三维人体运动分析与动作识别方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着运动捕获技术的成熟和推广,高效、快捷的获取大量基于三维的运动数据集已经成为现实。由于三维运动捕获数据较好地保持了运动细节,并真实地记录了运动轨迹,数据精度高,已被广泛应用在计算机动画、影视制作、数字娱乐、体育仿真、医学理疗等领域。在此背景下,基于运动捕获数据的人体运动分析已经成为近年来图形学领域的一大热点。其中,实现对于三维人体运动数据的关键帧提取、自动识别和分类是人体运动分析的重要研究内容,是实现对于运动捕获数据进行有效管理与重用的重要前提和基础。
     关键帧提取以原始三维运动捕获数据为基础,提取出最能表示运动序列的语义信息的若干关键姿态,是数据压缩、降维、特征提取与表示的重要方法和手段,在关键帧动画创作、人体运动分析与重用等领域已得到了广泛应用。人体运动识别通过分析提取人体运动特征参数,实现自动分析和理解人体各类运动和行为。运动识别技术在高级人机交互、康复工程、体感游戏控制、基于内容的检索方面具有广泛的应用前景和极大的经济价值与社会价值。本文基于捕获的三维人体运动数据,在运动数据的关键帧提取、动作识别与运动分割以及带拒识能力的连续动作识别三个方面展开工作,具体为:
     (1)运动数据的关键帧提取方法研究。将影响关键帧提取效果的重建能力和压缩率两个重要因素作为优化目标,提出了两种关键帧提取方法。第一种方法将关键帧提取划分为帧预选和基于重建误差优化的精选2个阶段,首先提取运动序列的“极限姿态”作为候选关键帧,在第二个阶段,定义帧消减误差作为关键帧重要性的度量标准,将重建误差作为关键帧提取过程中的优化目标,并且同时考虑压缩率目标,基于帧消减方法提取满足重建误差要求或者压缩率要求的关键帧序列。这一方法的主要特点和优点是可以直接对重建误差或压缩率目标要求进行设置,设置方式简单直观。第二种方法考虑重建误差和压缩率两个目标的竞争性和矛盾性,将关键帧提取问题转换为带约束的多目标优化问题,提出一种基于Pareto多目标遗传算法的关键帧提取方法。这一方法的主要特点和优点是不需要用户指定任何参数即可得到一组具有Pareto最优性的候选关键帧序列集合。实验结果表明了本文方法的有效性。
     (2)基于概率主成分分析的动作识别与分割方法研究。属于同一类型的人体运动数据应具有相同内在维度和相似结构,形成独立类别,因此对每个运动类型可以采用一个统一的分布模型来表示。提出采用概率主成分分析方法建立各类动作的高斯概率分布模型,并基于期望最大法学习得到模型参数,然后根据各个已知分类的高斯模型,基于最小错误率贝叶斯决策理论定义分类决策规则,并实现了动作分类算法。利用基于概率主成分分析方法建立的模型能够对运动变化信息建模的特点,本文扩展动作分类算法,提出了针对包含多个动作的长运动序列的在线识别和自动分割算法。实验结果表明了本文方法的有效性。
     (3)基于自组织增长运动图的动作识别及拒识方法研究。针对存在非训练类型动作样本的长运动序列识别问题,提出了结合支持向量机方法和自组织增长运动图方法的带拒识能力的动作识别系统框架。提出了将支持向量机用于运动数据在线识别的方法,分析了不能直接简单采用支持向量机的边缘信息进行拒识的现象和原因。分析了自组织特征图用于描述样本数据的结构分布的能力;针对传统自组织特征图学习方法缺少自适应能力的局限性,提出了自组织增长运动图学习算法,用于根据不同运动类型的内在复杂性学习自适应结构和大小的运动图;然后基于学习的运动图定义了拒识规则;最后基于自组织增长运动图上提取的关键模式集进行分段分类结果验证,以提高识别精度。由于本文的方法结合了支持向量机和运动图两者的优势,因此不仅具有良好的鉴别区分已知分类样本的能力,也具备有效拒识属于未知分类样本的能力。实验结果表明了本文方法的有效性。
As motion capture technology matures, obtaining massive3D motion dataset with high efficiency and effectiveness has been possible. Motion data have been widely applied to computer animation, movie production, digital entertainment, PE simulation and medical therapy as it could maintain the motion details accurately and record the real motion trace precisely. Therefore, human motion analysis based on captured data has become a popular issue. In addition, the keyframe extraction from3D human motion data, automatic recognition and classification are the most significant parts in human motion analysis and important bases and foundations for efficient management and reuse of the captured motion data.
