食源微生物耐药基因水平传播抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在食用动物中使用抗生素会导致耐药菌的出现,动物感染的耐药菌可以通过直接接触、食物链和环境污染将其耐药性及耐药基因传播给人类,这直接威胁人类生命健康。本论文通过建立体外和体内小鼠肠道中耐药基因水平传播模型,在基因水平上探讨耐药菌的来源、传播途径和第一类整合子整合酶(IntI1)介导的食源性耐药基因在体外和体内小鼠肠道中的水平传播效率及小干扰RNA(small interference RNA,siRNA)对其抑制作用,提出一种将siRNA用于控制IntI1介导的耐药基因水平传播及评价其抑制效果的方法。论文主要内容有以下四个部分:
     (1)IntI1介导的耐药基因体外水平传播
     采用含有完整第一类整合子的受体质粒R388和分别含有dfrA1-aadA1、aadA1、aadB和cmlA耐药基因的供体质粒pGC-1~4,分别转化到BL21(DE3)和DH5α中形成供体菌和受体菌。无抗生素选择压力下,受体菌和供体菌进行接合实验,抗生素平板筛选,以intI1-F和系列基因盒引物进行PCR验证,最后测序验证重组位点。IntI1介导下,R388与pGC-1~4的重组效率分别为:4.6×10-3、6.8×10-4、8.7×10-5和9.9×10-5 cfu/(供体菌)。pGC-1中dfrA1-aadA1两个串联基因盒,以dfrA1和aadA1形式分别被IntI1整合。测序后比对发现,体外重组反应都发生在attI1和attC之间且IntI1介导耐药基因盒同源重组位点是attI1位点simple site中的G和TT之间。
     (2)IntI1介导的耐药基因在小鼠肠道的传播
     筛选肠道中不含干扰本实验的耐药菌的小鼠为模型。先灌胃0.5mL供体菌(109 cfu/mL),待供体菌在小鼠肠道中定殖水平达到108 cfu/(g粪便)时,再灌胃0.5mL受体菌(109 cfu/mL)。在第一周内隔天、之后每周取小鼠新鲜粪便样本,生理盐水悬浮,涂抗生素平板,菌落PCR验证,测序比对。结果显示:灌胃受体菌1天后,含有R388的供体菌与含有pGC-1~4的受体菌的重组效率分别为:4.6×10-2、8.1×10-3、2.2×10-4和7.2×10-3 cfu/(供体菌), pGC-1的两个基因盒dfrA1-aadA1被分别整合。与体外实验相比,体内实验显示了更高的耐药基因水平传播效率。测序发现,重组位点全部发生在attI1×attC之间。到42天时,全部整合菌株在小鼠肠道中为阴性。
     (3)siRNA的设计、筛选及体外抑制耐药基因水平传播
     以intI1为靶基因,设计5对特异的21bp siRNA。通过siRNA与含有R388的供体菌和含有pGC-2的受体菌共培养,考察整合效率的变化。结果显示: siRNA-1和siRNA-2对IntI1介导的整合率的抑制效率最高分别为52.1%和50.7%。siRNA干扰的最优条件为:分三次将siRNA加入共培养体系,使终浓度为0.2μmol/L,每隔2小时添加一次,共培养8h时,siRNA-1和siRNA-2处理后,对IntI1介导整合效率的抑制率分别为:60.8%和58.1%。
     (4)Real-time PCR检测siRNA对整合效率和intI1 mRNA水平的影响
     以一步法real-time PCR相对定量和绝对定量检测siRNA共培养前后整合效率和intI1 mRNA水平的变化。相对定量结果显示:与无siRNA相比,siRNA-1和siRNA-2处理后,整合效率分别下降了52%和55%;绝对定量结果显示:对照样品(阴性siRNA)和siRNA-1处理后样品的整合效率分别为8.1×10-4cfu/(供体菌)和3.84×10-4cfu/(供体菌),经siRNA-1处理后,intI1 mRNA水平降低了58%。表明siRNA能有效抑制IntI1介导的耐药基因水平传播。
The applications of antibiotics for food animals could lead to the existence of drug resistant bacteria, and the bacteria might spread via contact or food chain or environment, to humans and cause human infection. It could bring an awareness of potential threats to human health. This thesis is to study the horizontal transfer inhibition of resistane gene in foodbore bacteria by determining the efficiency of IntI1-mediated food-borne resistance gene horizontal transmission in vitro and in mouse intestines, and investigating the effect of siRNA interference, then to set up a method for the inhibition of resistane gene from horizontal transfer in foodbore bacteria and the estimation of inhibited efficiency. The content and results are as follows:
     (1) The efficiency of IntI1-mediated resistance gene horizontal transfer in vitro
     R388 is the recipient plasmid that carried attI1 within class 1 integron, In3. R388 was transformed into BL21(DE3) cells to create the donor strain; pGC-1~4 were donor plasmids which carried dfrA1-aadA1, aadA1, aadB and cmlA resistance gene cassettes. The pGC-1~4 were transformed into DH5αcells to create the recipient strain. Recipient and donor strains were co-cultured without antibiotic selective presure, screened by antibiotic plate and PCR tested using intI1-F and several cassette-specific primers, recombination site was determined sequentially. The IntI1-mediated recombination efficiency of R388 and pGC-1~4 were 4.6×10-3, 6.8×10-4, 8.7×10-5 and 9.9×10-5 cfu/donor strain respectively. The two serial cassettes dfrA1-aadA1 in pGC-1 were integrated by IntI1 in the form of dfrA1 and aadA1. The resistance gene cassettes were integrated specifically into GTT consensus site of attI1.
