关于绵羊肌肉生长遗传调控机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用候选基因法和全基因组基因芯片检测法研究绵羊肌肉生长性状的遗传调控机理,主要内容如下:
     一、湖羊Dlk1、GHR、 IGF-I、 MSTN、 MyoG基因在背最长肌中的表达及其与屠宰性状、肉质性能关联分析
     摘要:本实验以湖羊为研究对象,以6月龄陶赛特羊为参照群体,采用RT-PCR法检测Dlk1、GHR、IGF-I、MSTN、MyoG基因在湖羊不同生长阶段背最长肌中表达丰度,并分析其与屠宰性状、肉质性能的关联性,旨在揭示湖羊肌肉生长性状的分子遗传学基础,为湖羊肌肉生长性状的选育提供遗传学资料,丰富湖羊品种遗传资源的研究。本实验得到了以下结果:
     1、Dlk1、GHR、IGF-I、MSTN、MyoG基因在湖羊背最长肌中的表达趋势分析
     Dlk1、GHR、IGF-I、MSTN、MyoG基因在不同生长阶段之间、不同性别间大量存在显著或极显著差异,这表明不同生长阶段、性别对于这5个基因在绵羊肌肉组织中的表达具有重要影响。出生后,各基因表达水平并非一直随着上升或者下降,各基因表达水平出现拐点的时间点也不相同。就6月龄而言,这5个基因在湖羊中的表达均高于陶塞特羊,品种因素对于这5个基因的表达差异表达具有一定的影响,但是两个品种在其他生长阶段的表达差异水平有待进一步研究。
     5个基因间大多存在显著或极显著正相关,只有GHR与MSTN、MyoG间的表达相关不显著。
     2、Dlk1、GHR、IGF-I、MSTN和MyoG基因表达与湖羊屠宰性状指标的相关分析
     Dlk1、GHR、IGF-I、MSTN基因与宰前活重和胴体重存在显著或极显著正相关,与净肉重相关不显著;MyoG与宰前活重、胴体重和净肉重间均未达到显著水平。
     3、Dlk1、GHR、IGF-I、MSTN和MyoG基因表达与肉质性能指标的相关分析
     Dlk1、GHR、IGF-I、MSTN和MyoG基因表达均与肌纤维直径和肌纤剪切力存在正相关,与肌纤维密度存在负相关。其中,Dlk1、GHR、IGF-I、MSTN基因表达与肌纤维直径和肌纤维密度存在显著或极显著相关,Dlk1、GHR、IGF-I基因表达与肌纤剪切力存在显著或极显著相关。MyoG基因表达与肌纤维直径、肌纤剪切力和肌纤维密度均不存在显著相关。
     二、利用芯片表达数据构建绵羊背最长肌基因网络调控图;探讨TGF-β信号通道在美臀羊形成中的作用
     摘要:[背景]在基因表达数据分析方面的最新进展可以帮助发现更为详细的导致不同处理差异的关键原因,其中包括鉴定表达不存在差异的关键基因,本文运用了这些数据分析方法到绵羊肌肉表达数据上,并重点研究美臀表型性状。绵羊的美臀基因突变以及牛上的生长抑制素基因突变都可以导致显著增加肌肉的生长。尽管两种突变类型可以增加慢肌纤维到快肌纤维的转变比率,但是表型的其他特征都是非常不同的。本文将采用新的分析算法来比较导致绵羊上美臀基因突变以及牛上的生长抑制素基因突变的通道的潜在成分的一致性。[结果]本研究构建了绵羊背最长肌的一个始终相关(Always correlated)的基因表达网络。确定了5个稳健的功能模块,包括编码肌肉蛋白、线粒体蛋白、核糖体蛋白、26S蛋白酶和参与翻译的蛋白的基因。Module-to-Regulator(模块-调控影响因子)分析方法被用于识别模块的潜在的转录调控因子,除了得到一些已知的模块调控因子,还得到了一些新的候选调控因子。采用RIF2算法来分析美臀羊和正常表型羊的基因表达数据,可以清晰地揭示导致不同处理/表型的关键的调控因子(虽然在这些调控影响因子表达上并没有显著差异性)。相关文献、数据挖掘以及前10个候选调控因子均支持TGF(转化生长因子)-β的信号通道在增加DLK1在美臀羊肌肉中表达从而导致肌肉聚集中的作用。另外,在同一坐标平面内作出美臀羊和双肌臀牛的RIF2得分图,结果进一步支持这两种表型在TGF-β信号通道上有相同之处。这两个数据集的RIF2分析的交叉之处包含有YAP1基因,该基因编码导致调节器官大小的Hippo信号通道的一个组成部分。本研究首次提供了Hippo信号通道参与草食动物肌肉生长的活体证据,这支持了最近的有关Hippo通道在大鼠肌肉生长中的作用的报道。[结论]本研究提供了解释洞角反刍科草食动物中两种肌肉增加表型的机制的新观点。特别是,揭示了美臀羊和双肌臀牛存在比预期大得多的相同之处。本研究结果丰富了洞角反刍科草食动物重要功能基因遗传资源的研究。
In this study, methods of candidate gene and whole genome microarray were applied to analyze the mechanisms of genetic control mechanism of growth traits in sheep muscle, and the main contents were as the following:
     I Developmental Changes of Gene Expression of Dlk1,GHR,IGF-l,MSTN and MyoG Genes and Their Association Analysis with Carcass Traits, meat quality in Hu Sheep
     Abstract:In this experiment, Hu sheep was regarded as the researched object and6-month-old Dorset sheep was regarded as the referenced group. Methods of RT-PCR was applied to analyze the expression of Dlkl,GHR,IGF-I,MSTN,MyoG gene in Longissimus Dorsi at different growth stages of Hu sheep,and their association analysis with carcass traits, meat quality in Hu Sheep also been studied. The purpose is to reveal the molecular genetics basis of muscle growth, and provide genetic information for the selection of muscle growth trait, and enriched the genetic resources research of Hu sheep. The results were as follows:
     1. Developmental Changes of Expression of Dlk1, GHR, IGF-I, MSTN and MyoG Genes in Hu Sheep
     The expressions of Dlkl, GHR, IGF-I, MSTN and MyoG had a lot of significant differences or extreme significant differences among different growth stages and different genders, which showed that different stages and different genders had important influences on the expressions of the five genes in sheep skeletal muscle. After birth, the expressions of the five genes did not always increase or decrease, the turning points of different genes expression were not at the same time. In terms of6-month-old, the expressions of the five genes in Hu sheep were all higher than that in Dorset sheep, therefore, breed factors might also have some impacts on the different expressions of the five genes, but a further study would be needed for the expressions of the five genes in other growth stages between the two breeds.