     Based on the raw3D motion capture data, keyframe extraction is for the purpose of extracting the key postures which are considered as the abstract representation of the raw motion sequence. As one of the most important methods and strategies in data compression, data reduction, feature extraction and data representation, keyframe extraction technology has been universally applied to animation creation, human motion analysis and reuse, etc. Human motion recognition is aim to analyze and understand all kinds of human motions and behaviors by extracting and analyzing the parameters related to human motion features. It is universally admitted that motion recognition technology has a promising future as well as huge economical value and social value in advanced human-machine interface, recovery project, motion-sensing controller, and content-based image retrieval. This dissertation mainly focuses on three aspects:the keyframe extraction from motion data, postures recognition and motion segmentation, continuing postures recognition with rejection ability. Following is the details:
     (1) Research on the keyframe extraction from motion data. Two keyframe extraction methods are proposed in this dissertation by optimizing the reconstruction ability and compression rate since they are two significant factors during the keyframe extraction. In the first method, the keyframe extraction experiences two phrases:pre-selection phase and refinement phase. During the first phase, the'extreme postures'are extracted from the motion sequence as the candidate keyframes. In the second phase, the importance of the keyframe is measured by decimated error, and then we optimize the reconstruction error as well as the compression rate. As a consequence, the keyframes satisfying the demands of reconstruction ability or compression rate are extracted. The advantage of this method is that reconstruction error and compression rate can be set directly in a simple way. Concerning the competitiveness and contradictory between the reconstruction error and compression, the keyframe extraction is modeled as a multi-objective optimization problem with constraints in the second method. Consequently, a keyframe extraction method based on Pareto multi-objectives Genetic Algorithm is presented, in which a set of candidate keyframes with Pareto optimality can be obtained without any given parameters related to the threshold, which is the major advantage of this method. The experiment results demonstrate the efficiency of it.
     (2) Research on posture recognition and segmentation based on Probabilistic Principle Component Analysis (PPCA). Motion dataset in the same class could be represented by a uniform distribution model for the same inner dimension and similar structure of the human motion data. For each motion type, Probabilistic Principle Component Analysis (PPCA) is adopted to build its Gaussian Distribution Model, whose parameters are learnt by Expectation-Maximization (EM). With these learned models, the decision rule can be found and a polychotomizer based on the minimum error Bayes decision theory to recognize single actions is easily obtained with discriminant functions determined by these models. Then an algorithm is presented to recognize the input motion based on the polychotomizer. By extending this algorithm, an online recognition and automatic segmentation algorithm for long motion sequence including different actions is proposed since PPCA has the ability of modeling for changing information from one action to the next. The experiment results provide strong evidence for the validity of the proposed method.
     (3) Research on motion recognition and rejection method based on self-organizing incremental motion map. In terms of the long motion sequence involving motion types which do not appeared in training dataset, we present a motion recognition system with the ability of rejection recognition which combines Support Vector Machine (SVM) and self-organizing incremental motion map. We apply SVM to online recognition for motion data, and give the reasons why the margin information of SVM could not be applied to rejection recognition directly and simply. Meanwhile, we analyze how self-organizing map (SOM) describe the distribution of the samples. In order to improve the adaptive ability of the traditional learning method base on SOM, a novel self-organizing incremental motion map learning algorithm is put forward, in which a map with adaptive structure and size is automatically adapted according to the complexity of different motion type. And then the rejection recognition rule is acquired according to the learned motion map and used for rejection. In the last step, the key patterns learned from the same motion map by Genetic Algorithm are used for the final confirmation if the result segments are really what their types claim. Combining the advantages both of SVM and motion map, the proposed method not only can identify motion types in the training dataset, but also can reject the motion types which are out of the training dataset. The experiment results provide strong evidence for the validity of the proposed method.
引文
[1]Mitra S, Acharya T. Gesture recognition:A survey [J]. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews,2007,37(3): 311-324.
    [2]Moeslund TB, Granum E. A survey of computer vision-based human motion capture[J]. Computer Vision and Image Understanding,2001,81(3):231-268.
    [3]Lakany H, Haycs G, Hazlewood M, et al. Human walking:Tracking and analysis[C]. Proceedings IEEE Colloquium on Motion Analysis and Tracking, Savoy Place, London,1999,5/1-5/14.
    [4]Kohle M, Merkl D and Kastner J. Clinical gait analysisby neural networks: issuesand experiences[C]. Proceedings IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia,1997,138-143.
    [5]D. Meyer, J. Denzler, H. Niemann. Model Based Extraction of Articulated Objects in Image Sequences for Gait Analysis[C]. Proceedings IEEE International Conference on Image Processing, Santa Barbara, California:1997, 78-81.
    [6]Lin Xueyin, Zhang Xiaoping, Ren Haibing. Hand shape extraction and understanding by virtue of multiple cues fusion technology[C]. Proceedings of the Third international Conference on Multimodal Interface, Beijing, China, 2000,103-110.