     (2) The horizontal transmission of IntI1 mediated drug resistance gene in vivo
     Mice without carrying bacteria resistant to any one of these antibiotic were selected for the experiments. All of the selected mice were orogastrically inoculated with 0.5 mL of a fresh overnight culture of donor strain with a concentration of 109 cfu/mL. After the colonization of donor strain reached a level of 108 cfu/g stool sample in the intestines of mice, 0.5 mL of recipient strain was administered at a concentration of 109 cfu/mL. Fresh stools of mice were collected on days 1, 3, 5, 7, 14, 21, 28, 35 and 42 after orogastric inoculation. Each stool sample was diluted, homogenized and resuspended with physiologic saline, selected with antibiotic plate, then PCR verification and sequeced. Results showed that, 1 day after orogastrically inoculated of recipient strain, the recombination efficiency of recipient and donor strain carried pGC-1~4 respectively were 4.6×10-2、8.1×10-3、2.2×10-4 and 7.2×10-3 cfu/donor strain, the recombination efficiency in vivo was highter than that in vitro. It was showed by sequencing that all recombination sites took place between attI1×attC. On the 42nd day all of cointegrates colonizing on the intesines of mice were negative.
     (3) Design, screening of siRNA and the inhibition of recombination efficiency in vitro
     5 different 21bp specific sequences of siRNA were designed for use to target upon the intI1 sequence, and they were co-cultured with recipient strain contained pGC-2 and donor strain contained R388 to determine the recombination efficiency. Results showed that inhibition rates of siRNA-1 and siRNA-2 were 52.1% and 50.7% respectively. The optical interference condition was: the siRNA was added for 3 times, the final concentration reached 0.2μM, one addition every 2 hours, 8 hours for all, and the inhibition efficiency treated by siRNA-1 and siRNA-2 was reached to 60.8% and 58.1%.
     (4) Determination of effects of siRNA on the integration efficiency and the intI1 mRNA level by PCR test
     The method of one step SYBR Green I real-time PCR was used to relatively quantify and absolutely quantify the changes of integration efficiency and the level of intI1 mRNA before and after co-cultured with siRNA. It was found from the relative quantification that compared with cramble siRNA, after treated by siRNA-1 and siRNA-2 the integration efficiency reduced 52% and 55% respectively. It was indicated from the absolute quantification that cramble siRNA and siRNA-1 were 8.1×10-4 cfu/donor strain and 3.84×10-4 cfu/donor strain respectively. The intI1 mRNA level was reduced 58% after treatment by siRNA-1.
引文
[1] Levy S.B. and Marshall B. Antibacterial resistance worldwide: causes, challenges and responses [J]. Nature medicine, 2004, 10:122-129.
    [2] Gorbach S. L. Antimicrobial use in animal feed--time to stop [J]. The New England Journal of Medicine, 2001, 345 (16):1202-1203.
    [3]沈叙庄.关注对动物使用抗生素与细菌耐药的问题[J].中华儿科杂志, 2002, 40 (8):452-453.
    [4] Kummerer K. Significance of antibiotics in the environment [J]. Journal of Antimicrobial Chemotherapy, 2003, 52 (1):5-7.
