食品和饲料中主要违禁药物分子印迹聚合物的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
样品前处理技术一直是食品和饲料中违禁药物残留检测研究的重点和难点,发展简单、高效的样品前处理技术,对违禁药物残留进行选择性富集、纯化,提高检测灵敏度,已成为当前国内外食品安全检测技术的重要发展方向之一。固相萃取(Solid-phase extraction,SPE)和免疫亲和色谱(Immunoaffinity chromatography,IAC)是目前使用最广泛的常规样品前处理技术。然而,前者目标物与吸附剂之间的作用力是非特异性的,限制了其进一步的发展;后者所用填料为抗体,其制备过程繁琐、价格昂贵,需要在低温下保存,这些不利因素严重阻碍了IAC的广泛应用。基于分子印迹聚合物的分子印迹固相萃取(Molecularly imprinted solid phase extraction,MISPE)技术,具有高特异性与高选择性、制备简单、稳定性好和可重复使用等优点,已成为近年来分子印迹技术最具应用前景的一个领域。
     本文对分子印迹聚合物(Molecularly imprinted polymers,MIPs)的基本原理、研究及应用现状等进行了较为全面的综述,对存在的问题和发展趋势进行了分析和展望。在此基础上,主要针对利血平、氯霉素和氨苄青霉素等食品中主要违禁药物,研制其MIPs纳米结构材料,并在食品安全检测中应用,在以下几个方面取得重要研究结果:
     1.采用本体聚合法以甲基丙烯酸(MAA)为功能单体合成了利血平特异的MIPs。平衡结合实验结果表明功能单体与模板比例为4:1时合成的MIPs具有最好的印迹效果。进一步通过色谱实验对其选择性能和色谱行为进行评价,发现与对照聚合物(Non-imprinted polymers,NIPs)相比,MIPs对利血平具有更好的选择性能和色谱行为;通过紫外光谱、核磁共振波谱、比表面积分析和色谱等方法,系统研究了模板分子利血平与功能单体之间的自组装过程,证明了利血平-NH-基团中氢质子与功能单体在预聚合溶液中具有较强的相互作用,而且利血平分子中叔胺结构周围的质子也表现出了显著的位移变化,表明叔胺结构在印迹和识别过程中也具有重要的作用;在此基础上,通过对分子印迹固相萃取条件的优化,建立了饲料中利血平快速、准确的提取和检测方法,对饲料中三个浓度水平(0.50,1.00和5.00μg/g)的回收率都超过80%。
     2.采用水相悬浮聚合法制备了氯霉素特异的分子印迹聚合物微球(Molecularly imprinted polymer microspheres,MIPMs),克服了采用经典本体聚合法获得MIPs后,需经研碎、过筛等处理,才能得到所需粒径的分子印迹聚合物颗粒,而且通常存在得率低、颗粒形状不规则、分散性差和研磨过程中易导致MIPs的分子识别与选择性下降等缺点。结果表明,以甲基丙烯酸N,N-二乙基氨基乙酯(DEAEM)为功能单体,模板分子与功能单体比例为1:4时合成的MIPMs对氯霉素具有较好的特异选择性。通过MISPE比较了MIPMs对氯霉素、甲砜霉素和氟甲砜霉素的特异选择性,结果表明MIPMs对氯霉素表现出最高的特异性(53.1%)。同时通过高效液相色谱实验对MISPE对实际样品的富集和纯化效果进行了研究。结果表明,当牛奶和虾样品中氯霉素浓度为5μg/kg时,其回收率分别为92.7%和84.9%,RSD分别为2.7%和3.4%,样品中的氯霉素获得了显著的分离、纯化效果。进一步将氯霉素MISPE与HPLC-MS/MS相结合,对蜂蜜中氯霉素残留进行定量分析,检测限可达0.1μg/kg,符合目前国家标准中检测限量要求(0.3μg/kg)。
     3.通过悬浮聚合法,获得了氨苄青霉素特异的MIPMs。结果表明,采用DEAEM作为功能单体,模板分子与功能单体比例为1:8时合成的氨苄青霉素MIPMs具有最好的印迹效果。进一步通过色谱实验对氨苄青霉素及其结构类似物青霉素V、苯唑西林和阿莫西林在MIPMs中的色谱行为和印迹效果进行研究,结果表明,MIPMs对氨苄青霉素具有最好的印迹效果,其印迹因子分别为3.75、3.21、3.08和2.83。紫外光谱分析表明氨苄青霉素与DEAEM在水性溶液中具有较强的选择性相互作用。据此对固相萃取条件进行优化,结果表明采用3 mL 5%乙腈(pH,7.0)作为淋洗液,5 mL甲醇作为洗脱液,该MIPMs能有效的净化和选择性吸附蜂蜜样品中的氨苄青霉素。
     本论文首次制备出利血平分子印迹聚合物、氯霉素和氨苄青霉素分子印迹聚合物微球,并成功应用于食品和饲料中违禁药物的分离与纯化;同时对相关印迹和识别机理进行了全面、系统的研究,进而建立了快速、灵敏、准确检测食品和饲料中主要违禁药物的新方法。这些研究不仅为分子印迹聚合物在固相萃取方面的实际应用提供了理论指导,也为其它违禁药物分子印迹聚合物的相关基础和应用研究提供了有价值的参考。
Nowadays, the abused drugs in foods and feeds have been strictly banned, and the Maximum Residue Limits (MRLs) were legislated. Hence, new technologies for enrichment and purification of drug residues have aroused increasingly interests in future studies. The solid phase extraction (SPE) and immunoaffinity chromatography (IAC) are now widely used. However, generic sorbents for SPE usually lack selectivity, and are easily subject to interference by non-target substances with similar characteristics. Although IAC is capable of differentially adsorbing target analytes, it still has some disadvantages such as lacking stability and high costs of antibody preparation. The molecularly imprinted solid phase extraction (MISPE) possesses the similar selectivity with the immunoaffinity and better stability and simplicity than it. Hence, MISPE has become the one of the most important applications of MIPs and displayed higher selectivity than conventional SPE with respect to the binding of target analytes from complex matrices.