     The results showed that almost every two genes had a significant or an extreme significant positive correlation except the correlation between GHR and MSTN or MyoG.
     2. The correlation analysis between the5genes expression and Carcass traits in Hu sheep
     The expressions of Dlkl, GHR, IGF-I, MSTN had a significant or an extreme significant positive correlation with the Live weight and carcass weight and didn't have any correlation with the net meat weight in Hu sheep; the expression of MyoG didn't have any significant correlation with the Live weight, carcass weight and net meat weight in Hu sheep.
     3. The correlation analysis between5genes expression and meat quality in Hu sheep
     The expressions of the5genes all had positive correlation with diameter of muscle fibers and shear force of muscle fibers; in addition, they had a negative correlation with the density of muscle fibers. The expressions of Dlkl, GHR, IGF-I, MSTN had a significant or a extreme significant correlation with diameter of muscle fibers and shear force of muscle fibers, and the expressions of Dlkl、 GHR、IGF-I had a significant or a extreme significant correlation with shear force of muscle fibers. The expression of MyoG didn't have any correlation with the diameter of muscle fibers, shear force of muscle fibers and density of muscle fibers.
     Ⅱ Deciphering the regulatory circuitry of ovine skeletal muscle genes from expression data; signaling pathway in Callipyge sheep evidence for the involvement of the TGF-β
     Abstract:[Background] Recent advances in the analysis of gene expression data enables a detailed picture of the drivers of differences between treatments to be identified, including the identification of key genes that are not differentially expressed. Here we apply these approaches to gene expression data from sheep muscle with a particular focus on the callipyge phenotype. The callipyge mutation in sheep and mutations in the myostatin gene in cattle both lead to significantly increased muscle growth. Although both types of mutations increase the ratio of fast to slow twitch muscle fibers, many other aspects of the phenotypes are very different. Here we have applied new analysis methodologies to compare the identities of putative components of the path from the mutations to the phenotypic outcomes in callipyge sheep and a myostatin mutation in cattle.[Results] The reversed engineering of an Always Correlated gene expression landscape of sheep Longissimus dorsi (LD) muscle is described. Five robust modules including genes encoding muscle, mitochondrial, ribosomal, translation proteins and components of the26S proteosome were identified. We analyzed the callipyge versus normal sheep muscle gene expression data using the Regulatory Impact Factor (RIF2) methodology, which can identify key regulators not differentially expressed between two conditions, but which may be drivers of the phenotypic response. Literature and data-mining of the functions and signaling pathway in relationships of the top candidates supported a role for the TGF-β the processes by which increased DLKl expression in the affected muscles of callipyge sheep leads to increased muscle mass. In addition, plotting the RIF2scores for the callipyge sheep muscle dataset against the RIF2scores for a muscle gene expression data set from cattle with a mutation in the myostatin signaling pathway in both genes further supported a common role for the TGF-β phenotypes. The genes at the intersection of the RIF2analyses of the two datasets included YAP1, which encodes a component Hippo signaling pathway which regulates organ size. This provides the first in vivo evidence for a role for the Hippo signaling pathway in muscle growth in ruminants, supporting recent in vitro evidence for a role in muscle differentiation in the mouse.[Conclusions]The analyses provide new insights into the mechanisms underlying two increased muscle growth phenotypes in ruminants. In particular, they suggest a greater overlap between the mechanisms in callipyge sheep and myostatin cattle, than has previously been anticipated. The results of this study largely enriched the genetic resources research about important functional genes in herbivore of hollow horn ruminant families.
引文
[1]张冀汉.中国养羊业现状及发展对策.草食家畜,2003,(1):1-4
    [2]赵凤立,崔健,李洪伟等.国内外养羊生产趋势及肉羊生产现状与发展前景.辽宁畜牧兽医,2002,(3):32-33
    [3]俞坚群.湖羊肉用性能测定.浙江畜牧兽医,2006,(5):1-2
    [4]席斌,高雅琴,李维红等.我国湖羊的发展现状及前景.畜牧兽医杂志,2003,26(5):37-41
    [5]吕宝铨.抢救湖羊品种资源已刻不容缓.畜牧与兽医,2007,39(1):23-25
    [6]陈玲,孙炜,孙永明等.湖羊的养殖技术.农村养殖技术,2006,17:7-9
    [7]王伟.湖羊种质资源的保护及开发利用.苏州大学硕士论文,2007
    -[8]Davis G H, Montgomery G W, Allison A J, et al. Segregation of a major gene influencing fecundity in progeny of Booroola sheep. N Z J Agric Res,1982, 25:525-529
    [9]王根林,毛鑫智,George H Davis等.DNA分析发现我国湖羊和小尾寒羊存在Booroola (FecB)多胎基因.南京农业大学学报,2003,26(1):104-106
    [10]储明星,狄冉,叶素成等.绵羊多胎主效基因FecB分子检测方法的建立与应用.农业生物技术学报,2009,17(1):52-58
    [11]钟辑.小湖羊皮和滩羊皮名扬五洲.中国水利,1982,(1):49
    [12]徐颖,汪璇,刘小丹等.羊奶的优势与发展前景.黑龙江畜牧兽医,2010,(14):36-38
    [13]汤艾非,韩正康.湖羊奶及人工诱发的乳腺分泌物中某些生化物质的动态变化.南京农业大学学报,1993,16(增刊):25-29
    [14]王引泉,郝丽霞,石刚.羊奶的营养与食疗特性.畜牧兽医杂志,2010,29(1):66-67