    [5] Golet E.M., Alder A.C., Hartmann A. et al. Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection [J]. Anal. Chem, 2001, 73 (15):3632-3638.
    [6] Zuccato, E., Calamari D., Natangelo M., et al. Presence of therapeutic drugs in the environment [J]. The lancet, 2000, 355 (9217):1789-1790.
    [7] Kümmerer K., Al-Ahmad A. and Mersch-Sundermann V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test [J]. Chemosphere, 2000, 40 (7):701-710.
    [8] Hamscher G., Sczesny S., Hoper H., et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry [J]. Anal. Chem, 2002, 74 (7):1509-1518.
    [9] De Liguoro M., Cibin V., Capolongo F., et al. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil [J]. Chemosphere, 2003, 52 (1):203-212.
    [10] Goldstein F. W. Combating resistance in a challenging, changing environment [J]. Clinical Microbiology and Infection, 2007, 13:2-6.
    [11] Bjrkman J., Nagaev I., Berg O.G., et al. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J]. Science, 2000, 287 (5457):1479-1482.
    [12] DeVincent S.J. and Viola C. Introduction to animal antimicrobial use data collection in the United States: Methodological options [J]. Preventive Veterinary Medicine, 2006, 73 (2-3):105-109.
    [13] Aarestrup F.M., Seyfarth A.M., Emborg H.D., et al. Effect of abolishment of the useof antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark [J]. Antimicrobial agents and chemotherapy. 2001,45 (7):2054-2059.
    [14] Schmidt C.W. Antibiotic resistance in livestock: more at stake than steak [J]. Environmental Health Perspectives, 2002, 110 (7):396-402.
    [15] McPherson J. D., Marra M., Hillier L. D., et al. A physical map of the human genome [J]. Nature, 2001, 409 (6822):934-941.
    [16] Kapitonov V.V. and Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome [J]. Proceedings of the National Academy of Sciences, 2003, 100 (11):6569-6574.
    [17]张博,陈兵,张青文,等.昆虫的转座子及其功能[J].昆虫知识, 2009, (2):187-195.
    [18] Rudy C., Taylor K. L., Hinerfeld D., et al. Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916 [J]. Nucleic Acids Research, 1997, 25 (20):4061-4066.
    [19] Rice L.B. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants [J]. Antimicrobial agents and chemotherapy, 1998, 42 (8):1871-1877.
    [20] Ni J., Clark K.J., Fahrenkrug S.C., et al. Transposon tools hopping in vertebrates [J]. Briefings in Functional Genomics and Proteomics, 2008, 7 (6):444-463.
    [21] Ivics Z., Kaufman C.D., Zayed H., et al. The Sleeping Beauty transposable element: evolution, regulation and genetic applications [J]. Current Issues in Molecular Biology, 2004, 6:43-56.
    [22]祁汝峰,顾冠彬,黄瑞.伤寒沙门菌耐药质粒体内接合转移的研究[J].微生物与感染, 2007, 2 (003):153-156.
    [23] Xu Z., Shi L. Alam M.J., et al. Integron-bearing methicillin-resistant coagulase-negative staphylococci in South China, 2001-2004 [J]. FEMS Microbiology Letters, 2008, 278 (2):223-230.
    [24] Hall R.M. and Collis C.M. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination [J]. Molecular Microbiology, 1995, 15 (4):593-600.
    [25] Hall R.M., Collis C.M., Kim M.J., et al. Mobile gene cassettes and integrons in evolution [J]. Annals-new York Academy of Science, 1999, 870:68-80.
    [26]刘利强,杜娟,刘彦威.细菌耐药性的分子机制[J].动物医学进展, 2006, 27(10):47-50.
    [27] Holmes A.J., Gillings M.R., Nield B.S., et al. The gene cassette metagenome is a basic resource for bacterial genome evolution [J]. Environmental Microbiology, 2003, 5 (5):383-394.
    [28] Hall R.M. and Stokes H.W. Integrons or super integrons? [J]. Microbiology, 2004, 150 (1):3-4.
    [29] Hall R.M., Brookes D.E. and Stokes H. W. Site-specific insertion of genes into integrons: Role of the 59-base element and determination of the recombination cross-over point [J]. Molecular Microbiology, 1991, 5 (8):1941- 1959.