     In this study, the developments and applications of MISPE were comprehensively introduced. The molecularly imprinted polymers for reserpine, chloramphenicol and ampicillin were all prepared by non-covalent methods, respectively. Furthermore, the characteristics of these polymers were discussed, and the application of polymers in solid phase extraction was investigated.
     1. The specific molecularly imprinted polymers (MIPs) of reserpine (RES) using methacrylic acid (MAA) as the functional monomer and its derived MISPE cartridges for purification and enrichment in feeds were developed and characterised in this study. Evaluation of the various polymers by binding assays indicated that the optimum ratio of functional monomer to template was 4:1. Furthermore, the selectivity and enrichment capacity of the MIPs were assessed by the chromatographic method, which demonstrated that the MIPs can be used as alternative separation materials for RES isolation in feed samples at three spiked levels of 0.50, 1.00 and 5.00μg/g, with the recoveries above 80%. Combination of BET analysis, NMR and UV-vis spectroscopy for investigation on the imprinting and recognition properties revealed that the strong specific interactions between the functional monomer and RES in the prepolymerization solutions or the aqueous solutions were probably responsible for RES recognition. These data showed that the developed MISPE can be a valuable tool for the clean-up and enrichment of RES from the feeds.
     2. The majority of MIPs were synthesised by bulk polymerization, with the process of obtaining the appropriate polymeric particles which requires grinding and time-consuming sieving with low yield. This leads to inconvenience and makes the method not feasible for manufacturing uses. Furthermore, the shapes and sizes of the particles are usually irregular, resulting in high pressure and decrease of selectivity. Hence, to increase the feasibility for MIPMs production and applicability in aqueous samples, we prepared the novel MIPMs against CAP for MISPE analysis by aqueous suspension polymerization, with water as the suspension medium to mimic the natural condition of CAP during the course of polymerization for improving the specificity, and to avoid complicated post-treatment procedures after polymerization. The optimum ratio of functional monomer to template for the specific rebinding of CAP was 4:1. The resulting MIPMs for CAP had the ability to specifically adsorb CAP, and the MISPE based on the MIPMs was shown to be applicable for clean-up and preconcentration of trace CAP in milk and shrimp samples with high recoveries of 92.7% and 84.9%, respectively. A fast accurate and selective analytical method using the MISPE for extraction of CAP in combination with HPLC-MS/MS for analysis has been developed, and the detection limit for CAP in honey residue was 0.1μg/kg.
