机械力活化季铵型阳离子淀粉絮凝剂的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
絮凝法是水处理中的关键环节之一,我国絮凝剂产品品种齐全,但阳离子絮凝剂较少,阳离子淀粉絮凝剂有较广的应用前景,但其反应效率较低。本文以不同来源的淀粉为原料,采用浆法、球磨辅助浆法、干法和球磨辅助干法制备淀粉絮凝剂,研究制备工艺对淀粉絮凝剂絮凝效果、取代度和反应效率的影响,获得淀粉絮凝剂最佳的制备工艺,分析淀粉絮凝剂的絮凝性能,采用红外光谱仪、X-衍射、扫描电镜技术进行结构表征和微观结构观察,采用电荷密度分析和Zeta电位分析探索淀粉絮凝剂的絮凝机理,为高效果、低成本的阳离子淀粉絮凝剂的开发提供理论依据。主要结论如下:
     1.淀粉絮凝剂的制备工艺:考察了机械活化时间、反应时间、淀粉浓度、引发剂浓度、单体浓度、反应温度对醚化反应的影响,结果表明,浆法、球磨辅助浆法、干法和球磨辅助干法制备的淀粉絮凝剂的取代度分别为0.03~0.07、0.07~0.14、0.18~0.30、0.30~0.35,反应效率为4%~10%、9%~20%、32%~42%、75%~87%;4种制备方法中,以球磨辅助干法制备的淀粉絮凝剂的取代度、反应效率和得率最高,絮凝效果最好,对淀粉来源的依赖性最小。球磨辅助干法为季铵化淀粉絮凝剂最佳的制备方法,其制备条件为:淀粉球磨5h,2,3-环氧基三甲基氯化铵与淀粉的摩尔比为0.40:1.00,90℃反应2.5h,体系水分含量低于20%,该工艺过程不需添加碱。机械活化后进行醚化改性可以得到取代度高、絮凝效果良好的阳离子淀粉絮凝剂。
     2.机械力活化在淀粉改性中的作用:粒度分析和凝胶色谱分析表明球磨后淀粉粒度先减小后增大,表面积先增大后减小,球磨后淀粉分子的长链和支叉结构断裂,淀粉中大分子数量减少,小分子数量增加,分子量分布发生变化。X-射线衍射和扫描电镜结果显示球磨破坏淀粉分子空间排列,球磨后淀粉产生晶格畸变、最终非晶化,单体试剂更容易渗透到颗粒内部使淀粉发生醚化反应。机械活化使部分机械能转变为化学能储存起来,使物质处于不稳定的高能状态,从而也使淀粉的反应活性提高。本试验首次将机械力活化作用应用于淀粉的醚化改性,制备阳离子淀粉絮凝剂。
     3.淀粉絮凝剂的絮凝特性:絮凝评价实验表明,絮凝剂母液浓度稍低于临界交叠浓度,污水中絮凝剂分子链间动态接触有利于絮凝;固形物含量为1%的悬浊液沉降效果最好;制备的淀粉絮凝剂的pH和水温适用范围广,其中水温为15℃左右时絮凝效果最好;淀粉絮凝剂的高岭土澄清效果较明矾和聚合氯化铝的好,絮凝后絮凝体的体积较小。
     4.淀粉絮凝剂的絮凝机理:自制的季铵化阳离子淀粉絮凝剂(球磨后干法制备)优异的絮凝性能是直链和支链淀粉絮凝剂共同作用的结果,絮凝过程中表现出电中和、吸附架桥和网捕卷扫作用,直链淀粉絮凝剂以列车式和尾式与胶体颗粒结合,支链淀粉絮凝剂以尾式或环式与胶体颗粒结合。
Flocculation process is one of the key links in the wastewater treatment.In China, the flocculation product is rich,but the cationic flocculant is rare.Cationic starch flocculants have a well prospect in practice,but have low production efficiency.In this paper,cationic starch flocculants were synthesized by wet process,wet process assistanted with ball-milling treatment,dry process and dry process assistanted with ball-milling treatment.The effect of preparation technologies on the flocculation efficiency,degree of substitution and reaction efficiency of products were discussed. Optimal procedure for cationic starch flocculant was obtained,and flocculation performance was analysised.Microstructure of starch and starch flocculation were elucidated by means of infrared spectrum(IR),x-ray diffraction(XRD) and scanning electron microscopical technique(SEM).The mechanism of flocculation was explored by charge density analysis,ubbelohde viscosimeter and zeta potentiometric analysis.The above analysis could provide a sound theoretical basis for good effect and low cost cationic starch flocculants preparation.
