聚合铁基无机—有机复合混凝剂处理地表水的性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保障饮用水安全、提高混凝工艺对地表水的处理效果,特别是对微污染水源水中有机物的去除效果,本论文制备出一系列具有不同聚合氯化铁(PFC)的碱化度(B)、不同二甲基二烯丙基氯化铵聚合物(PDADMAC)的质量分数(w(P))、不同PDADMAC黏度(η)的无机-有机复合混凝剂PFC-PDADMAC,并将其应用于地表水处理。通过将PFC-PDADMAC与PFC、PDADMAC单独投加或依次投加进行对比,揭示了该复合混凝剂在混凝性能方面的优势以及它与传统混凝剂在机理方面的异同,明确了PFC-PDADMAC在混凝过程中与水中污染物的作用方式以及PFC与PDADMAC间的相互作用对混凝效果的影响。此外,通过烧杯试验、zeta电位的测定、Ferron逐时络合比色法、静态光散射法等多种方法及技术考察了B值、w(P)及η值对PFC-PDADMAC的混凝效果、混凝过程中Fe(Ⅲ)水解聚合形态的分布规律、絮体形成过程、絮体抗破损能力、恢复能力、絮体形态以及混凝机理的影响。主要结论如下:
     (1)PFC-PDADMAC对地表水中浊度和有机物的去除效果优于PFC或PDADMAC,该复合混凝剂可以在低投加量下获得较好的混凝效果。与将PFC和PDADMAC以不同的顺序先后投加相比,PFC-PDADMA可以达到更好的浊度及有机物去除效果;同时,PFC-PDADMAC可以在更宽的投加量范围内保持较高的去除率,从而可以在一定程度上避免原水水质波动造成的处理效果的下降;而且PFC-PDADMAC所生成的絮体具有较好的沉降性能;此外,PFC-PDADMAC在混凝过程中可以生成更多的Fe(Ⅲ)有效水解形态。与PFC、PDADMAC依次投加相比,PFC-PDADMAC的电中和能力较弱,但是吸附架桥能力明显增强。因此,PFC-PDADMAC可以充分发挥PFC与PDADMAC的协同作用,在地表水处理过程中较传统混凝剂具有一定优势。
     (2)PFC-PDADMAC在低B值、高w(P)以及高η值下对地表水中的浊度和有机物具有相对较好的去除效果。其中w(P)对其性能的影响较为明显,而B值对混凝效果的影响较小。
     (3)B值对PFC-PDADMAC在混凝过程中Fe(Ⅲ)的水解形态分布具有显著影响,低B值的PFC-PDADMAC可以水解生成较多的有效形态。w(P)及η值对混凝过程中Fe(Ⅲ)的水解形态分布影响甚微。
     (4)对于实验中所采用的具有不同B值、w(P)及η值的PFC-PDADMAC,电中和作用均在其混凝过程中占主导地位。适当降低B值、提高w(P)以及η值可以在一定程度上提高PFC-PDADMAC的电中和能力。其中w(P)对其电中和能力影响较为明显。
     (5)低B值、高w(P)或高η的PFC-PDADMAC所形成的絮体生长速度较快,而且在稳定阶段可以获得较大的粒径。其中,w(P)对絮体生长速度和粒径的影响较为明显,而B值的影响较小。
     (6)在低B值、高w(P)或高η值下,PFC-PDADMAC絮体具有较强的抗破损能力、恢复能力以及较高的密实度。其中w(P)对絮体的上述特性具有显著影响,而B值对其影响较小。
     以上研究结果表明,PFC-PDADMAC是一种适用于地表水处理的新型、高效的无机-有机复合混凝剂。本论文的研究为PFC-PDADMAC的研制开发奠定了理论基础,并为其在地表水处理中的应用提供理论指导。
In order to ensure the safety of drinking water and improve the coagulation efficiency in the treatment of surface water,and especially enhance the organic matter removal in micro-polluted source waters,a series of composite coagulants polyferric chloride(PFC)-polydimethyldiallyammonium chloride(PDADMAC)with different basicity(B)of PFC,different mass fraction(w(P))and intrinsic viscosity(η)of PDADMAC were prepared and applied to surface water treatment in this study.The advantage of PFC-PDADMAC over PFC,PDADMAC and successive addition of PFC and PDADMAC in coagulation efficiency and the difference of them in coagulation mechanism were revealed by comparative study of them.Further.the reaction between PFC-PDADMAC and pollutants and the interacting of PFC and PDADMAC in coagulation process were also explained.The effect of B value,w(P) andηvalue on coagulation efficiency,chemical species distribution of Fe(Ⅲ)in coagulation process,floc growth process,breakage resistance capability of floc.the regrowth ability of broken floc,shape of floc and coagulation mechanism were studied by a variety of methods and technology,such as jar test,zeta potential measurement,Fe-Ferron method and static light scatter technology.The main conclusions are as follows:
     (1)PFC-PDADMAC was more efficient than PFC and PDADMAC in turbidity and organic matter removal in surface water treatment,and it achieved high removal rate at lower coagulant dosage.Compared with successive addition of PFC and PDADMAC,PFC-PDADMAC gave higher turbidity and organic matter removal and achieved better coagulation efficiency within a broader dosage range which contributed to avoid deterioration of treated water resulted from the fluctuation of raw water quality to some extent;Further,the flocs formed by PFC-PDADMAC had better settling property,and PFC-PDADMAC yielded more active component of ferric salts coagulants in coagulation process.PFC-PDADMAC showed weaker charge neutralization ability but much stronger adsorption and bridging ability than succecive addition of PFC and PDADMAC.Consequently.PFC-PDADMAC achieved good performance in surface water treatmenr by synergic effect of PFC and PDADMAC.
     (2)PFC-PDADMAC achieved better turbidity and organic matter removal at lower B value,higher w(P)andηvalue.Moreover,The effect of w(P)on the coagulation performance was remarkable,while the effect of B value was relatively slight.
     (3)B value had significant effect on the chemical species distribution of Fe(Ⅲ)in coagulation process,and PFC-PDADMAC with lower B value yielded more active coagulating component of ferric salts coagulants.In contrast,w(P)andηonly had slight effect on it.
     (4)Charge neutralization is the dominant flocculation mechanism for PFC-PDADMAC with different B value,w(P)andηwhich were investigated in this study,and the charge neutralization ability of PFC-PDADMAC was enhanced to some extent by reducing B value,increasing w(P)orηvalue properly.
     (5)The flocs formed by PFC-PDADMAC with lower B value,higher w(P)orηvalue showed higher growth rate and achieved larger floc size in steady phase of coagulation process.Further,w(P)had significant effect on floc growth rate and floc size,while the effect of B value was relatively slight.
     (6)The flocs formed by PFC-PDADMAC with lower B value,higher w(P)orηvalue showed better breakage resistance capability,regrowth ability and had more compact structure.Moreover,The effect of w(P)on the aboving floc characteristic was remarkable,while the effect of B value was slight.
     The aboving results indicate that PFC-PDADMAC is a new-type and highly efficient inorganic-organic composite coagulant which applies to surface water treatment.Further.this thesis lays fundamental basis for the developing of PFC-PDADMAC and provides guidences for the practical application of it.
引文
[1]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.9-18.
    [2]马军,陈忠林,李圭白,等.高锰酸盐复合药剂助凝处理高稳定性地表水[J].中国给水排水,1999,15(4):1-3.
    [3]王占生.1992年度给水处理年会交流论文集[C].北京:北京建筑工业出版社,1992.
    [4]刘海龙,夏忠欢,王东,等.典型南方水强化混凝有机物分级处理研究[J].环境科学,2006,27(5):909-912.
    [5]汤鸿霄.无机高分子复合混凝剂的研制趋向[J].中国给水排水,1999,15(2):1-4
    [6]Cheng W P,Chi,F H.A study of coagulation mechanism of polyferric sulfate reacting with humic acid using a fluorescence-quenching method[J].Water Res.,2002,36(18):4583-4591.