     3. In this study, the ampicillin (AMPI) molecularly imprinted polymer microspheres (MIPMs), used as the solid-phase extraction (SPE) sorbents, were first synthesized by aqueous suspension polymerization. Evaluation of the imprinted polymers by chromatographic analysis indicated that the optimum type and ratio of functional monomer to the template was DEAEM and 8:1, respectively. Under the optimal SPE conditions, the spiked AMPI in the honey samples was purified and enriched. The recoveries were all above 89% and the HPLC chromatogram of AMPI obtained before and after SPE treatment obviously showed that the matrix interferences could be almost removed by the washing step, thus achieving substantial improvement on sample preparation for further determination.
     In conclusion, the MIPs of RES and the MIPMs of CAP and AMPI were first synthesized, and were successively applied for preconcentration and clean-up for the major abused drugs in foods and feeds. Furthermore, the imprinting and recognition mechanism were comprehensively and systematically studied, which could provide a valuable reference for the related basic research and application in practical uses of MIPs against other abused drugs. Finally, the novel MISPE for purification and enrichment toward the corresponding drugs in foods and feeds were developed for determination, with satisfactory recoveries and improved sensitivity.
引文
1.许牡丹,毛跟年.食品安全性与分析检测.北京,化学工业出版社, 2003
    2.王晶,王林,黄晓蓉.食品安全快速检测技术.北京,化学工业出版社, 2002
    3. Biselli S, Hartig L, Wegner H, et al. Analysis of Fusarium toxins using LC-MS-MS: Application to various food and feed matrices. Lc Gc North America, 2005. 23(4): 404-416
    4. Tada A, Jin ZL, Sugimoto N, et al. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS. J Food Hyg Soc Jpn, 2005. 46(5): 198-204
    5. Frazier RA. Recent advances in capillary electrophoresis methods for food analysis. Electrophoresis, 2001. 22(19): 4197-4206
    6. Frazier RA, Ames JM, Nursten HE. The development and application of capillary electrophoresis methods for food analysis. Electrophoresis, 1999. 20(15-16): 3156-3180
    7. Lange J, Thomas K, Wittmann C. Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. J Chromatogr B, 2002. 779(2): 229-239
    8. Schramel O, Michalke B, Kettrup A. Capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) as a powerful tool for trace element speciation. J Anal Chem, 1999. 363(5-6): 452-455
    9. Ridgway K, Lalljie SPD, Smith RM. Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A, 2007. 1153(1-2): 36-53
    10. Arthur CL. Solid phase-with thermal desorption using fused silica optical fibers. Anal Chem, 1990. 62: 2145-2148
    11. Ganzler K. Microwave Extraction Anoval Sample Preparation Method for Chromatography. J Chromatogr A, 1986. 371: 299
    12. Breinl F. Chemical examinations on the precipitate from haemoglobin and anti-haemoglobin serum and comments on the nature of antibodies. Z. Physiol Chem, 1930. 192: 45-57
    13. Mudd S. A hypothetical mechanism of antibody formation. J Immunol, 1932. 23: 423-427
    14. Pauling L. A theory of the structure and process of formation of antibodies. J Am Chem Soc, 1940. 62: 2643-2657
    15. Dickey FH. The preparation of specific adsorbents. Proc Natl Acad Sci, 1949. 35: 227-229
    16. Wulff G. The use of polymers with enzyme-analogous structures for the resolution ofracemates. Angew Chem Int Edit, 1972. 11: 341
    17. Vlatakis G, Andersson LI, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993. 361(6413): 645-647
    18. Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics. React Funct Polym, 2001. 48(1-3): 149-157
    19. Andersson LI. Molecular imprinting for drug bioanalysis-A review on the application of imprinted polymers to solid-phase extraction and binding assay. J Chromatogr B, 2000. 739(1): 163-173
    20. Ansell RJ, Ramstr?m O, Mosbach K. Towards artificial antibodies prepared by molecular imprinting. Clin Chem, 1996. 42(9): 1506-1512