    [15]舒国伟,陈合,吕嘉枥等.绵羊奶和山羊奶理化性质的比较.食品工业科技,2008,(11):280-284
    [16]达文致,达文政.山羊绒毛与绵羊奶化学成分研究.现代农业科技,2009,(5):208-209
    [17]王鹏.湖羊GH、MSTN基因遗传多态、表达及其与肌肉生长性状关联分析.扬州大学硕士论文,2010
    [18]钱建共,肖玉骐,张有法.湖羊不同杂交组合产肉性能的研究.中国草食动物,2002,S1:142-145
    [19]姜俊芳,周卫东,宋雪梅等.湖羊和杜湖杂交一代羊羊肉营养成分比较研究.黑龙江畜牧兽医,2010,(7):31-32
    [20]白慧琴,周卫东,姜俊芳等.湖羊肉用系选育出报.浙江畜牧兽医,2010,(4):1-3
    [21]赵晓,莫德林,张悦等.猪的骨骼肌生长发育研究进展.生命科学,2011,23(1):37-44
    [22]贾径.鸭MyoG、MRF4基因的克隆及其在骨骼肌组织中的发育表达研究.四川农业大学硕士论文,2009
    [23]CHANG K C, FERNANDESK, GOLDSPINK GInvrvo expression and molecular characterization of the porcine slow myosin heavy chain. Journal of CellScrence,1993,106(1):331-341
    [24]任列娇,赵素梅,胡洪等.肌纤维类型及其对猪肉品质影响的研究进展.云南农业大学学报,2010,25(1):124-131
    [25]Bryson-Richardson R J, Currie PD.The genetics of vertebrate myogenesis.Nat Rev Genet,2008,9(8):632-646
    [26]Rudnicki MA, Schnegelsberg PN, Stead RH,et al.MyoD or Myf-5 is required for the formation of skeletal muscle.Cell,1993,75(7):1351-1359
    [27]Rudnicki MA, Braun T, Hinuma S, et al.Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and rsults in apparently normal muscle development.Cell,1992,71(3):383-390
    [28]Nabeshima Y,Hanaoka K,Hayasaka M,et al.Myogenin gene disruption results in perinatal lethality because of severe muscle defect.Nature,1993,364(6437):532-535
    [29]Hasty P,Bradley A,Morris J H,et al。 Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature,1993,364(6437):501-506
    [30]Muroya S,Nakajima I,Mika O,et al.Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts:No alteration of Myf5 or myogenin expression.Develop.Growth Differ,2005, (47):483-492
    [31]孙伟,王鹏,丁家桐等.湖羊Myostatin和Myogenin基因表达的发育性变化及与屠宰性状的关联分析.中国农业科学,2010,43(24):5129-5136
    [32]Muroya S, Nakajima I, Chikuni K.Related Expression of MyoD and Myf5 with Myosin Heavy Chain Isoform Types in Bovine Adult Skeletal Muscles.Zoological Science,2002, (19):755-761
    [33]杨晓静,陈杰,胥清富等.二花脸和大白猪背最长肌中肌肉生长抑制素和生肌调节因子基因的表达及其性别特点.南京农业大学学报,2006,29(3):64-68
    [34]Bober E, Lyons G E, Braun T,et al.The muscle regulatory gene, Myf6,has a biphasic pattern of expression during early mouse development. Cell Biology,1991,6(113): 1255-1265
    [35]Braun T,Grezeschik K H,Bober E,et al.The MYF genes,a group of human muscle determining factors,are localied on different human chromosomes.Cytogenet Cell Genet,1989,51:969
    [36]Gaillard C,Theze N,Hardy,et al.Differential tras-activation of muscle-specific regulatory elements including the mysosin light chain box by chicken MyoD, myogenen, and MRF4.Biology Chemistry,1990,14 (267):10031-10038
    [37]Hinterberger T J, Sassoon D A.Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development.Dev Biol,1991,47(1):144-156
    [38]Buckingham M, Vincent SD.Distinct and dynamic myogenic populations in the vertebrate embryo.Curr Opin Genet DEV,2009,19(5):444-453
    [39]Black BL, Olson EN.Transcriptional control of muscle development by myocyte enhancer factor-2(MEF2) PROTEINS. Annu Rev Cell Dev Biol,1998,14:167-196
    [40]Naya FJ,Black BL,Wu H,et al.Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor.Nature Medicine,2002,8(11):1303-1309
    [41]Potthoff MJ,Arnold MA,McAnally J,et al.Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c.Molecular and Cellular Biology,2007,27(23):8143-8151
    [42]Matthew J.Potthoff, Hai Wu, Michael A. Arnold,et al.Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibersj Clin Invest,2007,117(9):2459-2467
    [43]Morisaki T, Sermsuvitayawong K,Byun SH,et al.Mouse Mef2b gene:uniquemember of MEF2 gene family.Biochem,1997,122,(5)939-946
    [44]Laborda J. The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol.2000.15,119-129
    [45]Passegue E, Jamieson CH, Ailles LE, Weissman IL.Normal and leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics.Proc NatlAcad Sci USA 2003; 100:11842-11849
    [46]Kobayashi S,Wagatsuma H,Ono R,Ichikawa H,et al.Mouse Peg9/Dlkl and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes:mouse Meg3/Gtl2 and human MEG3.Genes to Cells.2000.5,1029-1037
    [47]Minoshima Y,Taniguchi Y,Tanaka K,et al.Molecular cloning,expression analysis,promoter characterization,and chromosomal localization of the bovine PREF1 gene.Anim.Genet.2001.32,333-339
    [48]Charlier C, Segers K, Wagenaar D,et al.Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge(clpg) locus and identification of six imprinted transcripts:DLK1, DAT, GTL2, PEG11, antiPEGll,and MEG8. Genome.Res.2001.11,850-862
    [49]曹贵玲.山羊印记基因H19. Dlk、CLPG和毛囊发育相关基因Dkkl的研究.山东农业大学硕士论文,2008
    [50]Moon Y S,Smas C M,Lee K,et al.Mice Lacking Paternally Expressed Pref-1/Dlkl Display Growth Retardation and Accelerated Adiposity.Mol Cell Biol,2002,22(15): 5585-5592
    [51]Davis E,Jensen C H,Schroder H D,et al.Ectopic Expression of Dlkl Protein in Skeletal Muscle of Padumnal H eterozygotes Causes the Callipyge Phenotype.Curr Biol,2004,14(20):1858-1862
    [52]Susan K.Murphy,Brad A.Freking,Timothy P.L.Smith,et al.Abnormal postnatal maintenance of elevated DLK1 transcript levels in callipyge sheep.Mammalian Genome,2005,16:171-183
    [53]Tony Vuocolo,Keren Byrne,Jason White,et al.Identification of a gene network contributing to hypertrophy in callipyge skeletal muscle.Physiol Genomics,2007, 28:253-272