     1.Preparation process for starch flocculation
     The effect of activation time,reaction time,starch concentration,initiator concentration,monomer concentration and reaction temperature on the etherify reaction were investigated.The degree of substitution and reaction efficiency of products synthesized by wet process,wet process assistanted with ball-milling treatment,dry process and dry process assistanted with ball-milling treatment were 0.03~0.07, 0.07~0.14,0.18~0.30,0.30~0.35 and 4%~10%,9%~20%,32%~42%,75%%~87% respectively.The dry process assistanted with ball-milling treatment was the best method for starch flocculation preparation.The degree of substitution,reaction efficiency,yield rate and flocculation efficiency of products synthesized by dry process assistanted with ball-milling treatment was the highest among the four processing methods and had less dependence upon the starch source.The optimal reaction conditions were as following: starches were mechanically activated by a stirring-type ball mill for 5h.Then the activated starches were used to fabricate etherify copolymer in the presence of monomer of 2,3-epoxypropyltrimethylammonium with the molar ratio of 0.40:1.00.Etherifying reaction was carded at 90℃for 2.5h with initial system moisture content less than 20%.
     2.Function of ball milling in starch modification
     Particle size and gel permeation chromatography analysis results demonstrated that particle size,surface area of starch granule and molecular weight distribution of starch molecules exhibited major changes after ball milling.After subjected to ball-milling treatment,long chain and branch structure of starch molecules were broken,which resulted in a remarkable increase in small molecular segmer and decrease in large molecular segmer.XRD and SEM analysis revealed that the etherifying reaction occured not only in the amorphous region,but also in the crystalline region of the starch when ball-milling caused the molecular arrangement disorder,crystal structure destruction and lattice distortion.In addition,mechanical energy exchanging into chemical energy in polymer chain made the starch molecular groups be in an unstable state with high energy, and therefore enhanced the starch etherifying modification.
     3.Flocculation performance of starch flocculants
     Optimal dose of flocculant in solution was slightly lower than the critical concentration,in which molecular chain had partly overlapped.Good flocculation performance existed in certain suspension solid content of kaolin suspension(1%). Excessively high or low kaolin suspension concentration could decrease the flocculation effect.It was found that the starch flocculation was comparatively more effective than potassium alum and polymeric aluminum chloride flocculant in kaolin suspension clarification.The starch flocculation had wide feasible pH and temperature range and small volume of floes afer flocculation.The best adsorption effect could be obtained when temperature was 15℃.
     4.Flocculation mechanism of starch flocculation
     Comprehensive analysis showed its outstanding flocculation performance depended on its special molecular structure of amylose flocculation and amylopectin flocculation, and was the result that electriciy counteract was in cooperation with adsorption bridge building and the net rooling-sweeping action.Amylose flocculation was preferred to adsorb the colloidal particle at solid-liquid interface by train and taile type,while amylopectin flocculation was likely to adsorb by loop and tail type.