    [7]Cucchiara R, Vezzani R. Assessing temporal coherence for posture classifiction with large occlusions. Proceedings of the Workshop on Motion and Video Computing, Breckenridge, Colorado,2005,25-141.
    [8]Zhou Xiaoxu, Huang Xiangsheng, Xu Bin, et al. Real-time facial expression recognition based on boosted embedded Hidden Markov Model [C]. IEEE International Conference on Image Processing. Proceedings of the Third Internal Conference on Image and Graphics,2004,290-293.
    [9]苏菡,黄凤岗,洪文.一种基于不太分析的身份识别方法[J].系统仿真学报,2006,18(5):1292-1296.
    [10]Ahmad M, Lee S. Human action recognition using multi-view image sequence features[C]. Proceedings of the International Conference on Automatic Face and Gesture Recognition, Southampton, UK,2006,523-528.
    [11]沈军行.运动编辑与合成技术研究:[D].杭州:浙江大学,2004.
    [12]CMU Graphics Lab Motion Capture Database [OL]. Available:http://mocap.cs. cmu.edu
    [13]Motion Capture Database HDM05[OL]. Available:http://www.mpi-inf.mpg.de /resources/HDM05
    [14]Animazoo[OL]. Available:http://www.animazoo.com/
    [15]Dalal N. B Triggs. Histograms of oriented gradients for huaman detection[C]. Proceedings of the IEEE Computer Vision and Pattern Recognition,2005, 886-893.
    [16]Codamotion [OL]. Available:http://www.codamotion.com/
    [17]Optotrak [OL]. Available:http://www.ndigital.com/lifesciences/certus-motioncapturesystem. php
    [18]Xsens Moven [OL]. Available:http://www.xsens.com/
    [19]3dsuit [OL]. Available:http://www.3dsuit.com/en/
    [20]IGS-190-M [OL]. Available:http://wwww.animazoo.com/index.php/igs-190-m
    [21]Foxlin E, M Harrington. Wear Track:A self-referenced head and hand tracker for wearable computers and portable VR[C]. The Fourth International Symposium on Wearable Computers,2002:155-162.
    [22]Vicon [OL]. Available:http://www.vicon.com/
    [23]Visuleyez [OL]. Available:http://www.ptiphoenix.com/
    [24]Shape Tape [OL]. Available:http://www. measurand.com/products/ShapeTape. html
    [25]Raptor [OL]. Available:http://www.motionanalysis.com/
    [26]Kinect [OL]. Available:http://www.microsoft.com/en-us/kinectforwindows/
    [27]Muendermann L, Corazza S, Andriacchi T. Markerless Motion Capture for Biomechanical Applications[M]//Bodo Rosenhahn, Reinhard Klette, Dimitris Metaxas. Human Motion:Understanding, Modelling, Capture and Animation. Springer Netherlands,2008:377-398.
    [28]Jeremie Allard, Clement Menier, Bruno Raffn, et al. Grimage:Markerless 3D Interactions[C]. Proceding of SIGGRAPH 2007 emerging technologies, ACM New York,2007:9.
    [29]Organic Motion [OL]. Available:http://www.organicmotion.com/
    [30]Animakit Studios [OL]. Available:http://animakitstudios.com/
    [31]Jehee Lee. Representing Rotations and Orientations in Geometric Computing [J]. IEEE Computer Graphics and Applications bridges the theory and practice of computer graphics,2008,28(2):75-83.
    [32]Dam E B, Koch M, Lillholm M. Quaternions, interpolation and animation[R]. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen,1998.
    [33]Erik B. Dam, Martin Koch, Martin Lillholm. Quaternions, Interpolation and Animation [M]. Datalogisk Institut, K(?)benhavns Universitet,1998.
    [34]金小刚,彭群生.四元数及其在计算机动画里的应用[J].计算机辅助设计与图形学学报,1994,6(3):174-180.
    [35]Muller M, Roder T, Clausen M. Efficient content-based retrieval of motion capture data[J], ACM Transactions on Graphics,2005,24 (3):677-685.
    [36]Muller M, Roder T. Motion templates for automatic classification and retrieval of motion capture data[C]. Proceding of Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Switzerland:Eurographics Association Aire-la-Ville,2006:137-146.
    [37]Li Yin. Effcient Motion Search in Large Motion Capture Databases[J]. Advances in Visual Computing, Lecture Notes in Computer Science.2006,4291:151-160.
    [38]杨跃东,王莉莉,郝爱民,等.基于几何特征的人体运动捕获数据分割方法[J].系统仿真学报,2007,19(10).
    [39]向坚,朱红丽.基于三维特征提取的人体运动数据分析和检索[J].计算机应用,2008,28(5):1344-1316.
    [40]Meinard Miiller, Andreas Baak, Hans-Peter Seidel. Efficient and Robust Annotation of Motion Capture Data[C]. Proceding of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,2009:17-26.