    [7]何慧琴,童仕唐.水处理中絮凝剂的研究进展[J].应用化工,200l,30(6):14-16.
    [8]Duan J,Gregory J.Coagulation by hydrolyzing metal salts[J].Adv.Colloid Interface Sci.,2003,100:475-502.
    [9]崔蕴霞,肖锦.铝盐絮凝剂及其环境效应[J].工业水处理,1998,18(3):6-9.
    [10]Letterman R D,Modeling the effect of hydrolyzed aluminum and solution chemistry on flocculation kinetics[J].Evn.-Sci.Tech.,1985,19(8):673-681.
    [11]Harrington C R,Wischik C W,McArrhur F K.Alzheimer's-disease-like changes in tau protein processing:association with aluminum accumulation in brains of renal dialysis patients[J].Spectrochimica Acta,Part B,1984,343:993-997.
    [12]Bell-Ajy K,Abbaszadegan M,Ibrahim E,Verges D,et al.Conventional and optimized coagulation for NOM removal[J].J.Am.Water Works Assoc.,2000,92(10):44-58.
    [13]Edzwaid J K,Tobiason J E,Enhanced coagulation:US requirements and a broader view[J].Water Sci.and Technol.,1999,40(9):63-70.
    [14]Jiang J Q,Graham N J D.Observation of the comparative hydrolysis/precipitation behaviour of ployferric sulphate and ferric sulphate[J].Water Res.,1998,32:930-935.
    [15]郑怀礼,龙腾锐,舒型武.聚合铁类絮凝剂作用机理分析[J].重庆环境科学,2000,22(3):51-53.
    [16]Saar R A,Weber J H.Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions[J].Anal.Chem.,1980,52:2095-2100.
    [17]舒型武,郑怀礼.阳离子型有机絮凝剂研究进展[J].现代化工,1999,21(10):13-16.
    [18]常青,陈野,韩相恩,等.聚二甲基二烯丙基氯化铵的合成及水处理絮凝效能研究[J].环境科学学报,2000,20(2):168-172.
    [19]赵华章,高宝玉,岳钦艳.二甲基二烯丙基氯化铵(DMDAAC)聚合物的研究进展[J].工业水处理,1999,19(6):1-4.
    [20]AWWA,1987.Standard for Poly(Diallydimethylammonium Chloride),AWWA B451-87.American Water Works Association,Denver,CO,USA.
    [21]高宝玉,魏锦程,王燕,等.聚合铁复合絮凝剂处理地表水的性能研究[J]:中国给水排水,2006,22(7):57-64.
    [22]Aguilar M I,Saez J,Llorens M,et al,Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids[J].Water Res.,2003,37:2233-2241.
    [23]崔蕴霞,肖锦.铝盐絮凝剂及其环境效应[J].工业水处理,1998,18(3):6-9.
    [24]樊冠球.自来水厂用混凝剂存在的问题和解决途径[J].中国给水排水[J],1998,14(3):42-43.
    [25]苗晶.稳定高效聚合氯化铁混凝剂的基础研究[D].济南:山东大学,2002.
    [26]王燕.新型聚合铁基无机—有机复合混凝剂性能的研究[D].济南:山东大学,2002
    [27]Gray K A.The preparation,characterization,and use of inorganic iron(Ⅲ)[D].The John Hopkins Univ.,Baltimore,MD..1988.
    [28]Bottero J Y,Manceau A,Villieras F,et al.Structure and mechanisms of formation of FeOOH(Cl)polymers[J].Langmuir,1994,10(1):816-819.
    [29]Masion A,Rose J,Bottero J Y,et al.Nucleation and growth mechanisms of Fe Oxyhydroxide in presence of PO4 ions.1.Fe-Edge EXAFS study[J].Langmuir,1996,12(26):6701-6707.