    21. Haupt K, Mosbach K. Plastic antibodies: developments and applications. Trends Biotechnol, 1998. 16(11): 468-475
    22. Sellergren B, Andersson LI. Application of imprinted synthetic polymers in binding assay development. Methods, 2000. 22(1): 92-106
    23. Haupt K. Imprinted polymers-tailor-made mimics of antibodies and receptors. Chem Commun, 2003(2): 171-178
    24. Caro E, MasquéN, MarcéRM, et al. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. J Chromatogr A, 2002. 963(1-2): 169-178
    25. Wulff G. In Affinity Chromatography and Related Techniques,Gribnau TCJ, Visser J, Nivard RJF (eds). Elsevier Scientific Publishing Company: Amsterdam. 1982: 207-216
    26. Wulff G. In Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and their Applications in Analytical Chemistry, Techniques and Instrumentation in Analytical Chemistry, Vol. 23, Sellergren B (ed.). Elsevier: Amsterdam;. 2001: 71-111
    27. Wulff G. Selective binding to polymers via covalent bonds-the construction of chiral cavities as specific receptor-sites. Pure Appl Chem, 1982. 54: 2093–2102
    28. Kugimiya A, Takeuchi T. Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid. Biosens Bioelectron, 2001. 16(9-12): 1059-1062
    29. Kugimiya A, Matsui J, Abe H, et al. Synthesis of castasterone selective polymers prepared by molecular imprinting. Anal Chim Acta, 1998. 365(1-3): 75-79
    30. Andersson LI. In Immunoassays of Agrochemicals, ACS Symposium Series, Vol.586, Karu AE,Nelson JO, Wong RB (eds). The American Chemical Society: Washington, DC . 1995: 89–96
    31. Sellergren B. Molecular imprinting by noncovalent interactions—tailor-made chiral stationary phases of high selectivity and sample load-capacity. Chirality, 1989. 1: 63–68
    32. Sellergren B. In Innovations and Perspectives in Solid Phase Synthesis. Peptides, Polypeptides and Oligonucleotides,Macroorganic reagents and Catalysts, EptonR (ed.). SPCC (UK): Birmingham. 1990: 293–307
    33. Sellergren B. In Molecular and Ionic Recognition with Imprinted Polymers, ACS Symposium Series, Vol.703, Bartsch RA, Maeda M (eds). The American Chemical Society: Washington, DC. 1998: 49–80
    34. Sellergren B. Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials. Trac-Trend Anal Chem, 1997. 16(6): 310-320
    35. Sellergren B. In Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and their Applications in Analytical Chemistry, Techniques and Instrumentation in Analytical Chemistry, Vol. 23, Elsevier:Amsterdam. 2001: 113–184
    36. Mosbach K, Haupt K. Some new developments and challenges in noncovalent molecular imprinting technology. J Mol Recognit, 1998. 11(1-6): 62-68
    37. Umpleby II, Bode M, Shimizu KD. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst, 2000. 125(7): 1261-1265
    38. Whitcombe MJ, Rodriguez ME, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting-synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc, 1995. 117: 7105–7111
    39. Caro E, MarcéRM, Borrull F, et al. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. Trac-Trend Anal Chem, 2006. 25(2): 143-154
    40. Baggiani C, Giraudi G, Vanni A. A molecular imprinted polymer with recognition properties towards the carcinogenic mycotoxin ochratoxin A. Bioseparation, 2001. 10(6): 389-394
    41. Andersson LI, Paprica A, Arvidsson T. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia, 1997. 46(1-2): 57-62
    42. Matsui J, Kato T, Takeuchi T, et al. Molecular Recognition in Continuous Polymer Rods Prepared by a Molecular Imprinting Technique. Anal Chem, 1993. 65: 2223-2224
    43. Matsui J, Takeuchi T. A molecularly imprinted polymer rod as nicotine selective affinity media prepared with 2-(trifluoromethyl)acrylic acid. Anal Commun, 1997. 34(7): 199-200
    44. Sellergren B. Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer. Anal Chem, 1994. 66: 1578-1582