    [54]Joergensen L, Jensen C, Davis E,et al.DLKl as a candidate for booster gene therapy in muscular dystrophy.Abstracts/Neuromuscular Disorders.2007.17,764-900
    [55]Jason D.White,Tony Vuocolo,Matthew McDonagh,et al.Analysis of the callipyge phenotype through skeletal muscle development;association of Dlkl with muscle precursor cells.Differentiation,2008,76:283-298
    [56]Jolena N.Fleming-Waddell,Gayla R. Olbricht,Tasia M.Taxis,et al.Effect of DLK1 and RTL1 but not MEG3 or MEG8 on Muscle Gene Expression in Callipyge Lambs.Plos One,2009,10(4):1-15
    [57]M.Oczkowicz,K.Ropka-Molik,K.Piorkowska,et al.Frequency of DLK1 C.639C>T polymorphism and the analysis of MEG3/DLK1/PEG 11 cluster expression in muscle of swine raised in Poland.Meat Science,2011,88:627-630
    [58]Smas CM, Chen L, Sul HS.Cleavage of membrane-associated pref-1 generates a soluble Inhibitor of adipocyte differentiation. Mol.Cell.Biol.1997.17(2),977-988
    [59]Fahrenkrug SC, Freking BA, Smith TPL.Genomic organization and genetic mapping of the bovine PREF-1 gene.Biochem.Biophys.Res.Commun.1999.264, 662-667
    [60]Vuocolo T, Pearson R, Campbell P,et al.Differential expression of Dlk1 in bovine adipose tissue depots.Com.Biochem.Physiol.PartB.2003.134,315-333
    [61]Deiuliis JA,Li B,Lyvers-Peffer PA,et al.Alternative splicing of delta-like 1 homolog DLK1 in the pig and human.Comp. Biochem.Physiol. PartB.2006.145,50-59
    [62]杨宗林.猪DLK1-DIO3印记域4个候选印记基因的分离及其单等位基因表达分析.西南大学硕士论文,2009
    [63]Rico-Bautista E.Negative regulation of GH signaling.Reproprint Stockholm, Sweden.2005
    [64]Carter-Su C,Schwartz J,Smit LS.Molecular mechanism of growth hormone action.Annu Rev Physiol,1996,58:187-207
    [65]Gent J,Eijnden M,Van Kerkhof P.Dimerization and signal transduction of the growth hormone receptor.Mol Endocrinol,2003,17(5):967-975
    [66]Govers R, ten Broeke T, van Kerkhof P, et al.Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor.EBMO J,1999,18:28-36
    [67]Leung D W,Spencer S A,Cachianes GGrowth hormone receptor and serum binding protein:purification,cloning and expression. Nature,1987,330:537-543
    [68]邓小松.兔GHR基因第10外显子多态性及其与部分生产性状的关联研究.四川农业大学硕士论文,2008
    [69]Jenkins Z A,Henry H M,Sise J A,et al.Brief Notes:Follistation(FST), growth hormone receptor(GHR) and prolaction receptor (PRLR)genes map to the same region of sheep chromosome 16. Animal Genetics,2000,31:280-291
    [70]Moody D E,Pomp D,Barendse W,et al.Assignment of the growth hormone receptor gene to bovine chromosome 20 using linkage analysis and somatic cell mapping.Animal Genetics,1995,26:341-343
    [71]邓力等.生长激素受体的研究进展.动物学研究,2001,22(3):226-230
    [72]Kopchick J J,Andry J M.Growth hormone(GH),GH receptor,and signal transduction.Mol GenetMetab 2000,71:293-341
    [73]A.J.Lewis, T.J.Wester, D.G.Burrin,et al.Exogenous growth hormone induces somatotrophic gene expression in neonatal liver and skeletal muscle.American Journal of physiology,1999,278(4):838-844
    [74]T J Marcell; S M Harman; R J Urban; D D Metz; B D Rodgers; M R Blackman. Comparison of GH,IGF-I,and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men.Am J Physiol Endocrinol Metab,2001,281: 1159-1164
    [75]Ru-Qian Zhao,Xiao-Jing Yang,Qin-Fu Xu,et al.Expression of GHR and PGC-1 a in association with changes of MyHC isoform types in Longissimus muscle of Erhualian and LargeWhite pigs (Sus scrofa) during postnatal growth.Animal Science,2004,79:203-211
    [76]高萍,傅伟龙,朱晓彤等.蓝塘仔猪IGF-I水平与组织IGF-I、GHR基因的表达.畜牧兽医学报,2005,36(1),38-42
    [77]黄治国,谢庄.绵羊肌肉生长激素受体基因表达的发育性变化研究.农业科学与技术,2009,10(1):93-96
    [78]JOHN V.O'MAHONEY.Optimization of Experimental Variables Influencing Reporter Gene Expression in Hepatoma Cells Following Calcium Phosphate Transfection.DNAand Cell Biology.1994,13(12):1227-1232
    [79]Yun JC,Dae S Y,Jaie SC,et al. Analysis of restriction fragment length polymorphism in the bovine growth hormone gene related to growth performance and carcass quality of korean native cattle.Meat Science,1997,45(3):3405-3410
    [80]Moisio S,Elo K,Kantanen J,et al.Polymorphism within the 3'flanking region of the bovine growth hormone receptor gene.Anim Genet,1998,29:55-57
    [81]Aggrey SE,Yao J,Sabour MP,et al.Markers within the regulatory region of the growth hormone receptor gene and their association with milk-related traits in Holsteins. Journal of Heredity,1999,90(1):148-151
    [82]Hale C S, Herring W O, Shibuya H,et al.Decreased growth in Angus steers with a short TG-microsatellite allele in the PI promoter of the growth hormone receptor gene.J Anim SCI 2000,78:2099-2104
    [83]Blott S, Kim J, Moisio S,et al.Molecular dissection of a quantitative trait locus:a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition.Gene-tics,2003,163(1):253-266
    [84]Andrzej Maj,Jolanta Oprzadek,Edward Dymnicki,et al.Association of the polymorphism in the 5'-noncoding region of the bovine growth hormone receptor gene with meat production traits in Polish Black-and-White cattle.Meat Science, 2006,72(3):539-544
    [85]张春香,罗海玲,陈喻等.南江黄羊GHR基因5'-调控区多态与体重性状相关性研究.中国畜牧杂志,2007,43(15):4-7
    [86]马志杰,魏雅萍,钟金城等.藏绵羊GHR基因5’侧翼区序列特征分析.遗传, 2007,29(8):963-971
    [87]王利心.山羊GH、MSTN和GHR基因遗传变异及其与生长性状的相关分析.西北农林科技大学硕士论文,2008