引文
1.陈玲,叶建东,胡飞,李琳,李晓玺,庞艳生,李冰青,胡松.利用粉磨机械力化学方法改性淀粉的力法.中国专利,200410015367.7.2005-1-5
    2.陈渊.机械活化强化淀粉乙酰化的研究.[硕士学位论文].广西:广西大学图书馆,2007
    3.高华星,程树军,赵德仁,陆兴章.可生物降解的阳离子淀粉絮凝剂.化工时刊,2002,(6):1-8
    4.古昌红.有机高分子絮凝剂絮凝机理的研究进展.重庆工商大学学报(自然科学版),2007,24(6):573-576
    5.郭蕾,张正茂,胡莉莉,傅国栋,赵思明.水溶性大米淀粉的研磨动力学研究.农业工程学报,2007,23(1):202-206
    6.郭晓锋,曹亚峰,项静,邱闯.新型阳离子淀粉的制备及其溶液的表面活性.大连轻工业学院学报,2006,25(1):19-25
    7.何林华,陈金山,李丹,陈志群,涂六军,张惠萍,廖睿,罗超,余丹亚,李泽强.半干法制备季铵型阳离子淀粉的工艺.中国专利,01131573.3.2002-6-5
    8.何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000,261-264
    9.侯汉学,张锦丽,董海洲,邱立忠,王希功.国内外干法变性淀粉研究进展.食品与发酵工业,2004,30(12):98-100
    10.黄佩芳,童张法,王海鹏.季铵型阳离子淀粉的合成研究.广西大学学报(自然科学版),2002,27(3):243-247
    11.黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展.高分子材料科学与工程,2004,20(5):19-23
    12.黄祖强,陈渊,钱维金,童张法,覃学江,黎铉海.机械活化对玉米淀粉结晶结构与化学反应活性的影响.化工学报,2007,58(15):1307-1313
    13.黄祖强,胡华宇,童张法,黎铉海.玉米淀粉的机械活化及其流变特性研究,2006,22(1):50-52,65
    14.具本植,张淑芬,杨锦宗.干法制备高取代度阳离子淀粉的研究.精细化工,2000,17(3):167-169
    15.具本植,张淑芬,杨锦宗.阳离子淀粉干法制备研究进展.精细化工,2001,18(1):462-481
    16.雷绍民.一种异步低温机械力化学交联改性酚醛树脂的制备方法.中国专利,200610019963.1.2007-2-7
    17.李冬梅,施周,梅胜,谭万春,金同轨.絮凝条件对絮体分形结构的影响.环境科学,2006a,27(3):488-492
    18.李冬梅,施周,金同轨,王和平,梅胜.含沙高浊水最佳絮凝条件的确定.水处理技术,2006b,32(3):15-18
    19.李冬梅,金同轨,李志生,谭万春.高分子絮凝剂质量浓度对泥沙絮体分形结构的影响.广东工业大学学报,2006c,23(3):40-44
    20.李冬梅,施周,梅胜,李志生,金同轨.高浓度悬浊液架桥絮凝分形体的形态学研究.中国给水排水,2006d,22(19):95-99
    21.李兰青子,冯建敏,邓宇.干法合成淀粉阳离子絮凝剂.石化技术与应用,2005,23(3):215-217
    22.李勇,蒋兰.水处理絮凝剂的应用现状及发展趋势.化学工程师,2007,145(10):40-43
    23.林倩,曾祥饮,刘定富,王国海.絮凝沉降的温度效应.贵州大学学报(自然科学版),2006,23(3):272-274
    24.林亲铁,张淑娟,徐文彬.无机-有机复合絮凝剂的制备及絮凝性能研究.环境科学与技术,2007,30(9):18-21
    25.刘定富,王国海,曾祥钦.温度对木质素溶液絮凝沉降的影响.贵州工业大学学报,1999,28(3):15-17
    26.刘祥义,徐晓军.改性淀粉絮凝剂的制备与应用研究进展.胶体与聚合物,2004,22(2):38-40
    27.陆国权,唐忠厚,郑遗凡.主要根茎类作物淀粉特性研究.中国食品学报,2006,6(4):67-71
    28.卢珍仙.利用玉米淀粉制备高取代度阳离子淀粉的研究.化学世界,2005,(12):734-751
    29.罗驹华.用机械力化学法低温制备高纯莫来石的方法.中国专利,200510040142.1.2005-11-23
    30.马青山,贾瑟,孙丽珉.絮凝化学和絮凝剂.北京:中国环境科学出版社,1988,71,116-117
    31.牛金平,王军.新型表面活性剂的结构特点与物化性能.日用化学品科学,2000,23(2):1-4
    32.钱维金.机械活化强化淀粉接枝改性的研究.[硕士学位论文].广西:广西大学图书馆,2007
    33.秦景燕,王传辉.超细粉碎中的机械力化学效应.矿山机械,2005,33(10):6-8
    34.秦丽娟,陈夫山.有机高分子絮凝剂的研究进展及发展趋势.上海造纸,2004,35(1):41-43
    35.邵颖,周强.我国有机絮凝剂的研究进展.化学工程师,2002,(5):42-43
    36.盛艳玲,张强,王化军.微生物絮凝剂絮凝机理的初步研究.矿产综合利用, 2007(2):16-19
    37.史俊丽,荣建华,张正茂,康斌涛,赵思明.超微细化大米淀粉的理化性质.华中农业大学学报,2006,25(6):672-675
    38.薛红艳,孙东风,安红.羟丙基玉米淀粉的性能及应用.哈尔滨商业大学学报(自然科学版).2003,19(4):464-472
    39.苏小莉,曹智,张治军.机械力化学法制备改性超细粉体的研究进展.金属矿山,2007,(8):1-3,15
    40.唐洪波,马冰洁.羟丙基马铃薯淀粉合成工艺及性能研究.食品科学,2005,26(4):167-170
    41.田秉晖,吴晓清,栾兆坤,彭先佳.原子力显微镜分析聚二甲基二烯丙基铵盐的吸附和絮凝行为:反离子的影响.环境科学,2006,27(4):709-714
    42.佟瑞利,赵娜娜,刘成蹊,许泽胜.无机、有机高分子絮凝剂絮凝机理及进展.河北化工,2007,30(3):3-6
    43.王琛,李硕文,王惠丰,张亮.阳离子淀粉絮凝剂的合成及应用.精细石油化工进展,2001,2(8):13-16
    44.严瑞.水处理剂应用手册.北京:化学工业出版社,2000,10-50
    45.杨眉,沈上越,莫宣学.干法机械力化学超细改性碳酸钙的方法.中国专利,200510020087.X.2006-12-20
    46.岳世泰,刘国勤,张丽君.微波干法制备阳离子淀粉,中国专利:CN89107080.X,1991-3-20
    47.余家林.农业多元试验统计.北京:北京农业大学出版社,1993,111-123
    48.曾德芳,徐保林,张森.无机-有机高分子复合絮凝剂处理含油废水.山西化工,2007,27(6):12-13,43
    49.张延霖,刘佩红,张秋云.淀粉接枝丙烯腈制备絮凝剂的工艺优化及应用研究.应用化工,2007,36(4):387-389
    50.张友全,徐文岭,颜博渊.干法制备阳离子淀粉的研究.化工技术与开发,2006,35(4):9-12
    51.张晓宇,童群义.半干法制备低取代度阳离子淀粉研究.食品与生物技术学报,2005,24(5):94-97
