export signal in the n-terminal regulatory domain of ikappabalpha controls cytoplasmic localization of inactive nf-kappab/ikappabalpha complexes. [J]Proc Natl Acad Sci USA 2000,97:1014-1019.
    79 Marlow, F., Topczewski, J., Sepich, D. And Solnica-Krezel, L. Zebrafish rho kinase 2 acts downstream of wntll to mediate cell polarity and effective convergence and extension movements. [J]Curr Biol 2002,12:876-884.
    80 Zekri L, Chebli K, Tourriere H, Nielsen FC, Hansen TV, Rami A and Tazi J. Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. [J] Mol. Cell Biol.2005,25:8703-8716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700