    [88]李乔乐.波尔山羊GHR基因多态性研究.华中农业大学硕士论文,2009
    [89]张浩.甘肃肉羊新品种种群GH/GHR & Leptin遗传变异及其与体重的相关分析.甘肃农业大学硕士论文,2010
    [90]李聚才,张春珍,杨易等.宁夏肉牛杂交改良群体生长激素受体基因的多态性研究.中国畜牧兽医,2011,38(7):151-155
    [91]Wang Y,Price S.E.Cloning and characterization of the bovine class 1 and class 2 insulin-like growth factor-Ⅰ mRNAs.Domestic Animal Endocrinology,2003,25:315-328
    [92]Baxter R C.Inhibition of the insulin-like growth factor (IGF)-IGF-Binding protein interaction.Horm Re,2001,55:68-72
    [93]Peter Rotwein.Mini-Review structure, evolution, expression and regulation of insulin-like growth factor1 and 2.Growth Factors,1991,5:3-18
    [94]Akihiro S,Shigeori N.H-NMR assignment and secondary structure of human insulin-like growth factor-Ⅰ in solution.The Journal of Biological Chemistry,1992, 111:529-536
    [95]薛慧良.猪IGF-Ⅰ基因及MyoG基因分子遗传多态性的研究.山西农业大学博士论文,2004
    [96]Orita M,Iwahana H,et al.Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.ProcNatl Acad Sci,1989,86:2766-2770
    [97]Maes M, Underwood I E, Ketelsleger J M.Low serum somatomedin-c in protein deficiency relationship with changes inn liver somatogenic and lactogenic inding sites. Mol.Cell Endocri,1984b,37:301
    [98]Shoshana Yakar, Clifford J.Circulating levels of IGF-Ⅰ directly regulate bone growth and density.The Journal of Clinical Investigation,2002,110:771-778
    [99]J M Brameld,A Mostyn, J Dandrea,et al.Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle
    [100]Raluca Georgiana Mateescu. Effect of testosterone on IGF-Ⅰ, AR and myostatin gene expression in splenius and semitendinosus muscles in sheep.A Dissertation Presented to the Faculty of the Graduate School of Cornell University,2004
    [101]韦建福,刘丽,傅伟龙等.肌肽、谷胱甘肽对肉鸡生长及激素水平的影响.《中国生物化学与分子生物学会农业生物化学与分子生物学分会第六次学术交流会论文集》,2004
    [102]刘晨曦.肌肉生长抑制素(Myostatin)及其相关基因在绵羊肱二头肌发育中的表达分析.新疆农业大学硕士论文,2007
    [103]黄治国,谢庄.绵羊肌肉IGF-I基因表达的发育性变化研究.农业科学与技术,2009,10(2):68-72
    [104]顾以韧,张凯,李明洲等.猪背最长肌中胰岛素样生长因子(IGFs)系统基因的发育表达模式.遗传,2009,31(8):837-843
    [105]Casas-Carrillo E,Prill-Adams A,Price SG,et al.Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine.AnimGenet,1997Apr,28(2):88-93
    [106]方美英,刘红林,姜志华等.6个猪种胰岛素样生长因子-I (IGF-I)基因座位遗传多态性检测.畜牧与兽医,1999,31(1):12-13
    [107]王文君,任军,陈克飞等.胰岛素样生长因子-Ⅰ基因多态性与猪部分生长性能的关系.畜牧兽医学报,2002,33(4):336-339
    [108]M.Amills,N.Jimenez,D.Villalba,et al.Identification of Three Single Nucleotide Polymorphisms in the chicken Insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poultry Science,2003,82(10):1485-1493
    [109]薛慧良.猪IGF-I基因及MyoG基因分子遗传多态性的研究.山西农业大学博士论文,2004
    [110]李长春,李进,李奎等.藏鸡IGF-I基因的SNPs检测及与生长性状的关联分析.畜牧兽医学报,2005,36(11):1111-1116
    [111]沈华,王金玉.黄羽肉鸡IGF-I基因单核苷酸多态性与生长性状的相关研究.中国畜牧兽医.2006,33(10):58-60
    [112]肖书奇,张嘉保,李爽等.松辽黑猪IGF-I基因外显子4多态性及与部分生产性能的关系.中国畜牧兽医,2007,34(2):55-57
    [113]魏笑笑,王宝维,王雷等.琅琊鸡IGF-I基因多态性与肉用性的相关性.福建农林大学学报,2008,37(4):389-393
    [114]刘大林,王金玉,魏岳等.京海黄鸡IGF-I基因与生长和屠体性状的关联分析.中国畜牧杂志,2009,45(11):9-12
    [115]周明亮.绵羊IGFBP家族基因克隆和IGF系统基因的时空表达谱及IGF-I与体重性状的相关分析研究.四川农业大学博士论文,2009
    [116]McPherron AC,Lee SJ.Double muscling in cattle due to mutations in the myostatin gene.Proc Natl Acad Sci U S A,1997,94(23):12457-12461
    [117]McPherron AC,Lawler AM,Lee SJ.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member.Nature,1997,387(6628):83-90
    [118]Smith T P,Lopez Corrales NL,Kappes S M,et al.Myostatin maps to the interval containing the bovine mh locus.Mamm Genome,1997,8(10):742-744
    [119]Sonstegard T S,Rohrer G A,Smith T P.Myostatin maps to porcine chromosome 15 by linkage and physical analyses.Anim Genet,1998,29(1):19-22
    [120]Marcq F,et al.Investigating the role of myostatin in the deter minism of double muscling characterizing Belgian Texel sheep.Animal Genetics,1998,29(suppl.1):52
    [121]Sazanov M W,Ewald D,Buitkamp J,et al.A molecular marker for the chicken myostatin gene(GDF8)maps to 7p11.Anim Genet,1999,20(5):388-289
    [122]Gonzleza-Cadavid N F,Taylor W E,Yarasheski K,et al.Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle washing.P roc Natl Acad Sci USA,1998,95(25):14938-14943
    [123]Szabo G, Dallmann G, Muller G,et al.A deletion in the Myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice.Mamm Genome,1998,9(8):671-672
    [124]KR.Wagner MD, Alexandra C, McPherron,et al.Loss of myostatin attenuates severity of muscular dystrophy in mdx mice.Annals of neurology,2002,52(6):832-836
    [125]Gilson H, Schakman O, Combaret L,et al.Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy.Endocrinology,2007,148(1):452-460
    [126]Kambadur R,Sharma M,Smith T P,et al.Mutations in myostatin(GDF8) in double-muscled Belgian Blue and Piedmontese cattle.Genome Res.l997,7:910-916
    [127]Ji S,Losinski R L,Cornelius S G,Frank G R.Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation,Am.J. Physiol.1998, (275):1265-1273
    [128]白素英,刘娣,蒋国红等.抑肌素基因mRNA在猪肌肉组织表达差异的研究.畜牧兽医学报,2004,35(3),350-352
    [129]龙定彪.猪肌肉生长抑制素基因表达规律及其调控与肌肉生长量的关系研究.四川农业大学博士论文,2008
    [130]梁婧娴,陈志成,郑玉才等.藏系绵羊MSTN基因在不同年龄不同组织的表达定量研究.安徽农业科学,2011,12(4):608-612
    [131]Marcq F,Elsen JM,ElBarkouki S,et al.Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep.Anim Genet,1998,29:52