    52.张正茂,史俊丽,赵思明,熊善柏.超微细化大米淀粉的形貌与润涨特性研究.中国粮油学报,2007,22(2):40-44
    53.张正茂,赵思明,敖琳丽.细化大米淀粉的分子特性研究.粮食与饲料工业,2005,(3):17-19
    54.曾廷华,陈文纳,谢跃生.有机絮凝剂的合成及其絮凝与杀菌双功能研究.化工技术与开发,2007,36(6):19-23
    55.朱明,胡曙光,杨文.机械力化学作用对硅酸二钙晶体结构的影响.水泥工程,2006,(2):9-13
    56.Adler J,Baldwin P M,Melia C D.Starch Damage Part 2:Types of Damage in Ball-milled Potato Starch,upon Hydration Observed by Confocal Microscopy.Starch /Starke,1995,47(7):252-256
    57.Ayoub A,Gruyer S,Bliard C.Enzymatic degradation of hydroxypropyltrimethylammonium wheat starches,Int J Biol Macromol,2003,32:209-216
    58.Baldwin P M and Davies M C.Starch damage part 1:Characterization of granule damage in ball-milled potato starch study by SEM.Starch/Starke,1995,47(7):247-251
    59.Bertoft E,Koch K.Composition of chains in waxy-rice starch and its structural units.Carbohydr Polym,2000,41,121-132
    60.Besra L,Sengupta D K,Roy S K,Ayc P.Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension.Sep PurifTechnol,2004,37:231-246
    61.Biggs S;Habgood M,Jameson G J,Yan Y-d.Aggregate structures formed via a bridging flocculation mechanism.Chem Eng J,2000,80:13-22
    62.Billy J M.Dry heat press for the preparation of cationic starch ethers.USA patent:3448101.1969-6-7
    63.Bratskaya S,Schwarz S,Petzold G,Liebert T,Heinze T.Cationic starches of high degree of functionalization:12.Modification of cellulose fibers toward high filler technology in papermaking,Ind Eng Chem Res,2006,45(22),7374-7379
    64.Bratskaya S,Schwarz S,Liebert T,Heinze T.Starch derivatives of high degree of functionalization:10.Flocculation of kaolin dispersions.Colloids Surf A:Physicochem Eng Aspects,2005,254(1-3):75-80
    65.Bulèon A,Colonna P,Planchot V,Ball S.Starch granules:structure and biosynthesis.Int J Biol Macromol,1998,23:85-112
    66.Caesex G V.Process for forming cationic polysaccharide ethers and product.US patent:3422087,1969-1-1
    67.Chen Y,Hwang T,Marsh M and Williams J S.Study on mechanism of mechanical activation.Mater Sci Eng A,1997,226:95-98
    68.Chen Y X,Liu S Y,Wang G Y.A kinetic investigation of cationic starch adsorption and flocculation in kaolin suspension.Chem Eng J,2007,133:325-333
    69.Chi H,Xu K,Wu X L,Chen Q,Xue D H,Song C L,Zhang W D,Wang P X.Effect of acetylation on the properties of corn starch.Food Chem,2008,106:923-928
    70.Christopher M F,William O S D.Insights into bridging flocculation.Macromol Symp,2006,231,1-10
    71.Ersoy B.Effect of pH and polymer charge density on settling rate and turbidity of natural stone suspensions.Int J Mineral Process,2005,75:207-216
    72.Gaudreault R,Van de Ven T G M,Whitehead M A.Mechanisms of flocculation with poly(ethylene oxide) and novel cofactors.Colloids Surf A:Physicochem Eng Aspects,2005,268:131-146
    73.Glover S M,Yan Y-d,Jameson G J,Biggs S.Bridging flocculation studied by light scattering and settling.Chem Eng J,2000,80:3-12
    74.Gunaratne A,Hoover R.Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches.Carbohydr Polym,2002,49,425-437
    75.Haack V,Heinze T,Oelmeyer G,Kulicke W-M.Starch Derivatives of High Degree of Functionalization,8a Synthesis and flocculation behavior of cationic starch Polyelectrolytes.Macromol Mater Eng,2002,287(8):495-502
    76.Heinze T,Haack V,Rensing S.Starch derivatives of high degree of functionalization.7.Preparation of cationic 2-hydroxypropyltrimethylammonium chloride starches.Starch/Starke,2004,56:288-296