    [41]杨涛,肖俊,吴飞等.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11),1691-1697.
    [42]李淳芃,王兆其,夏时洪.人体运动的函数数据分析与合成[J].软件学报,2009,20(6):1664-1672.
    [43]M P Murray. Gait as a Total Pattern of Movement[J]. American Journal of Physical Medicine,1967 February,46 (1):290-333.
    [44]韩鸿哲,李彬,王志良,刘冀伟.基于傅立叶描述子的步态识别[J].计算机工程,2005,31(2):48-162.
    [45]Y Zhu, M Drangova, N J Pelc. Fourier Tracking of Myocardial Motion Using Cine-Pc Data[J]. Magnetic Resonance in Medicine,1996,35 (4):471-80.
    [46]Forbes K, Fiume E. An Efficient Search Algorithm for Motion Data Using Weighted PCA[C]. Proceding of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,2005:67-76.
    [47]Xiang J, Zhu H. Morton. Ensemble HMM Learning for Motion Retrieval with Non-linear PC A Dimensionality Reduction[C]. Proceedings of Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing,2007:604-607.
    [48]向坚.基于三维捕获数据的人体运动分析关键技术研究[D].杭州:浙江大学,2007.
    [49]S Manabe, T Hatanaka, K Uosaki, et al. Training Hidden Markov Model Structure with Genetic Algorithm for Human Motion Pattern Classification[C]. Proceedings of SICE-ICASE International Joint Conference,2006:618-622.
    [50]T Pfau, M Ferrari, K Parsons, et al. A hidden Markov model based stride segmentation technique applied to equine inertial sensor trunk movement data[J]. J. Biomech.,2008,41(1):216-220.
    [51]Guenterberg E, Yang A Y, Ghasemzadeh H, et al. A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors[J]. IEEE Transactions on Information Technology in Biomedicine,2009,13(6):1019-1030.
    [52]Tim van Kasteren, Gwenn Englebienne, Ben J.A. Krose. An activity monitoring system for elderly care using generative and discriminative models [J]. Personal and Ubiquitous Computing 2010,14(6):489-498.
    [53]柴桦,邹北骥.基于条件随机场的连续运动识别技术[J].计算机工程和科学,2009,31(5):53-56.
    [54]T Zhao, T Wang, H-Y Shum. Learning a Highly Structured Motion for 3d Human Tracking[C]. Proceeding of the 5th Asian Conference on Computer Vision, Melbourne Australia,2002:144-149.
    [55]Jack M Wang, David J Fleet, Aaron Hertzmann. Gaussian Process Dynamical Models for Human Motion[J]. IEEE Transactions on Pattern analysis and Machine Intelligence,2008,30(2):283-298.
    [56]L Raskin, M Rudzsky, Rivlin. Tracking and classifying of human motions with gaussian process annealed particle filter[C]. Proceedings of 8th Asian Conference on Computer Vision, Tokyo, Japan,2007,1:442-451.
    [57]Hang Zhou, Liang Wang, David Suter. Human Motion Recognition using Gaussian Processes Classification[C]. Proceedings of the 19th International Conference on Pattern Recognition,2008:1-4.
    [58]Hang Zhou, Liang Wang,David Suter. Human action recognition by feature-reduced Gaussian process classification[J]. Pattern Recognition Letters, 2009,30(12):1059-1066.
    [59]Meinard Muller, Tido Roder, Michael Clausen. Efficient Content-Based Retrieval of Motion Capture Data[C]. Proceedings of ACM SIGGRAPH,2005: 677-685.
    [60]高岩.基于内容的运动检索与运动合成[D].上海:上海交通大学,2006.
    [61]Cecily Dell. A Primer for Movement Description:Using Effort-Shape and Supplementary Concepts [M]. Dance Notation Bureau, Center for Movement Research and Analysis, Bureau Press, New York,1977.
    [62]Carol-Lynne Moore, Kaoru Yamamoto. Beyond Words:Movement Observation and Analysis[M]. Gordon and Breach Science Publishers, New York,1988.
    [63]M Costa, L Zhao, D M Chi, N L Badler. The emote model for effort and shape[C]. In Proceedings of SICGRAPH,2000:173-182.
    [64]T Yu, X Shen, Q Li, W Geng. Motion Retrieval Based Off Movement Notation Language [J]. Computer Animation and Virtual Worlds,2005,16:273-282.
    [65]Chiu C, Chao S, Wu M, et al. Content-based retrieval for human motion data[J]. Journal of Visual Communication and Image Representation,2004,15(3): 446-466.
    [66]Sakamoto Y, Kuriyama S, Kaneko T. Motion Map:Image-based Retrieval and Segmentation of Motion Data Symposium on Computer animation[C]. Proceeding of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,2004:259-266.