    [132]Saitbekova N,Gaillard C,Obexer-Ruff G,et al.Genetic diversity in Swiss goat breeds based on microsatellite analysis.Anim Genet.1999,30(l):36-41
    [133]Yang L,Zhao SH,Li K,et al.Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers.Anim Genet.1999,30(6):452-455
    [134]刘铮铸,李祥龙,巩元芳等.我国主要地方山羊品种MSTN基因的Mnll酶切多态性分析.河南农业科学,2006,8:1-4
    [135]孟详人,郭军,赵倩君等.11个绵羊品种MSTN基因非翻译区的变异.遗传,2008,20(12):1585-1590
    [136]程婷婷.山羊MSTN, IGFBP-3基因多态性及其与生长性能的关联性分析.四川农业大学硕士论文,2008
    [137]傅泽红,曹少先,钱勇等.8个绵山羊群体中肌肉生长抑制素基因DraI酶切多态性分析.江苏农业学报,2008,24(6):853-856
    [138]刘铮铸,李祥龙,巩元芳等.绵羊MSTN基因内含子2和外显子4部分序列的SNP检测和单倍型分析.中国畜牧杂志,2010,46(7):9-12
    [139]朱红刚,田兴贵,杨正梅等.贵州小香羊MSTN基因内含子2和外显子3的多态性.贵州农业科学,2011,39(1):169-172
    [140]刘桂芬,万发春,刘晓牧等.渤海黑牛MSTN基因多态性位点与体尺性状的关联性分析.华北农学报,2011,26(1):17-21
    [141]Sonstegard TS.Myostatin maps to porcine chromosome 15 by linkage and physical analyses.Anim Genet,1998,29(1):19-22
    [142]Davis R L,Pei-Feng cheng,Lassar A B,et al.The MyoD bingding domain contains a recognition code for muscle-specific gene activation.Cell,1990,60:733-746
    [143]piete J, Bessereau J, Huchel M,et al.Two adjacent MyoD-binding sites regulate expression of the Acetylcholine receptora-subunit Gene.Nature,1990,345:354-355
    [144]Ernst C W, Mendez E A, Robic A,et al.Myogenin(MYOG)physically maps to porcine chromosome 9q2.1-q2.6. Journal of Animal Science,1998,76(l):328
    [145]Bever J E,Fisher S R,Guerin G,et al.Mapping of eight human chromosome 1 Orthologs to cattle chromosomes 3 and 16.Mammalian Genome,1997, 8(7):533-536
    [146]Soumillion A,Erkens J H F,Lenstra J A,et al.Genetise variation in the porcine myogenin gene locus.Mammalian Genome,1997,8(8):564-568
    [147]Zipora,Reuven I A.2001.MyoD and Myogenin expression patterns in cultures of fetal and adult chicken myoblasts.Histochemistry Cytochemistry.49(4):455-462
    [148]仇雪梅,李宁,邓学梅等.影响动物肉质性状主要候选基因的研究进展.遗传,2002,24(5):571-574
    [149]Hasty P,Bradley A,Morris J H,et al.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene.Nature,1993,364:501-506
    [150]单立莉,张敏,苗志国等Myogenin mRNA丰度在金华猪和长白猪背最长肌中的表达.中国兽医学报,2009,29(3):374-388
    [151]M.F.tePas,F.J.Verburg,C.L.Gerritsen,et al.Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate.Journal of Animal Science,2000,78(1):69-77
    [152]高勤学,刘梅,杨月琴等.猪MyoG基因的PCR-RFLP分型及其与生长性能和肌纤维数目的相关性分析.中国兽医学报,2005,25(3):330-332
    [153]薛慧良,周忠孝,BoWen猪MyoG基因3'端PCR-SSCP遗传多态性及其遗传效应.生态学杂志,2007,26(4):505-508
    [154]蔡兆伟,罗玉衡,张金枝等.猪MyoG基因的多态性及其对岔路黑猪胴体和肉质的影响研究.家畜生态学报,2008,29(3):11-14
    [155]刘铮铸,张文香,张传生等.山羊MyoG基因Csp6I酶切多态性分析.江西农业大学学报,2009,31(2):317-321
    [156]赵青,钟土木,徐宁迎等.金华猪MyoG基因多态性与部分生长性能的关系.华南农业大学学报,2010,31(2):121-124
    [157]薛梅,昝林森,王洪宝等.6个黄牛群体MyoG基因单核苷酸多态性及其与体尺性状的相关性.西北农林科技大学学报,2011,39(7):35-42
    [158]柳玲.相对定量的2-△△CT法分析HLA-G基因在子宫内膜异位症中的表达.中国优生与遗传杂志,2007,15(9):25-26
    [159]Lee YL, Helman L, Hoffman T,et al.Dlkl,pG2 and Pref-1 mRNAs encode similar proteins belonging to the EGF-like superfamily.Identification of polymorphic variants of this RNA.Biochim Biophys Acta,1995,1261:223-232
    [160]Mei B, Zhao L,Chen L,et al.Only the large soluble form of preadipocyte factor-1(Pref-1),but not small soluble and membrane forms,inhibits adipocyte differentiation:role of alternative splicing.Biochem J,2002,254:137-144
    [161]Ruiz-Hidalgo MJ, Gubina E,Tull L,et al.Dlk modulates mitogen-activated protein kinase signaling to allow or prevent differentiation.Exp Cell Res,2002,274:178-188
    [162]MATHEWS LS,ENBERG B,NORSTEDT GRegulation of rat growth hormone receptor gene expression.J Biol Chem,1989,264(17):9905-9910
    [163JYMER S I,HERINGTON A C.Developmental expression of the growth hormone receptor gene in rabbit tissues.Mol Cell Endocrinol,1992,83(1):39-49
    [164]KLEMPT M,BINGHAM B,BREIER B H,et al.Tissue distribution and ontogeny of growth hormone receptor messenger ribonucleic acid and ligand binding to hepatic tissue in the midgestation sheep fetus.Endocrinology,1993, 132(3):1071-1077
    [165]Schnoebelen-Combes S,Louveau I,Postel-Vinay MC,et al.Ontogeny of GH receptor and GH-binding protein in the pig.J Endocrinol.1996,148(2):249-255
    [166]胥清富.生长激素作用的靶基因在猪肝脏和肌肉上的表达及调控.南京农业大学博士论文,2002
    [167]Gerrard DE,Okamura CS,Ranalletta MA,et al.Developmental expression and location of IGF-I and IGF-II mRNA and protein in skeletal muscle.J Anim Sci.1998,76(4):1004-1011
    [168]Gotz W,Dittjen O,Wicke M,et al.Immunohistochemical detection of components of the insulin-like growth factor system during skeletal muscle growth in the pig. Anat Histol.Embryol,2001,30(1):49-56
    [169]Wehling M,Cai B and Tidball J G.Modulation of myostatin expression during modified muscle use.FASEB J,200,14:103-110
    [170]Whittemore L A, Song K,Li X,et al.Inhibition of myostatin in adult mice increases skeletal muscle mass and strength.Biochemical and Biophysical Research Communications,2003,300:965-971
    [171]Nueda ML, Ramirez JJG, Laborda J,et al.Dlkl specifically interacts with IGFBP1 to modulate adipogenesis of 3T3-L1 cells. J Mol.Biol.2008. In press
    [172]Giustina A, Mazziotti G & Canalis E. Growth hormone, insulin-like growth factors, and the skeleton.Endocrine Reviews,2008,29:535-559
    [173]Laviola L, Natalicchio A & Giorgino F.The IGF-I signaling pathway.Current Pharmaceutical Design,2007,13:663-669.