    45. Schweitz L, Andersson LI, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal Chem, 1997. 69(6): 1179-1183
    46. Matsui J, Fujiwara K, Ugata S, et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. J Chromatogr A, 2000. 889(1-2): 25-31
    47.赖家平,卢春阳,何锡文.水溶液微悬浮聚合法制备酸性药物吲哚美辛分子印迹微球及其色谱表征.高等学校化学学报, 2003. 24: 1175-1179
    48. Mayes AG, Mosbach K. Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem, 1996. 68 (21): 3769-3774
    49. Haginaka J, Takehira H, Hosoya K, et al. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen - Comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques. J Chromatogr A, 1998. 816(2): 113-121
    50. Haginaka J, Takehira H, Hosoya K, et al. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen. Chem Lett, 1997(6): 555-556
    51. Masci G, Aulenta F, Crescenzi V. Uniform-sized clenbuterol molecularly imprinted polymers prepared with methacrylic acid or acrylamide as an interacting monomer. J Appl Poly Sci, 2002. 83(12): 2660-2668
    52. Ye L, Weiss R, Mosbach K. Synthesis and characterization of molecularly imprinted microspheres. Macromolecules, 2000. 33(22): 8239-8245
    53. Ye L, Cormack PAG, Mosbach K. Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal Commun, 1999. 36(2): 35-38
    54. Dhal PK, Vidyasankar S, Arnold FH. Surface grafting of functional polymers to macroporous poly(trimethylolpropane trimethacrylate). Chem Mater, 1995. 7: 154-162
    55. Dong W, Yan M, Zhang M, et al. A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Anal Chim Acta, 2005. 542(2): 186-192
    56. Tremblay MR, Poirier D. Solid-phase synthesis of phenolic steroids: Towards combinatoriallibraries of estradiol derivatives. Tetrahedron Lett, 1999. 40(7): 1277-1280
    57. Idziak I, Benrebouh A, Deschamps F. Simple NMR experiments as a means to predict the performance of an anti-17 alpha-ethynylestradiol molecularly imprinted polymer. Anal Chim Acta, 2001. 435(1): 137-140
    58. Lu Y, Li C, Zhang H, et al. Study on the mechanism of chiral recognition with molecularly imprinted polymers. Anal Chim Acta, 2003. 489(1): 33-43
    59. Yin J, Yang G, Chen Y. Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers. J Chromatogr A, 2005. 1090(1-2): 68-75
    60. Theodoridis G, Konsta G, Bagia C. Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs. J Chromatogr B, 2004. 804(1): 43-51
    61. Page MI, Jencks WP. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci, 1971. 68: 1678-1683
    62. Jencks WP. On the attribution and additivity of binding energies. Proc Natl Acad Sci, 1981. 78: 4046-4050
    63. Williams DH, Coxs JPL, Doig AJ, et al. Toward the semiquantitative estimation of binding constants. Guides for peptide-peptide binding in aqueous solution. J Am Chem Soc, 1991. 113: 7020–7030
    64. Nicholls IA. Thermodynamic Considerations for the Design of and Ligand Recognition by Molecularly Imprinted Polymers. Chem Lett, 1995: 1035-1036
    65. Whitcombe MJ, Martin L, Vulfson EN. Predicting the selectivity of imprinted polymers. Chromatographia, 1998. 47(7-8): 457-464
    66. Kempe M, Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase. J Chromatogr A, 1994. 664: 276-279
    67. Khasawneh MA, Vallano PT, Remcho VT. Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents II. Covalent imprinted polymers. J Chromatogr A, 2001. 922(1-2): 87-97
    68. Lei JD, Tan TW. Enantioselective separation of naproxen and investigation of affinity chromatography model using molecular imprinting. Biochem Eng J, 2002. 11(2-3): 175-179
    69. Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularlyimprinted stationary phases. J Chromatogr A, 1995. 691(1-2): 317-323
    70. Muldoon MT, Stanker LH. Molecularly imprinted solid phase extraction of atrazine from beef liver extracts. Anal Chem, 1997. 69(5): 803-808
    71. Weiss R, Molinelli A, Jakusch M, et al. Molecular imprinting and solid phase extraction of flavonoid compounds. Bioseparation, 2001. 10(6): 379-387