    [67]Wu S, Xia S, Wang Z, et al. Efficient motion data indexing and retrieval with local similarity measure of motion strings[J]. The Visual Computer,2009, 25(5-7):499-508.
    [68]L Kovar, M Gleicher, F Pighin. Motion graphs[J]. ACM Trans on Graphics,2002, 21(3):473-482.
    [69]O Arikan, D A Forsyth. Interactive motion generation from examples[J]. ACM Trans on Graphics,2002,21(3):483-490.
    [70]F Liu, Y zhang, F Wu, Y Pan.3D motion retrieval with motion index tree[J]. Computer Vision and Image Understanding,2003,92(2-3):265-284.
    [71]Jehee Lee, Jinxiang Chai, Paul S A Reitsma, et al. Interactive conrol of avatars animated with human motion data[C]. Proceedings of SIGGRAPH 2002, San Antonio, Texas,2002:491-500.
    [72]赵国英,李振波,邓宇,等.基于检索的人体运动识别和模拟[J].计算机研究与发展,2006,43(2):368-374.
    [73]J Yamato, J Ohya, K Ishii. Recognizing Human Action in Time-Sequential Images using Hidden Markov Model [C]. Proceedings of IEEE Computer Society Conference on In Computer Vision and Pattern Recognition,1992: 379-385.
    [74]Xiang Jian, Ye Lv, Zhu Hong-li.3D Human Motion Recognition Method Based on Ensemble Learning in Subspace[J]. Journal of Image and Graphics,2008, 13(10):2003-2006.
    [75]Fengjun Lv, Ramakant Nevatia. Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class Adaboost[C]. Proceedings of ECCV 2006, Graz, Austria,2006:359-372.
    [76]Qiong Zhao, Lihua Wang, Horace H S Ip, et al. Human 3D motion recognition based on spatial-temporal context of joints[C]. Proceedings of International Conference on Pattern Recognition,2010:2740-2743.
    [77]Kiyong Yang, Cyrus Sbababi. A PCA-based similarity measure for multivariate time series [C]. Proceedings of the 2nd ACM international workshop on Multimedia databases,2004:65-74.
    [78]Chuanjun Li, S Q Zheng, B Prabhakaran. Segmentation and recognition of motion streams by similarity search[J]. ACM Transactions on Multimedia Computing, Communications, and Applications,2007,3(3):6.
    [79]M. Masudur Rahman, Seiji Ishikawa. Human motion recognition using an eigenspace[J]. Pattern Recognition Letters,2005,26:687-697.
    [80]Kevin F, Eugene F. An efficient search algorithm for motion data using weighted PCA[C]. Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation,2005:67-76.
    [81]Dietterich Thomas G. Machine learning research:four current directions [J]. Artificial Intelligence Magazine,1997,18(4):97-136.
    [82]Kahol K, Tripathi P, Panchanathan S. Automated Gesture Segmentation From Dance Sequences[C]. Proceedings of IEEE International Conference on Face and Gesture Recognition,2004:883-888.
    [83]Kahol K, Tripathi P, Panchanathan S, et. Al. Gesture segmentation in complex motion sequences[C]. Proceedings of ICIP-03,2003:105-108.
    [84]F Lv, R Nevatia. Recognition and segmentation of 3-d human action using hmm and multi-class adaboost[C]. Proceedings of ECCV,2006:359-372.
    [85]Ming Jiang, Zhelong Wang. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors[J]. IEEE Transactions on Information Technology in Biomedicine,2012,16(4):691-699.
    [86]Kai Guo, Prakash Ishwar, Janusz Konrad. Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels[C]. Proceedings of ACCV,2007(4843):442-451.
    [87]Qiang Qiu, Zhuolin Jiang, Rama Chellappa. Sparse Dictionary-based Representation and Recognition of Action Attributes. Proceedings of IEEE International Conference on Computer Vision,2011:707-714.
    [88]Changhong Liu, Yang Yang, Yong Chen. Human Action Recognition using Sparse Representation[C]. Proceedings of Intelligent Computing and Intelligent Systems,2009:184-188.
    [89]Tanaya Guha, Rabab Kreidieh Ward. Learning Sparse Representations for Human Action Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August,2012,34(8):1576-1588.
    [90]Chen C, Zhuang Y, Nie F, et al. Learning a 3D Human Rose Distance Metric from Geometric Pose Descriptor[J]. IEEE Transactions on Visualization and Computer Graphics,2010:1676-1689.
    [91]Li Y, Fermuller C, Aloimonos Y, et al. Learning shift-invariant sparse representation of actions[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2010:2630-2637.
    [92]Xiao Jun, Yinfu Feng, Wenyuan Hu. Predicting missing markers in human motion capture using 11-sparse representation[J]. Computer Animation and Virtual Worlds,2011,22:221-228.