    [174]Rebbapragada A,Benchabane H,Wrana J L.Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis.Molecular Cell Biology,2003,23(20):7230-7242
    [175]Salehian B, Mahabadi V, Bilas J,et al.The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression.Metabolism,2006,55:1239-1247
    [176]Marcell TJ, Harman SM, Urban RJ, Metz DD, Rodgers BD & Blackman MR.
    Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. American Journal of Physiology. Endocrinology and Metabolism,2001,281:E1159-E1164
    [177]J.M.Oldham, J.A.K.Martyn, M.Sharma,et al.Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses.Am J physiol Physiol Regulatory Integrative Comp Physiol,2001, 280:R1488-R1493
    [178]李志农.中国养羊学.农业出版社,1993
    [179]农业部全国畜牧兽医总站种畜禽管理处等.家畜家禽新品种(种群)资源调查技术规范提纲,1996
    [180]F.Colomer-Rocher等.山羊胴体的评价,分割和组织分离标准方法与程序.中国养羊,1988(4):44-4523
    [181]沈元新.金华猪及其杂种肌肉组织学特性与肉质的关系.浙江农业大学学报,1984,10(3):265-271
    [182]王业鸣.江西玉山猪肌肉组织学特性与肉质的关系.浙江农业大学雪豹哦,1994,16(3):284-287
    [183]曾勇庆,孙玉民,张万福等.莱芜猪肌肉组织学特性与肉质关系的研究.畜牧兽医学报,1998,29(6):486-492
    [184]杨博辉,姚军,王敏强等.大通牦牛肌肉纤维组织学特性研究.中国草食动物,2001,3(5):34-35
    [185]孙伟,程华平,马月辉等.湖羊背最长肌组织学特性分析及其与陶赛特羊的初步比较.中国畜牧杂志,2011,47(11):12-14
    [186]Lefaucheur L, Ecolan P, Plantard L, et al. New insights into muscle fiber types in the pig. J Histochem Cytochem,2002,50(5):719-730
    [187]Pellegrino M A, Canepari M, Rossi R, et al. Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse,rat, rabbit and human muscles. J Physiol,2003,546:677—689
    [188]Immonen K, Ruusunen M, Hissa K, et al. Bovine muscle glycogen concentration in relation to finishing diet, slaughter and ultimate pH. Meat Sci,2000,55:25—31
    [189]Maltin C A, Warkup C C, Mattewa K R, et al. Pig muscle fibre characteristics as source of variation in eating quality. Meat Sci,1997,47:237—248
    [190]Maltin C A, Sinclair K D, Warriss P D, et al. The effects of age at slaughter, genotype and finishing system on the biochemical properties,
    muscle fibre type characteristics and eating quality of bull beef from suckled calves. Anim Sci,1998,66:341—348
    [191]Larzul C, Lefaucheur L, Ecolan P, et al. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to
    growth, carcass, and meat quality traits in Large White pigs. J Anim Sci,1997,75:3126 —3137
    [192]Tang GsiRNA and miRNA:an insight into RISCs.Trends in Biochemical Sciences,2005,30(2):106-114
    [193]Shinichi Abe,Kanzo Nonami,Osamu Iwanuma,et al.HGF and IGF-I is Present during the Developmental Process of Murine Masseter Muscle.Journal of Hard Tissue Biology,2009,18(1):1-6
    [194]Rios R,Carneiro I,Arce V M,et al.Myostatin is an inhibitor of myogenic differentiation.Am J Physiol Cell Physiol,2002,282:C993-C999
    [195]Hughes S M,ChiM M,Lowry O H,et al.Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice.J CellBiol,1999,145:633-642
    [196]Ekmark M,Gronevik E,Schjerling P,et al.Myogenin induces higher oxidative capacity in pre-existing mouse muscle fibres after somatic DNA transfer.J Physiol,2003,548:259-269
    [197]Carlson C J,Booth F W,Gordon S E.Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading.Am J Physiol,1999,277:601-606
    [198]吴丹,胡兰MSTN RNAi双元表达载体对成肌细胞增殖及分化的影响.沈阳农业大学学报,2009,40(1):38-42
    [l]Reverter A, Chan EK:Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 2008, 24(21):2491-2497.
    [2]Hudson NJ, Reverter A, Dalrymple BP:A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput Biol 2009, 5(5):e1000382.
    [3]Hudson NJ, Reverter A, Wang Y, Greenwood PL, Dalrymple BP:Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks. PLoS One 2009, 4(10):e7249.
    [4]Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP:Regulatory impact factors:unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 2010,26(7):896-904.
    [5]Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, Barendse W, Green RD, Georges M:Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proc NatlAcadSci USA 1994,91(8):3019-3023.
    [6]Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TP: Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res 2002, 12(10):1496-1506.
    [7]Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G et al: Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts:DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res 2001, 11(5):850-862.
    [8]Vuocolo T, Byrne K, White J, McWilliam S, Reverter A, Cockett NE, Tellam RL:Identification of a gene network contributing to hypertrophy in callipyge skeletal muscle. Physiol Genomics 2007,28(3):253-272.
    [9]Kollias HD, McDermott JC:Transforming growth factor-beta and myostatin signaling in skeletal muscle. JAppl Physiol 2008,104(3):579-587.
    [10]Steelman CA, Recknor JC, Nettleton D, Reecy JM:Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEBJ2006,20(3):580-582.