    [30] Collis C.M., Kim M.J., Partridge S.R., et al. Characterization of the class 3 integron and the site-specific recombination system it determines [J]. Journal of bacteriology, 2002a,184 (11):3017-3026.
    [31] Correia M., Boavida F., Grosso F., et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae [J]. Antimicrobial agents and chemotherapy, 2003, 47 (9):2838-2843.
    [32] Mazel D., Dychinco B., Webb V.A., et al. A distinctive class of integron in the Vibrio cholerae genome [J]. Science, 1998, 280 (5363):605-608.
    [33] Rowe-Magnus D.A., Guerout A.M. and Mazel D. Bacterial resistance evolution by recruitment of super-integron gene cassettes [J]. Molecular Microbiology, 2002, 43 (6):1657-1669.
    [34] Recchia G.D. and Hall R.M. Gene cassettes: class of mobile element [J]. Microbiology, 1995, 141:5-3027.
    [35] Gillings, M., Boucher Y., Labbate M., et al. The evolution of class 1 integrons and the rise of antibiotic resistance [J]. Journal of bacteriology, 2008, 190 (14):5095-5100.
    [36] Weldhagen G.F. Integrons andβ-lactamases—a novel perspective on resistance [J]. International journal of antimicrobial agents, 2004, 23 (6):556-562.
    [37] Walsh T.R. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria [J]. Clin. Microbiol. Infect, 2005, 11 (6):2-9.
    [38] Nógrády N., GadóI., Pászti J., et al. M. Analysis of gene cassettes of streptomycin-spectinomycin resistance of Hungarian Salmonella enterica serotype Typhimurium strains [J]. Acta Veterinaria Hungarica, 2003, 51 (2):137- 151.
    [39] Sundstrm L. The potential of integrons and connected programmed rearrangements for mediating horizontal gene transfer [J]. APMIS. Supplementum, 1998, 84:37-42.
    [40] Partridge S.R., Collis C.M. and Hall R.M. Class 1 integron containing a new genecassette, aadA10, associated with Tn1404 from R151 [J]. Antimicrobial agents and chemotherapy, 2002, 46 (8):2400-2408.
    [41] Moura A., Soares M., Pereira C., et al. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes [J]. Bioinformatics, 2009, 25 (8):1096-1098.
    [42] Michael, J., Jeremy K., Maurizio L., et al. ACID: annotation of cassette and integron data [J]. BMC Bioinformatics, 2009, 10:1-9.
    [43] Barlow R.S., Pemberton J.M., Desmarchelier P.M., et al. Isolation and characterization of integron-containing bacteria without antibiotic selection [J]. Antimicrobial agents and chemotherapy, 2004, 48 (3):838-842.
    [44] González R.G., Mella M.S., Zemelman Z.R., et al. Integrons and resistance gene cassettes: structure and role against antimicrobials [J]. Revista médica de Chile, 2004, 132:619-626.
    [45] Gassama-Sow A., Diallo M.H., Boye C.S., et al. Class 2 integron-associated antibiotic resistance in Shigella sonnei isolates in Dakar, Senegal [J]. International journal of antimicrobial agents, 2006, 27 (3):267-270.
    [46] Collis C.M. and Hall R.M. Comparison of the structure-activity relationships of the integron-associated recombination sites attI3 and attI1 reveals common features [J]. Microbiology, 2004, 150 (5):1591-1601.
    [47] Collis C.M., Kim M.J., Stokes H.W., et al. Integron-encoded IntI integrases preferentially recognize the adjacent cognate attI site in recombination with a 59-be site [J]. Molecular Microbiology, 2002b, 46 (5):1415-1427.
    [48] Segal H., Francia M.V., G. Lobo J.M., et al. Reconstruction of an active integron recombination site after integration of a gene cassette at a secondary site [J]. Antimicrobial agents and chemotherapy, 1999, 43 (10):2538-2541.
    [49] MacDonald D., Demarre G., Bouvier M., et al. Structural basis for broad DNA-specificity in integron recombination [J]. Nature, 2006, 440 (7088):1157- 1162.
    [50] Collis C.M., Recchia G.D., Kim M.J., et al. Efficiency of recombination reactions catalyzed by class 1 integron integrase IntI1 [J]. Journal of bacteriology, 2001, 183 (8):2535-2542.
    [51] Partridge S.R., Recchia G.D., Scaramuzzi C., et al. Definition of the attI1 site of class 1 integrons [J]. Microbiology, 2000, 146 (11):2855-2864.