    [30]Bottero J Y,Tchoubar D,Arnaud M,et al.Partial hydrolysis of ferric nitrate salt:structure investigation by dynamic light scattering and small angle X-ray scattering[J].Langmuir,1991,7:1365-1369.
    [31]Tang H X,Stummn W.The coagulation behaviors of Fe(Ⅲ)polymeric species-Ⅰpreformed polymers by base addition[J].Water Res.,1987,21:115-122.
    [32]Tang H X,Stumm W.The coagulation behaviors of Fe(Ⅲ)polymeric species-ⅡPreformed polymers in various concentration[J].Water Res.,1987,21:122-128.
    [33]Smith R W.Relations among equilibrium and non-equilibrium aqueous species of aluminium hyroxide complexes[J].Adv.Chem.Set.,1971,106:250-279.
    [34]Murphy P J,Posner A M,Quirk J P.Chemistry of iron in soil[J].Aust.J.Soil Sci.,1975,13:189-201.
    [35]Murphy P J,Posner A M,Quirk J P,Characterization of Partially neutralized ferric nitrate solution[J].J.Colloid Interface Sci.,1976,56:270-283.
    [36]Kimberly A G.The preparation,characterization,and use of inorganic iron(Ⅱ)polymers for coagulantion in water treatment[D],The John Hopkins Univ.,Baltimore,MD.,1988,72:156-168.
    [37]高宝玉,王炳建,岳钦艳.聚合硅酸铝铁絮凝剂中铁的形态分布与转化[J].环境科学研究,2002,15(1):13-15.
    [38]田宝珍,汤鸿霄.Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态[J].环境化学,1989,8(4):27-34.
    [39]王红宇.高浓度聚合氯化铁絮凝剂的应用基础研究[D].杭州:浙江大学,2004
    [40]Butler G B,Ingley F L.Preparation and Polymerization of Unsaturated Quaternary Ammonium Compounds.Ⅰ.Halogenated Allyl Derivatives[J].J.Am.Chem.Soc.,1951,73:895-896.
    [41]常青,陈野.二甲基二烯丙基氯化铵的合成[J].环境科学,1999,20(1): 87-90.
    [42]Jane B,Wong S.Karen R T.Hydrophilic Dispersion Polymers of Diallyldimethylammonium Chloride and Acrylamide for the Clarification of Drinking Process Waters[P].US 6019904.
    [43]Butler G B,Angelo R J.Preparation and Polymerization of Unsaturated Quaternary Ammonium Compounds.Ⅷ.Proposed Alternating Intramolecular-Intermolecular Chain Propagation[J].J.Am.Chem.Soc.,1957,79:3128-3130.
    [44]Jaeger W,Hahn M,Wandrey Ch,et al.Cyclopolymerization Kinetics of Dimethyl Dially Ammonium Chloride[J].Macromol.Sci.Chem.,1984,21(5):593-561.
    [45]Jaeger W.,Hahn M.,Wandrey Ch.,et al.Cyclopolymerization Kinetics of Dimethyl Dially Ammonium Chloride[J].Macromol.Sci.Chem.,1984,21(5):593-561.
    [46]George B B,Pledger H J.Method of Enhancing Polymerization of Dialkyldiallylanunonium Compounds to Produce High Molecular Weight Polymers[P].US 4742t34.
    [47]陆兴章,高华星,孙云璞,等.HC型阳离子高分子絮凝剂的絮凝性能及其应用研究[J].环境污染与防治,1994,16(6):6-10.
    [58]Wemer J,Ulrich G,Monika J.Flotation Agent and Method for Treatment of Oil -containing Wastewaters[P].DD,294422.
    [49]顾学芳,张跃军,陈伟忠.阳离子絮凝剂PDA的合成与应用研究一对废纸再生造纸废水的处理[J].工业水处理,2001,21(1):22-25.
    [50]Golubeva I A,Gromov V F.Stabilization of Cationic Acrylamide Polymers Designed to Enhance Oil Recovery[J].J.Polym.Mater.,1994,24(14):85-89.