    [93]O Arikan. Compression of Motion Capture Databases[C]. Proceedings of SIGGRAPH, NY, USA,2006:890-897.
    [94]Bulut E, Capin T. Key frame extraction from motion capture data by curve saliency[C]. Proceedings of the 20th International Conference on Computer Animation and Social Agents, Hasselt,2007:182-185.
    [95]朱登明,王兆其.基于运动序列分割的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2008,20(6):787-792.
    [96]Ramer U. An iterative procedure for the polygonal approximation of plane curves [J].Computer Graphics and Image Processing,1972, 1(3):244-256.
    [97]Lim I S, Thalmann D. Key-posture extraction out of human motion data by curve simplification[C]. Proceedings of the 23rd Annual International Conference on Engineering in Medicine and Biology Society,2001:1167-1169.
    [98]沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723.
    [99]杨涛,肖俊,吴飞等.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697.
    [100]Assa J, Caspi Y, Cohen-Or D. Action synopsis:pose selection and illustration[J]. Association for Computing Machinery Transactions on Graphics,2005,24(3): 667-676.
    [101]Togawa H, Okuda M. Position-based keyframe selection for human motion animation[C]. Proceedings of the 11th International Conference on Parallel and Distributed Systems.Los Alamitos:IEEE Computer Society Press,2005(2): 182-185.
    [102]Li S Y, Okuda M, Takahashi S I. Embedded key-frame extraction for CG animation by frame decimation[C]. Proceedings of IEEE International conference on Multi media & Expo. Los Alamitos:IEEE Computer Society Press,2005(1):1404-1407.
    [103]刘云根,刘金刚.重建误差最优化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2010,22(4):670-675.
    [104]Huang Kesen, Chang Chunfa, Hsu Y Y, et al. Key Probe:A Technique for Animation Keyframe Extraction [J]. The Visual Computer,2005, 21(8/9/10):532-541.
    [105]Gong Yihong, Liu Xin. Video Summarization Using Singular Value Decomposition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, USA,2000, II:174-180.
    [106]Cooper M, Foote J. Summarizing Video Using Non-Negative Similarity Matrix Factorization[C]. Processings of the IEEE Workshop on Multimedia Signal Processing, Saint Thomas, USA,2002:25-28.
    [107]Xian-mei Liu, Ai-min Hao, Dan Zhao. Optimization-based key frame extraction for motion capture animation. The Visual Computer, 2013,29(1):85-95.
    [108]刘贤梅,郝爱民,赵丹.基于混合遗传算法的人体运动捕获数据关键帧提取[J].模式识别与人工智能,2011,24(5):619-628.
    [109]Lee T Y, Lin C H, Wang Y S, et al. Animation Key-Frame Extraction and Simplification Using Deformation Analysis[J]. IEEE Trans on Circuits and Systems for Video Technology,2008,18(4):478-486.
    [110]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006,6-10.
    [111]Tipping M E, Bishop C M. Probabilistic principal component analyzers[J]. Royal Statistical Society,1999,611-622.
    [112]David J. Bartholomew, Martin Knott. Latent Variable Models and Factor Analysis[M]. Stan Lipovetsky Technometrics,Wiley,1999.
    [113]Bishop C M, Tipping M E. A hiecarchical latent variable model for data visualization[J]. IEEE Trans, pattn Anal.Macb.Intcll.1998,20:281-293.
    [114]Everitt B S. An Introduction to Latent Variable Models[M]. London:Chapman and Hill,1984.
    [115]王松桂等.线性模型引论[M].科学出版社,2004.
    [116]Figueiredo M A T, Leitao J M N, Jain A K. On Fitting Mixture Models[C]. Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition,1999:54-69.
    [117]Juan Bekios Calfa, Jose M. Buenaposada, Luis Baumela. Class-Conditional Probabilistic Principal Component Analysis:Application to Gender Recognition[J]. Computacion y Sistemas,2011,14(4):383-391.
    [118]Victor Cheng, Chun-Hung Li. Classification probabilistic PCA with application in domain adaptation[J]. Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science,2011,6634:75-86.
    [119]Tao Chen, Elaine Martin, Gary Montague. Robust probabilistic PCA with missing data and contribution analysis for outlier detection[J]. Computational Statistics Data Analysis, August 2009,53(10):3706-3716.
    [120]Chen T, Sun Y. Probabilistic contribution analysis for statistical process monitoring:a missing variable approach[J]. Control Engineering Practice,2009, 17(4):469-477.
    [121]Dongsoon Kim, In-Beum Lee. Process monitoring based on probabilistic PCA[J]. Chemometrics and Intelligent Laboratory Systems,2003,67(2): 109-123.
    [122]Michael E Tipping, Christopher M Bishop [J]. Mixture of principal component analyzers. Neural Computation,1999, 11(2):443-482.