    [52] Napoli C., Lemieux C. and Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans [J]. The Plant Cell Online, 1990, 2 (4):279-289.
    [53] Dykxhoorn D.M., Novina C.D. and Sharp P.A. Killing the messenger: short RNAs that silence gene expression [J]. Nature Reviews Molecular Cell Biology, 2003, 4 (12; SUPP):7-17.
    [54] Tomari Y. and Zamore P.D. Perspective: machines for RNAi [J]. Genes and development, 2005, 19 (5):517-529.
    [55] Brummelkamp T. R., Bernards R. and Agami R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science, 2002, 296 (5567):550.
    [56]谢克亮,王世平,赵长安. RNA干扰研究进展[J].国外医学:临床生物化学与检验学分册, 2005, 26 (003):165-167.
    [57] Stege A., Priebsch A., Nieth C., et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference [J]. Cancer Gene Therapy, 2004, 11 (11):699-706.
    [58]李铁民. RNA干扰介导原核细胞适应性免疫[J].细胞生物学杂志, 2008, 30 (3):287-290.
    [59] Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria [J]. TRENDS in Genetics, 2005, 21 (7):399-404.
    [60] Jansen R., van Embden J.D.A., Gaastra W., et al. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Molecular Microbiology, 2002, 43 (6):1565-1575.
    [61] Grissa I., Vergnaud G. and Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats [J]. Nucleic Acids Research, 2007,6:1-6.
    [62] Sorek R., Kunin V., and Hugenholtz P. CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea [J]. Nature, 2008,6:181-186.
    [63] Grissa I., Vergnaud G. and Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats [J]. BMC Bioinformatics, 2007a, 8 (1):172-181.
    [64] Makarova K.S., Grishin N.V., Shabalina S.A., et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action [J]. Biology Direct, 2006,1 (1):7-32.
    [65] Haft D.H., Selengut J., Mongodin E.F., et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes [J]. PLoS Comput Biol, 2005, 1 (6):474-483.
    [66] Ebihara A., Yao M., Masui R., et al. 2006. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain [J]. Protein Science: A Publication of the Protein Society 15 (6):1494-1499.
    [67] Pourcel C., Salvignol G. and Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [J]. Microbiology, 2005, 151 (3):653-663.
    [68] Barrangou R., Fremaux C., Deveau H., et al. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315 (5819):1709 -1712.
    [69] Kunin V., Sorek R. and Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats [J]. Genome Biol, 2007, 8 (4):61-67.
    [70] Tang T.H., Bachellerie J.P., Rozhdestvensky T., et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobusfulgidus [J]. Proceedings of the National Academy of Sciences, 2002, 99 (11):7536-7541.
    [71] Tang T.H., Polacek N., Zywicki M., et al. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus [J]. Molecular Microbiology, 2005, 55 (2):469-481.
    [72] Hannon G.J. RNA interference [J]. Nature, 2002, 418 (6894):244-251.
    [73] Amarzguioui M., Holen T., Babaie E., et al. Tolerance for mutations and chemical modifications in a siRNA [J]. Nucleic Acids Research, 2003, 31 (2):589-595.
    [74] Amarzguioui M., Rossi J.J. and Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi [J]. FEBS letters, 2005, 579 (26):5974-5981.
    [75]彭剑淳,饶林,詹林盛,等. T7 RNA聚合酶体外转录合成siRNA的方法[J].军事医学科学院院刊, 2004, 28 (002):163-164.
    [76] Donze O. and Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase [J]. Nucleic Acids Research, 2002, 30 (10):46-49.
    [77] Buchholz F., Kittler R., Slabicki M., et al. Enzymatically prepared RNAi libraries [J]. Nature Methods, 2006, 3 (9):696-700.
    [78] Yang, D., Goga A. and Bishop J. M. RNA interference (RNAi) with RNase III-prepared siRNAs [J]. Methods Mol. Biol, 2004, 252:471-482.
    [79] Xuan, B., Qian Z., Tan C., et al. esiRNAs purified with chromatography suppress homologous gene expression with high efficiency and specificity [J]. Molecularbiotechnology, 2005, 31 (3):203-209.
    [80] Xuan, B., Qian Z., Hong J., et al. EsiRNAs inhibit Hepatitis B virus replication in mice model more efficiently than synthesized siRNAs [J]. Virus research, 2006, 118 (1-2):150-155.