    [51]Shu-Jec.W H,Schaumbrug.Reducing Turbidity in Turbid Waters[P].US 4450092.
    [52]刘立华,龚竹青.两步法合成二甲基二烯丙基氯化铵的工艺改进[J].精细化工,2006,23(6):588-593.
    [53]Jarvis P,Jefferson B,Parsons S A.Floc structural characteristics using conventional coagulation for a high doc,low alkalinity surface water source[J]Water Res.,2006.40(14):2727-2737.
    [54]O'Melia C R.Coagulation in Wastewater Treatment[C].In the Scientific Basis of Flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rijin. Netherlands, 1978.
    [55] Hahn H H, Stumm W.. Kinetics of Coagulation with Hydrolyzed Aluminum [J]. J Colloid and Inter Sci, 1968, 28:133-142.
    [56] Ruehrwein R A, Ward D W. Mechanism of Clay Aggregation by Polyelectrolytes [J]. Soil Sci, 1952,73:485-492.
    [57] Micheals A S. Aggregation of Suspensions by Polyelectrolytes [J]. Ind Eng Chem, 1954,46:1485-1490.
    [58] Smellie R H, LaMer V K. Flocculation Subsidence and Filtration of Phosphate Slimes VI.A Quantitative Theory of Filtration of Flocculated Suspensions [J]. J Coll Sci, 1956, 13: 589-599.
    [59] LaMer V K, Healy T W. Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liquid Interface [J]. Rev Pure App Chem, 1963, 13: 112-132.
     [60] Packham R F. Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts [J]. J Colloid Sci, 1965, 20: 81-92.
    
    [61] McCurdy K, Carlson K, Gregory D. Floc Morphology and Cyclic Shearing Recovery: Comparison of Alum and Polyaluminium Chloride Coagulants. Water Res. Technol., 2004, 38: 486-494.
    [62] Boiler M, Blaser S. Particles under Stress [J]. Water Sci. Technol., 1998, 37(10): 9-29.
    [63] Parker D S, Kaufman W J, Jenkins D. Floc Breakup in Turbulent Flocculation Processes [J]. Journal of the Sanitary Engineering Division." Proceeding of the American Society of Civil Engineers SA 1, 1972: 79-99.
    [64] Bache D H, Johnson C, McGilligan J F, et al. A Conceptual View of Floc Structure in the Sweep Floc Domain [J]. Water Sci. Technol., 1997, 36(4): 49-56.
    
    [65] Bache D H, Johnson C, McGilligan J F, et al. A conceptual view of floc structure in the sweep floc domain [J]. Water Sci. Technol. 1997, 36(4): 49-56.
    
    [66] McCurdy K, Carlson K, Gregory D. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants [J]. Water Res., 2004, 38(2): 486-494.
    [67] Jarvis P. Jefferson B, Parsons S A. The duplicity of floc strength [C]. Proceedings of the Nano and Micro Particles in Water and Wastewater Treatment Conference,International Water Association:Zurich,Switzerland,2003.
    [68]Jarvis P,Jefferson B,Parsons S A.Breakage,regrowth,and fractal nature of natural organic matter flocs[J].Environ.Sci.Technol.,2005,39(7):2307-2314.
    [69]Yukselen M A,Gregory J.The reversibility of floc breakage[J].Int.J.Miner.Proces.,2004,73(2-4):251-259.
    [70]Mikkelsen L H,Keiding K.The Shear Sensitivity of Activated Sludge:an Evaluation of the Possibility for a Standardized Floc Strength Test[J].Water Res.,2002,36:2931-2940.
    [71]Gregory J.Monitoring Floc Formation and Breakage[C].In Proceedings of the Nano and Micro Particles in Water and Wastewater Treatment Conference,International Water Association,Zurich,2003.
    [72]Yeung A K,Gibbs A,Pelton R P.Effect of Shear on the Strength of Polymer-Induced Flocs[J].J.Colloid Interface Sci.,1997,196:113-115.