    77.Huang Z Q,Lu J P,Li X H,Tong Z F.Effect of mechanical activation on physico-ehemical properties and structure of cassava starch.Carbohydr Polym,2007,68:128-135
    78.Huber K C,BeMiller J N.Channels of maize and sorghum starch granules.Carbohydr Polym,2000,41:269-276
    79.Inouchi N,Asaoka M,Okuno K.Fuwa H.The effect of environmental temperature on distribution of unit chains of rice amylopectin.Starch/Starke,2000,52(1):8-12
    80.Jane J,Shen L,Wang L,Maningat C C.Preparation and properties of small-particle corn starch.Cereal Chem,1992,69(3):280-283
    81.Joo D J,Shin W S,Choi J-H,Choi S J,Kim M-C,M H Han,T W Ha,Y-H Kim.Decolorization of reactive dyes using inorganic coagulants and synthetic polymer,Dyes Pigments,2007,73:59-64
    82.Kavaliauskaite R,Klimaviciute R,Zemaitaitis A.Factors influencing production of cationic starches,Carbohydr Polym,2008,doi:10.1016/j.carbpol.2008.01.019
    83.Khalil M I and Farag S.Preparation of some cationic starches using the dry process,Starch/Starke,1998,50(6):267-271
    84.Krentz D-O,Lohmann C,Schwarz S,Bratskaya S,Liebert T,Laube J,Heinze T, Kulicke W-M. Properties and flocculation efficiency of highly cationized starch derivatives. Starch/Starke, 2006, 58: 161-169
    85. Larsson A, Wall S. Flocculation of cationic amylopectin starch and colloidal silicic acid. The effect of various kinds of salt. Colloids Surf A: Physicochem Eng Aspects, 1998, 139: 259-270
    86. Lewandowicz G., Jankowski T, Fornal, J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydr Polym, 2000, 42:193-199
    87. Li T, Zhu Z, Wang D S, Yao C H, Tang H X. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol, 2006, 168: 104-110
    88. Mako E, Senkar Z, Kristof J, Vagvolgyi V. Surface modification of mechanochemically activated kaolinites by selective leaching. J Colloid Interface Sci, 2006,294: 362-370
    89. Mostafa K M. Graft polymerization of acrylic acid onto starch using potassium permanganate acid (redox system). J Appl Polym Sci, 1995, 56: 263-269
    90. Ovenden C, Xiao H. Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids Surf A: Physicochem Eng Aspects, 2002, 197: 225-234
    91. Ozkana A, Yekeler M. Coagulation and flocculation characteristics of celestite with different inorganic salts and polymers. Chem Eng Process, 2004,43: 873-879
    92. Pal S, Mal D, Singh R P. Cationic starch: an effective flocculating agent. Carbohydr Polym, 2005, 59: 417-423
    93. Puclin T and Kaczmarek W A, Synthesis of alumina-nitride nanocomposites by successive reductionnitridation in mechanochemically activated reactions, J Alloys Compd, 1998,266: 283-292
    94. Qian J W, Xiang X J, Yang W Y, Wang M and Zheng B Q. Flocculation performance of different polyacrylamide and the relation between optimal dose and critical concentration. Eur Polym J, 2004,40(8): 1699-1704
    95. Radosta S, Vorwerg W, Ebert A, Beglb A H, Grulc D, Wastyn M. Properties of low-substituted cationic starch derivatives prepared by different derivatisation processes. Starch/Starke, 2004, 56: 277-287
    96. Rasteiro M G, Garcia F A P, Ferreira P, Blanco A, Negro C, Antunes E. The use of LDS as a tool to evaluate flocculation mechanisms, Chem Eng Process, 2007, doi:10.1016/j.cep.2007.04.009