    [81]张中华,侯永泰. siRNA制备技术的研究进展[J].生命科学, 2004, 16 (4):231-235.
    [82] Yanagihara, K., Tashiro M., Fukuda Y., et al. Effects of short interfering RNA against methicillin-resistant Staphylococcus aureus coagulase in vitro and in vivo [J]. Journal of Antimicrobial Chemotherapy, 2006, 57 (1):122-126.
    [83] Conner A.J., Glare T.R. and Nap J.P. The release of genetically modified crops into the environment [J]. Plant journal, 2003, 33: 19-46.
    [84] Fluit A.C. and Schmitz F.J. Class 1 integrons, gene cassettes, mobility, and epidemiology [J]. European Journal of Clinical Microbiology & Infectious Diseases, 1999, 18 (11):761-770.
    [85] Francia M.V., Avila P., De la Cruz F., et al. A hot spot in plasmid F for site-specific recombination mediated by Tn21 integron integrase [J]. Journal of bacteriology, 1997, 179 (13):4419-4425.
    [86] Francia M.V., De la Cruz F., andGarcia-Lobo J.M. Secondary sites for integration mediated by the Tn21 integrase [J]. Molecular Microbiology, 1993, 10 (4):823-828.
    [87] Hansson K., Sk ld O. and Sundstr m L. Non-palindromic attI sites of integrons are capable of site-specific recombination with one another and with secondary targets [J]. Molecular Microbiology, 1997, 26 (3):441-453.
    [88] Biskri L., Bouvier M., Guerout A.M., et al. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities [J]. Journal of bacteriology, 2005, 187 (5):1740.
    [89] Partridge S.R., Tsafnat G., Coiera E., et al. Gene cassettes and cassette arrays in mobile resistance integrons [J]. FEMS microbiology reviews, 2009, 33 (4):757 -784.
    [90] Frumerie C., Ducos-Galand M., Gopaul D.N. The relaxed requirements of the integron cleavage site allow predictable changes in integron target specificity [J]. Nucleic Acids Research, 2010, 38 (2):559-569.
    [91] Demarre G., Frumerie C., Gopaul D.N., et al. Identification of key structural determinants of the IntI1 integron integrase that influence attC x attI1 recombination efficiency [J]. Nucleic Acids Research, 2007, 9:1-15.
    [92] Esposito D. and Scocca J.J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain [J]. Nucleic Acids Research, 1997, 25(18): 3605-3614.
    [93] Larouche, A. and Roy P.H. Analysis by mutagenesis of a chromosomal integron integrase from Shewanella amazonensis SB2BT [J]. Journal of bacteriology, 2009, 191 (6):1933-1940.
    [94] Messier N. and Roy P. H. Integron integrases possess a unique additional domain necessary for activity [J]. Journal of bacteriology, 2001, 183 (22):6699-6706.
    [95] Gravel, A., Messier N. and Roy P.H. Point mutations in the integron integrase IntI1 that affect recombination and/or substrate recognition [J]. Journal of bacteriology, 1998, 180 (20):5437-5442.
    [96] Mazel D. Integrons: agents of bacterial evolution [J]. Nature Reviews Microbiology, 2006, 4 (8):608-620.
    [97] Grainge I. and Jayaram M. The integrase family of recombinases: organization and function of the active site [J]. Molecular Microbiology, 2002, 33 (3):449-456.
    [98] Phillips I., Casewell M., Cox T., et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data [J]. Journal of Antimicrobial Chemotherapy, 2004, 53 (1):28-52.
    [99] Lester C.H., Frimodt-Moller N., Sorensen T.L., et al. In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers [J]. Antimicrobial agents and chemotherapy, 2006, 50 (2):596-599.
    [100] Shoemaker N.B., Vlamakis H., Hayes K., et al. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon [J]. Applied and Environmental Microbiology, 2001, 67 (2):561-568.
    [101] Bronzwaer S. L., Buchholz U. and Kool J.L. International surveillance of antimicrobial resistance in Europe: now we also need to monitor antibiotic use [J]. Euro surveillanc, 2001, 6 (1):1-2.
    [102] Harwood V. J., Brownell M., Perusek W., et al. Vancomycin-resistant Enterococcus spp. isolated from wastewater and chicken feces in the United States [J]. Applied and Environmental Microbiology, 2001, 67 (10):4930-4933.