    [123]Zhao Zhonggai, Liu Fei. Estimation of missing data in process monitoring with probabilistic PCA[J]. Computers and Applied Chemistry,2006, 23(12):1205-1208.
    [124]Tipping M E. Mixture of probabilistic principle component analyzers[J]. Neural Computation,1999, 11(2):443-482.
    [125]Jernej Barbic, Alla Safonova, Jia-Yu Pan, et.al. Segmenting Motion Capture Data into Distinct Behaviors[C]. Proceedings of Graphics Interface, 2004:185-194.
    [126]Tian-Shu Wang, Heung-Yeung Shum, Ying-Qing Xu, Nan-Ning Zheng. Unsupervised Analysis of Human Gestures[C]. Proceedings of the Second IEEE Pacific Rim Conference on Multimedia:Advances in Multimedia Information,2001:174-181.
    [127]Okan Arikan, David A Forsyth, James F O'Brien. Motion Synthesis from Annotations [J]. ACM Transactions on Graphics,2003,33(3):402-408.
    [128]Kanav Kahol, Priyamvada Tripathi, Sethuraman Panchanathan. Automated Gesture Segmentation From Dance Sequences[C]. Proceedings IEEE Int. Conf. on Face and Gesture Recognition,2004:883-888.
    [129]Meinard Muller, Tido Roder, Michael Clausen. Efficient Content-Based Retrieval of Motion Capture Data[J]. ACM Transactions on Graphics,2005, 3(24):677-685.
    [130]Jun Xiao, Yueting Zhuang, Fei Wu. Getting Distinct Movements from Motion Capture Data[C]. Proceedings of Computer Animation and Social Agents,2006: 33-42.
    [131]J Tenenbaum, V de Silva, J Langford. A global geometric framework for nonlinear dimensionality reduction [J]. Science,2000,5500(290):2319-2323.
    [132]肖俊,庄越挺,吴飞.三维人体运动特征可视化与交互式运动分割[J].软件学报,2008,19(8):1995-2003.
    [133]杨跃东,王莉莉,郝爱民,等.基于几何特征的人体运动捕获数据分割方法.系统仿真学报,2007,10(19):2229-2234.
    [134]杨跃东,王莉莉,郝爱民.运动串:一种用于行为分割的运动捕获数据表示方法[J].计算机研究与发展,2008,45(3):527-534.
    [135]朱登明,王兆其.基于运作单元分析的人体动画合成方法研究[J].计算机研究与发展,2008,46(4):610-617.
    [136]Chuanjun Li, Peng Zhai, Si-Qing Zheng, et al. Segmentation and recognition of multi-attribute motion sequences[C]. Proceedings of ACM Multimedia, 2004:836-843.
    [137]Chuanjun Li, Balakrishnan Prabhakaran. A similarity measure for motion stream segmentation and recognition[C]. Proceeding of International workshop on Multimedia data mining:mining integrated media and complex data,2005: 89-94.
    [138]Chuanjun Li, Punit R. Kulkarni, Balakrishnan Prabhakaran. Segmentation and recognition of motion capture data stream by classification[C]. Journal Multimedia Tools and Applications,2007,35(1):55-70.
    [139]Chuanjun Li, S Q Zheng, Balakrishnan Prabhakaran. Segmentation and recognition of motion streams by similarity search[C]. Journal ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP),2007,3(3), Article No.16.
    [140]柴桦,邹北骥.基于条件随机场的连续运动识别技术.计算机工程和科学,2009,31(5):53-56.
    [141]Meinard Muller, Andreas Baak. Hans-Peter Seidel. Efficient and Robust Annotation of Motion Capture Data[C]. Proceedings of the 2009 ACM Siggraph/Eurographics Symposium on Computer Animation,2009:17-26.
    [142]C J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition[C]. Data Mining and Knowledge Discovery,1998,2(2):121-167.
    [143]C Cortes, V Vapnik. Support Vector Networks[C]. Machine Learning,1995, 20:273-297.
    [144]V N Vapnik. The nature of statistical learning theory[M]. New York: Springer-Verlag,1995.
    [145]B Sholkopf, et al. Comparing support vector machine with Gaussian kernels to radial basis function classifiers[J]. IEEE Trans. Signal Processing,1997,45: 2758-2765.
    [146]A L Koerich. Rejection strategies for handwritten word recognition[C]. Proceedings of IWFHR,2004:479-484.
    [147]Y Q Chen, X S Zhou, T S Huang. One-Class SVM for Learning in Image Retrieval[C]. Proceeding of IEEE Conf. on Image Processing,2001,34-37.
    [148]D M J Tax. One-class classification[D]. The Netherland:Delft Univ. of Technology,2001.
    [149]Kohonen, T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics 1988,43:59-69.