    [11]Mariasegaram M, Reverter A, Barris W, Lehnert SA, Dalrymple B, Prayaga K:Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle. BMC Genomics 2010,11 (1):370.
    [12]Watson-Haigh NS, Kadarmideen HN, Reverter A:PCIT:an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics 2010,26(3):411-413.
    [13]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T:Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res 2003,13(11):2498-2504.
    [14]Bader GD, Hogue CW:An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003,4:2.
    [15]Maere S, Heymans K, Kuiper M:BiNGO:a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005,21(16):3448-3449.
    [16]Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T: MatInspector and beyond:promoter analysis based on transcription factor binding sites. Bioinformatics 2005,21(13):2933-2942.
    [17]Caraux G, Pinloche S:PermutMatrix:a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 2005,21(7):1280-1281.
    [18]AmiGO website [http://amigo.geneontology.org/cgi-bin/amigo/search.cgi?]
    [19]Huang da W, Sherman BT, Lempicki RA:Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009,4(1):44-57.
    [20]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Aead Sci USA 2005, 102(43):15545-15550.
    [21]GSEAMSigDB [http://www.broadinstitute.org/gsea/msigdb/annotate.isp]
    [22]GOrilla web page [http://cbl-gorilla.cs.technion.ac.il/]
    [23]Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z:GOrilla:a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009,10:48.
    [24]Ryu SW, Chae SK, Lee KJ, Kim E:Identification and characterization of human Fas associated factor 1, hFAFl. Biochem Biophys Res Commun 1999,262(2):388-394.
    [25]Besche HC, Haas W, Gygi SP, Goldberg AL:Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 2009,48(11):2538-2549.
    [26]Schuberth C, Buchberger A:UBX domain proteins:major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci 2008,65(15):2360-2371.
    [27]Weihl CC, Pestronk A, Kimonis VE:Valosin-containing protein disease:inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord 2009,19(5):308-315.
    [28]Otto A, Macharia R, Matsakas A, Valasek P, Mankoo BS, Patel K:A hypoplastic model of skeletal muscle development displaying reduced foetal myoblast cell numbers, increased oxidative myofibres and improved specific tension capacity. Dev Biol 2010,343(1-2):51-62.
    [29]Kato JY, Yoneda-Kato N:Mammalian COP9 signalosome. Genes Cells 2009, 14(11):1209-1225.
    [30]Liu X, Pan Z, Zhang L, Sun Q, Wan J, Tian C, Xing G, Yang J, Jiang J, He F:JAB1 accelerates mitochondrial apoptosis by interaction with proapoptotic BclGs. Cell Signal 2008, 20(1):230-240.
    [31]de Souza-Pinto NC, Mason PA, Hashiguchi K, Weissman L, Tian J, Guay D, Lebel M, Stevnsner TV, Rasmussen LJ, Bohr VA:Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair (Amst) 2009,8(6):704-719.
    [32]Coleman ML, Ratcliffe PJ:Signalling cross talk of the HIF system:involvement of the FIH protein. Curr Pharm Des 2009,15(33):3904-3907.
    [33]Tormos KV, Chandel NS:Inter-connection between mitochondria and HIFs. J Cell Mol Med 2010,14(4):795-804.
    [34]Perry RP:The architecture of mammalian ribosomal protein promoters. BMC Evol Biol 2005,5(1):15.
    [35]Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, Zhang L, Wu J, Edmonds T, Jambor C et al COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. Am J Pathol2009,174(4):1415-1425.
    [36]Pan X, Li H, Zhang P, Jin B, Man J, Tian L, Su G, Zhao J, Li W, Liu H et al Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem Biophys Res Commun 2006, 344(3):727-734.
    [37]Bheda A, Yue W, Gullapalli A, Whitehurst C, Liu R, Pagano JS, Shackelford J:Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS One 2009,4(6):e5955.
    [38]Guo J, Kleeff J, Zhao Y, Li J, Giese T, Esposito I, Buchler MW, Korc M, Friess H:Yes-associated protein (YAP65) in relation to Smad7 expression in human pancreatic ductal adenocarcinoma. Int JMol Med 2006,17(5):761-767.
    [39]Subramaniam M, Harris SA, Oursler MJ, Rasmussen K, Riggs BL, Spelsberg TC:Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 1995,23(23):4907-4912.
    [40]Johnsen SA, Subramaniam M, Janknecht R, Spelsberg TC:TGFbeta inducible early gene enhances TGFbeta/Smad-dependent transcriptional responses. Oncogene 2002, 21(37):5783-5790.
    [41]Long J, Wang G, Matsuura I, He D, Liu F:Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci USA 2004,101(l):99-104.
    [42]Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM:Functional proteomics mapping of a human signaling pathway. Genome Res 2004,14(7):1324-1332.
    [43]Voss AK, Thomas T:MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 2009,31 (10):1050-1061.
    [44]Zhao B, Li L, Lei Q, Guan KL:The Hippo-YAP pathway in organ size control and tumorigenesis:an updated version. Genes Dev 2010,24(9):862-874.
    [45]Watt KI, Judson R, Medlow P, Reid K, Kurth TB, Burniston JG, Ratkevicius A, De Bari C, Wackerhage H:Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun 2010,393(4):619-624.
    [46]Bei M, Maas R:FGFs and BMP4 induce both Msxl-independent and Msxl-dependent signaling pathways in early tooth development. Development 1998,125(21):4325-4333.
    [47]Thillainadesan G, Isovic M, Loney E, Andrews J, Tini M, Torchia J:Genome analysis identifies the pl5ink4b tumor suppressor as a direct target of the ZNF217/CoREST complex. Mol Cell Biol 2008,28(19):6066-6077.
    [48]Andreucci JJ, Grant D, Cox DM, Tomc LK, Prywes R, Goldhamer DJ, Rodrigues N, Bedard PA, McDermott JC:Composition and function of AP-1 transcription complexes during muscle cell differentiation. J Biol Chem 2002,277(19):16426-16432.
    [49]Greenwood PL, Davis JJ, Gaunt GM, Ferrier GR:Influences on the loin and cellular characteristics of the m-longissimus lumborum of Australian Poll Dorset-sired lambs. Australian Journal of Agricultural Research 2006,57(1):1-12.
    [50]Deveaux V, Cassar-Malek I, Picard B:Comparison of contractile characteristics of muscle from Holstein and double-muscled Belgian Blue foetuses. Comp Biochem Physiol A Mol Integr Physiol 2001,131(1):21-29.
    [51]Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A, Mauviel A: Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 2002,21(32):4879-4884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700