    [103] Doucet-Populaire F., Trieu-Cuot P., Andremont A., et al. Conjugal transfer of plasmid DNA from Enterococcus faecalis to Escherichia coli in digestive tracts of gnotobiotic mice [J]. Antimicrobial agents and chemotherapy, 1992, 36 (2):502-504.
    [104] Huycke M.M., Gilmore M.S., Jett B.D., et al. Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastrointestinal tract [J]. The Journal of infectious diseases, 1992, 166 (5):1188-1191.
    [105] McDonald L.C., Rossiter S., Mackinson C., et al. Quinupristin-dalfopristin -resistant Enterococcus faecium on chicken and in human stool specimens [J]. The New England Journal of Medicine, 2001, 345 (16):1155-1160.
    [106] Mater D.D.G., Langella P., Corthier G., et al. Evidence of vancomycin resistance gene transfer between enterococci of human origin in the gut of mice harbouring human microbiota [J]. Journal of Antimicrobial Chemotherapy, 2005, 56 (5):975-978.
    [107]方国凯.动物源性食品中痕量磺胺兽药残留的分析[J].食品研究与开发, 2007, 28 (5):101-104.
    [108]王伟,糜祖煌,毛剑锋,等.大肠埃希菌连续分离株耐药表型及复方磺胺甲口恶唑耐药相关基因研究[J].中国抗生素杂志, 2008, 33 (12):731-732.
    [109]夏介英.关于SPF小鼠饲养的探讨[J].四川生理科学杂志, 2007, 29 (4):181-182.
    [110] Poole T.L., McReynolds J.L., Edrington T.S., et al. Effect of flavophospholipol on conjugation frequency between Escherichia coli donor and recipient pairs in vitro and in the chicken gastrointestinal tract [J]. Journal of Antimicrobial Chemotherapy, 2006, 58 (2):359-366.
    [111] Bouvier M., Ducos-Galand M., Loot C., et al. Structural features of single-stranded integron cassette attC sites and their role in strand selection [J]. plos genet, 2009, 5(9):1-14.
    [112] Bouvier M., Demarre G. and Mazel D. Integron cassette insertion: a recombination process involving a folded single strand substrate [J]. The EMBO Journal, 2005, 24 (24):4356-4367.
    [113] Dubois V., Debreyer C., Litvak S., Quentin C., et al. A new in vitro strand transfer assay for monitoring bacterial class 1 integron recombinase IntI1 activity [J]. PLoS ONE, 2007, 2 (12):1-10.
    [114] Dahl K.H., Mater D.D.G., Flores M.J., et al. Transfer of plasmid and chromosomal glycopeptide resistance determinants occurs more readily in the digestive tract of mice than in vitro and exconjugants can persist stably in vivo in the absence of glycopeptide selection [J]. Journal of Antimicrobial Chemotherapy, 2007, 59 (3):478-486.
    [115] Poppe C., Martin L.C., Gyles C.L., et al. Acquisition of resistance to extended-spectrum cephalosporins by Salmonella enterica subsp. enterica serovar Newport and Escherichia coli in the turkey poult intestinal tract [J]. Applied and Environmental Microbiology, 2005, 71 (3):1184-1192.
    [116] Giraffa G. Enterococci from foods [J]. FEMS microbiology reviews, 2006, 26(2):163-171.
    [117] Moubareck C., Bourgeois N., Courvalin P., et al. Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice [J]. Antimicrobial agents and chemotherapy, 2003, 47 (9):2993.
    [118] Licht T.R. and Wilcks A. 2006. Conjugative gene transfer in the gastrointestinal environment [J]. Advances in applied microbiology, 2006, 58:77-96.
    [119] Fux C.A., Costerton J.W., Stewart P.S., et al. Survival strategies of infectious biofilms [J]. TRENDS in Microbiology, 2005, 13 (1):34-40.
    [120] Fire A., Xu S., Montgomery M.K., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391:806-810.
    [121] Cerutti H. RNA interference: traveling in the cell and gaining functions? [J]. TRENDS in Genetics, 2003. 19(1): 39-46.
    [122] Yang, Z., Jiang X., Wei Q., et al. A novel and rapid method for determining integration frequency catalyzed by integron integrase intI1 [J]. Journal of Microbiological Methods, 2009, 76 (1):97-100.
    [123]王小红.荧光定量PCR技术研究进展[J].国外医学:分子生物学分册, 2001, 23 (1):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700