    [73]Lee C H,Liu J C.Sludge Dewaterability and Floc Structure in Dual Polymer Conditioning[J].Adv.Environ.Res.,2001,5:129-136.
    [74]Wu C C,Wu J J,Huang R Y.Floc Strength and Dewatering Efficiency of Alum Sludge[J].Adv.Environ.Res.,2003,7:617-621.
    [75]Bache D H,Rasool E,Moffatt D,McGilligan F J.On the Strength and Character of Alumino-Humic Flocs[J].Water Sci.Technol.,1999:40(9):81-88.
    [76]Bache D H,Rasool E R.Characteristics of Alumino-Humic Flocs in Relation to DAF Performance[J].Water Sci.Technol.,2001,43(8):203-208.
    [77]曲久辉.饮用水安全保障技术原理[M].北京:科学出版社,2007.208-209.
    [78]Yeung A K C,Pelton R.Micromechanics:A New Approach to Studying the Strength and Breakup ofFlocs[J].J.colloid Interface Sci.,1996,184:579-585.
    [79]Zhang Z,Sick M L,Mashmoushy H,et al.Charaterisation of the Breaking Force of Latex Particle Aggregates by Micromanipulation[J].Part.Syst,Char.,1999,16:278-283.
    [80]金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J].环境科学学报,2001,21(增刊):23-29.
    [81]Logan B E,Wilkinson D B.Fractal geometry of marine snow and other biological aggregates[J].Limnol Oceanogr,1990,35(1):130-136.
    [82]王东升,汤鸿霄,栾兆坤.分形理论及其研究方法[J].环境科学学报,2001,21(增刊):10-16.
    [83]Teixeira B J.Small-angle scattering by fractal systems[J].Appl Cryst,1988,21(6):781-785.
    [84]Gregory J.Turbidity fluctuations in flowing suspensions[J].JC&IS,1985,105:357-371.
    [85]Gregory J,Nelson D W.Monitoring of aggregates in flowing suspensions[J].Colloids Surf.,1986,18:175-186.
    [86]Gregory J.Chung H J.Continuous monitoring of floc properties in stirred suspensions[J].J Water SRY-Aqua,1995,44:125-131.
    [87]魏复盛,齐文起,毕彤,等.水和废水监测分析方法[M].北京:国家环境保护总局水和废水监测分析方法编委会编,2002.224-227.
    [88]Francois R J.Strength of aluminum hydroxide floes[J].Water Res.1987,21(9):1023-1030.
    [89]Yukselen M A,Gregory J.The reversibility of floc breakage[J].Int.J.Miner.Process.,2004,73(2-4),251-259.
    [90]Jarvis P,Jefferson B,Parsons S A.Breakage,regrowth,and fractal nature of natural organic matter floes[J].Environ.Sci.Technol.,2005,39(7):2307-2314.
    [91]Bushell G C,Yan Y D,Woodfield D,et al.On techniques for the measurement of the mass fractal dimension of aggregates[J].Adv.Colloid Interface Sci.,2002,95(1):1-50.
    [92]Bushell G C,Yan Y D,Woodfield D,et al.On techniques for the measurement of the mass fractal dimension of aggregates[J].Adv.Colloid Interface Sci.,2002,95(1):1-50.
    [93]Guan J,Waite T D,Areal R.Rapid structure characterization of bacterial aggregates[J].Environ.Sci.Yechnol.1998,32(23):3735-3742.
    [94]Hu C Z,Liu H J,Qu J H,et al.Coagulation behavior of aluminum salts in eutrophic water:Significance of Al_(13)species and pH control[J].Environ.Sci. Technol., 2006,40(1): 325-331.
    
    [95] Dempsey B A, Ganho R M, O'Melia C R. The coagulation of humic substances by means of aluminum salts [J]. J. Am. Water Works Assoc, 1984, 76(4): 141-150.
    [96] Dennett K E, Amirtharajah A, Moran T F, et al. Coagulation: its effect on organic matter [J]. J. Am. Water Works Assoc, 1996, 88(4): 129-142.