    [150]Chih-Yi Chiu, Shih-Pin Chao, Ming-Yang Wu, et al. Content-Based Retrieval for Human Motion Data[J]. Journal of Visual Communication and Image Representation,2004,15(3):446-466.
    [151]Yasuhiko Sakamoto, Shigeru Kuriyama, Toyohisa Kaneko. Motion Map: Image-based Retrieval and Segmentation of Motion Data[C]. Proceeding SCA '04 Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,2004:259-266.
    [152]Chih-Yi Chiu, Shih-Pin Chao, Ming-Yang Wu, et al. Content-based retrieval for human motion data[J]. Joural of Visual Communication and Image Representation 2004,15(3):446-466.
    [153]Shuangyuan Wu, Zhaoqi Wang, Shihong Xia. Indexing and Retrieval of Human Motion Data by a Hierarchical Tree[C]. ACM Symposium on Virtual Reality Software and Technology,2009:207-214.
    [154]V Vapnik. Statistical Learning Theory[M]. New York:Wiley,1998.
    [155]Bottou L, Cortes C, Denker J S, et al. Comparison of classifier methods:A case study in handwriting digit recognition[C]. Proceedings of the 12th I APR International Conference on Pattern Recognition,1994,2:77-87.
    [156]Ulrich H.-G. KreBel. Pairwise classification and support vector machines[M]. Advances in Kernel Methods-Support Vector Learning. Massachusetts:MIT Press,1999,255-268.
    [157]John C Platt, John Shawe-Taylor, Nello Cristianini. Large margin DAG'S for multiclass classification[M]. Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press,2000,12,547-553.
    [158]Friedman Jerome H. Another approach to polychotomous classification[R]. Technical report, Department of Statistics, Stanford University,1996.
    [159]Chih-Wei Hsu, Chih-Jen Lin. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks,2002,13(2): 415-425.
    [160]Lee Ki Young, Kim Dae-Won, Lee Kwang H, et al. Density-induced support vector data description[J]. IEEE Trans. Neural Networks,2007,18(1):284-289.
    [161]Yen Chen-wen, Young Chieh-Neng, Nagurka Mark L. A false acceptance error controlling method for hyper spherical classifiers [J]. Neurocomputing,2004, 57(1):295-312.
    [162]Amit B Philippe B, Chris D. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Trans. On Geoscience and Remote Sensing, 2006,44(8):2282-2291.
    [163]Chao Yuan, David Casasent. A Novel Support Vector Classifier with Better Rejection Performance[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003:419-424.
    [164]Martinetz T M, Schulten K J. Topology representing networks[J]. Neural Networks,1994,7(3):507-552.
    [165]Martinetz T M. Competitive Hebbian learning rule forms perfectly topology preserving maps[C]. Proceedings of the ICANN-93, Gielen S and Kappen B(eds),1993:427-434.
    [166]Martinetz T M, Berkovich S G, Schulten K J. Neural gas network for vector quantization and its application to time series prediction[J]. IEEE Transactions on Neural Networks,1993,4(4):556-558.
    [167]Fritzke B. Growing cell structures-a self-organizing network for unsupervised and supervised learning[J]. Neural Networks,1994,7:1441-1460.
    [168]Fritzke B. A growing neural gas network learns topologies [J]. Advances in neural information processing systems (NIPS),1995,625-632.
    [169]Hamker F H. Life-long learning cell structures-continuously learning without catastrophic interference[J]. Neural Networks,2001,14:551-573.
    [170]Fritzke B. A self-organizing network that can follow non-stationary distributions[C]. Proceedings of ICANN-97,1997:613-618.
    [171]Lim C P, Harrison R F. A incremental adaptive network for on-line supervised learning and probability estimation[J]. Neural Networks,1997,10:925-939.
    [172]Shen Furao, Osamu Hasegawa. An incremental network for on-line unsupervised classification and topology learning[J]. Neural Networks,2006, 19:90-106.
    [173]Shen Furao, Tomotaka Ogura, Osamu Hasegawa. An enhanced self-organizing incremental neural network for online unsupervised learning[J]. Neural Networks,2007,20:893-903.
    [174]Shen Furao, Osamu Hasegawa. A fast nearest neighbor classifier based on self-organizing incremental neural network[J]. Neural Networks,2008,21: 1537-1547.
    [175]Carpenter G A, S Grossberg. The ART of Adaptive Pattern Recognition by a Self-Organizing Neural Network[J]. IEEE Computer,1988,21(3):77-88.
    [176]Muller M, Roer T, Clausen M, et al. Documentation:Mocap Database HDM05[R]. Computer Graphics Technical Report CG-2007-2, University Bonn, June 2007, http://www.mpi-inf.mpg.de/resources/HDM05.
    [177]B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution[J]. Neural Computation,2001,13(7):1443-1471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700