    72. Zhou SN, Lai EPC, Miller JD. Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution. Anal Bioanal Chem, 2004. 378(8): 1903-1906
    73. Zhu QZ, Haupt K, Knopp D, et al. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Anal Chim Acta, 2002. 468(2): 217-227
    74. Hong JM, Anderson PE, Qian J, et al. Selectively-permeable ultrathin film composite membranes based on molecularly-imprinted polymers. Chem Mater, 1998. 10(4): 1029-1033
    75. Kriz D, Kriz CB, Andersson LI. Thin-Layer Chromatography Based on the Molecular Imprinting Technique. Anal Chem, 1994. 66(17): 2636 - 2639
    76. Piletsky SA. Substrate-selective polymeric membranes: selective transfer of nucleic acid components. Biopolym Kletka, 1990. 6: 55-58
    77. Sergeyeva TA, Matuschewski H, Piletsky SA, et al. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. J Chromatogr A, 2001. 907(1-2): 89-99
    78. Yoshikawa M, Kondo Y, Morita Y. Relationship between enantioselectivity of alternative molecularly imprinted polymeric membranes and species of amino acid residues composing chiral recognition sites. Bioseparation, 2001. 10(6): 323-330
    79. Kobayashi T, Murawaki Y, Reddy PS, et al. Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal Chim Acta, 2001. 435(1): 141-149
    80. Shoji R, Takeuchi T, Kubo I. Atrazine sensor based on molecularly imprinted polymer-modified gold electrode. Anal Chem, 2003. 75(18): 4882-4886
    81. Piletsky SA, Piletskaya EV, Elgersma AV, et al. Atrazine sensing by molecularly imprinted membranes. Biosens Bioelectron, 1995. 10: 959-964
    82. Alexander C, Andersson HS, Andersson LI, et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit, 2006. 19(2): 106-180
    83. Pap T, Horváth V, Tolokán A, et al. Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction. J Chromatogr A, 2002. 973(1-2): 1-12
    84. Caro E, MarcéRM, Cormack PAG, et al. Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water. J Chromatogr A, 2004. 1047(2): 175-180
    85. Zhang M, Xie J, Zhou Q, et al. On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith. J Chromatogr A, 2003. 984(2): 173-183
    86. Lai J P, Niessner R, Knopp D. Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples. Anal Chim Acta, 2004. 522(2): 137-144
    87. Cacho C, Turiel E, Martín-Esteban A, et al. Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples. J Chromatogr A, 2006. 1114(2): 255-262
    88. Carabias-Martínez R, Rodríguez-Gonzalo E, Herrero-Hernández E. Determination of triazines and dealkylated and hydroxylated metabolites in river water using a propazine-imprinted polymer. J Chromatogr A, 2005. 1085(2): 199-206
    89. Zhu X, Yang J, Su Q, et al. Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. J Chromatogr A, 2005. 1092(2): 161-169
    90. Zhu X, Cao Q, Hou N, et al. The preparation and the recognition property of molecularly imprinted polymer of podophyllotoxin. Anal Chim Acta, 2006. 561(1-2): 171-177
    91. Chianella I, Piletsky SA, Tothill IE, et al. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosens Bioelectron, 2003. 18(2-3): 119-127
    92. Ferrer I, Lanza F, Tolokan A, et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem, 2000. 72(16): 3934-3941
    93. Chapuis F, Pichon V, Lanza F, et al. Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers - Application to the extraction of triazines from complex matrices. J Chromatogr B, 2004. 804(1): 93-101
    94. Turiel E, Martín-Esteban A, Fernández P, et al. Molecular recognition in a propazine-imprinted polymer and its application to the determination of triazines in environmental samples. AnalChem, 2001. 73(21): 5133-5141
    95. Watabe Y, Kondo T, Morita M, et al. Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. J Chromatogr A, 2004. 1032(1-2): 45-49
    96. Koeber R, Fleischer C, Lanza F, et al. Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC-MS analysis of triazines in river water samples using molecularly imprinted polymers. Anal Chem, 2001. 73(11): 2437-2444