    97. Renata C B, Bozena R, Salah L, Piotr U, Janusz M R. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr Polym, 2005,60,175-184
    
    98. Roerdern D L, Wessels C D. Process for the dry cationization of starch. USA patent, 5241061. 1993-8-31
    
    99. Roger P, Bello-Perez L A, Colonna P. Contribution of amylose and amylopectin to the light scattering behaviour of starches in aqueous solution. Polymer, 1999, 40: 6897-6909
    
    100. Rowlands S A, Hall A K, McCormick P G, Street R, Hart R J, Ebell G F, Donecker P. Destruction of toxic materials, Nature, 1994, 367: 223
    101. Runkana V. Mathematical modeling of flocculation and dispersion of colloidal suspensions. (Ph D dissertation). Columbia University, 2003
    102. Sabah E, Erkan ZE. Interaction mechanism of flocculants with coal waste slurry. Fuel,2006, 85: 350-359
    103.Sableviciene D, Klimaviute R, Bendoraitiene J, Zemaitaitis A. Flocculation properties of high-substituted cationic starches, Colloids Surf A: Physicochem Eng Aspects, 2005,259: 23-30
    104.Saleh H. Extracellular biopoly-meric flocculants recent trends and biotechnological importance. Biotechnol Adv, 2001,19: 371-385
    105.Sanguanpong V, Chotineeranat S, Piyachomkwan K, Oates C G, Chinachoti P, Sriroth K. Preparation and structural properties of small-particle cassava starch. J Sci Food Agric, 2003, 83: 760-768
    106.Shinlu C Y C and Cheng Y. Gel-Chromatography fractionation and thermal characterization of rice starch affected by hydrothermal treatment. Cereal Chem, 1996, 73(1): 5-11
    107.Stober R H, Fischer W G. Method for the dry cationization of starch II. USA patent. 4981958,1991-1-1
    108.Sub H, Kwon G, Lee C. Characterization of bioflocculant produced by Bacillus sp. DP. 152. J Ferment Bioeng, 1997, 84(2): 108-112
    109.Tamaki S, Hisamatsu M, Teranishi K, Adachi T, Yamada T. Structural change of maize starch granules by ball-mill treatment. Starch/ Starke, 1998, 50(8): 342-348
    110. Tang P, Greenwood J, and Raper J A. A model to describe the settling behavior of fractal aggregates, J Colloid Interface Sci, 2002,247: 210-219
    111 .Ti L, Zhu Z, Wang D S, Yao C H, Tang H X. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol, 2006, 168: 104-110
    112.Tuting W, Wegemann K and Mischnick P. Enzymatic degradation and electrospray tandem mass spectrometry as tools for determining the structure of cationic starches prepared by wet and dry methods. Carbohydr Res, 2004, 339: 637-648
    113.Weissenborn P K. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine iron ore. Int J Miner Process, 1996, 47: 197-211
    114.Wu Q, Miao Y. Mechanochemical effects of micronization on enzymatic hydrolysis of corn flour. Carbohydr Polym, 2007, doi:10.1016/j.carbpol. 2007. 09.017
    115.Yu X, Somasundaran P. Role of polymer conformation in interparticle-bridging dominated flocculation. J Colloid Interface Sci, 1996,177,283-287
    116.Zhang L-M. A Review of Starches and Their Derivatives for Oilfield Applications in China. Starch/Starke, 2001, 53: 401-407
    117.Zhang M, Ju B Z, Zhang S F, Ma W, Yang J Z. Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydr Polym, 2007, 69: 123-129
    118. Zhu M, Schneider M, Papastavrou G. Controlling the adsorption of single poly (styrenesulfonate) sodium on NH_3~+-modified gold surfaces on a molecular scale. Langmuir, 2001,17: 6471-6476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700