    
    [97] Vilge-Ritter A, Rose J, Masion A, et al. Chemistry and structure of aggregates formed with Fe-salts and natural organic matter [J]. Colloids Surf. A., 1999, 147 (9): 297-308.
    [98] Bache D H, Rasool E. Moffatt D, et al. On the strength and character of alumino-humic flocs [J], Water Sci. Technol. 1999, 40 (9): 81-88.
    [99] Gregor J E, Nokes C J, Fenton E, et al. Optimising natural organic matter removal from low turbidty waters by controlled pH adjustment of aluminium coagulation [J], Water Res., 1997, 31(12): 2949-2958.
    [100] Dennett K E, Amirtharajah A, Moran T F, et al. Coagulation: its effect on organic matter [J]. J. Am. Water Works Assoc, 1996, 84(4): 129-142.
    [101] Zhou Y, Franks G V. Flocculation mechanism induced by cationic polymers investigated by light scattering [J]. Langmuir, 2006, 22(16): 6775-6786.
    [102] Gregory J. Fundamentals of flocculation [J]. Crit. Rev. Environ. Control, 1989, 19(3): 185-230.
    
    [103] Yu J F, Wang D S, Ge X P. Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures [J]. Colloids Surf. A Physicochem. Eng. Asp. 2006, 290(1-3): 288-294.
    [103] Bratby J. Coagulation and Flocculation [M]. Croydon, UK: Upland Press, 1980. 55-89.
    [104] Gorczyca B, Ganczarczyk J. Structure and porosity of alum coagulation flocs [J]. Water Qual. Res. J. Can., 1999, 34(4): 653-666.
    [105] Antoine L, Francois F, Bottero J Y. Polymerized iron chloride: an inproved inorganic coagulant [J]. J. Am. Water Works Assoc, 1984, 76(10): 93-97.
    [106] Tang H X. Stumm W. Coagulation behaviour of Felll polymeric species-I. preformed polymers by base addition[J].Water Res.,1987,21(1):115-121.
    [107]O'Melia C R,Gray K A,Yao C.Polymeric Inorganic Coagulants[C].Denver,USA:American Water Works Association Research Foundation,American Water Works Association,1989.
    [108]Cheng W P,Hydrolytic characteristics of polyferric sulfate and its application in surface water treatment[J].Sep.Sci.Technol.,2001,36(10):2265-2277.
    [109]岳钦艳,赵华章,高宝玉.二甲基二烯丙基氯化铵聚合物的除浊性能研[J].工业水处理,2002,22(3):26-31.
    [110]Spiro T G,Allerton S E,Renner J.The hydrolytic polymerization of iron[J].J.Am.Chem.Soc.,1996,88(12):2721-2726.
    [111]陆柱,蔡兰坤,陈中兴.水处理药剂[M].北京:化学工业出版社,2002.8-10.
    [112]王红宇,赵华章,栾兆坤,等.聚合氯化铁对浊度和腐殖酸的混凝特性研[J].环境科学,2004,3(25):65-68.
    [113]周春琼,邓先和,刘海敏.无机有机高分子复合絮凝剂研究与应用[J].化工进展,2004,23(12):1277-1283.
    [114]赵华章,栾兆坤,岳钦艳,等.PDMDAAC系列混凝剂的脱色性能研究[J].环境化学,2002,21f2):149-154.
    [116]Sharp E L,Jarvis P,Parsons S A.The impact of zeta potential on the physical properties of ferric-NOM floes[J].Environ.Sci.Technol.,2006,40(12):3934-3940.
    [117]Chaignon V,Lartiges B S,El Samrani A,et al.Evolution of size distribution and transfer of mineral particles between flocs in activated sludges:an insight into floe exchange dynamics[J].Water Res.,2002,36(3):676-484.
    [118]Selomulya C,Amal R,Bushell G,et al.Evidence of shear rate dependence on restructuring and breakup of latex aggregates[J].J.Colloid Interface Sci.,2001,236(1):66-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700