    97. Mullett WM, Dirie MF, Lai EPC, et al. A 2-aminopyridine molecularly imprinted polymer surrogate micro-column for selective solid phase extraction and determination of
    4-aminopyridine. Anal Chim Acta, 2000. 414(1-2): 123-131
    98. Lai EPC, Wu SG. Molecularly imprinted solid phase extraction for rapid screening of cephalexin in human plasma and serum. Anal Chim Acta, 2003. 481(2): 165-174
    99. Piletsky SA, Karim K, Piletska EV, et al. Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst, 2001. 126(10): 1826-1830
    100. Chianella I, Lotierzo M, Piletsky SA, et al. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem, 2002. 74(6): 1288-1293
    101. Wu L, Li Y. Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches. J Mol Recognit, 2004. 17(6): 567-574
    102. Chianella I, Karim K, Piletska EV, et al. Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: Adsorbent for abacavir. Anal Chim Acta, 2006. 559(1): 73-78
    103. Lanza F. Method for synthesis and screening of large groups of molecularly imprinted polymers. Anal Chem, 1999. 71(11): 2092-2096
    104. Takeuchi T, Fukuma D, Matsui J. Combinatorial molecular imprinting: An approach to synthetic polymer receptors. Anal Chem, 1999. 71(2): 285-290
    105. Dirion B, Cobb Z, Schillinger E, et al. Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design. J Am Chem Soc, 2003. 125(49): 15101-15109
    106. Navarro-Villoslada F, San Vicente B, Moreno-Bondi MC. Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A. Anal Chim Acta, 2004. 504(1): 149-162
    107. Pérez-Moral N, Mayes AG. Direct rapid synthesis of MIP beads in SPE cartridges. Biosen Bioelectron, 2006. 21(9): 1798-1803
    108. Ellwanger A, Berggren C, Bayoudh S, et al. Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst, 2001. 126(6): 784-792
    109. Zhu QZ, DeGelmann P, Niessner R, et al. Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer. Environ Sci Technol, 2002. 36(24): 5411-5420
    110. Tamayo FG, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A, 2007. 1152(1-2): 32-40
    111. Zander ?, Findlay P, Renner T, et al. Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid phase extraction. Anal Chem, 1998. 70(15): 3304-3314
    112. Berggren C, Bayoudh S, Sherrington D, et al. Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine. J Chromatogr A, 2000. 889(1-2): 105-110
    113. Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants using molecular imprinted polymers. Anal Chim Acta, 2007. 591(1): 29-39
    114. Andersson LI, Hardenborg E, Sandberg-St?ll M, et al. Development of a molecularly imprinted polymer based solid-phase extraction of local anaesthetics from human plasma. Anal Chim Acta, 2004. 526(2): 147-154
    115. Blomgren A, Berggren C, Holmberg A, et al. Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. J Chromatogr A, 2002. 975(1): 157-164
    116. Kubo T, Hosoya K, Watabe Y, et al. On-column concentration of bisphenol A with one-step removal of humic acids in water. J Chromatogr A, 2003. 987(1-2): 389-394
    117. Kubo T, Hosoya K, Watabe Y, et al. Polymer-based adsorption medium prepared using a fragment imprinting technique for homologues of chlorinated bisphenol A produced in theenvironment. J Chromatogr A, 2004. 1029(1-2): 37-41
    118. Brambilla G, Fiori M, Rizzo B, et al. Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices. J Chromatogr B, 2001. 759(1): 27-32
    119. Kootstra PR, Kuijpers CJPF, Wubs KL, et al. The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening. Anal Chim Acta, 2005. 529(1-2): 75-81
    120. Mena ML, AgüíL, Martinez-Ruiz P, et al. Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination. Anal Bioanal Chem, 2003. 376(1): 18-25
    121. Xiong Y, Zhou H, Zhang Z, et al. Molecularly imprinted on-line solid-phase extraction combined with flow-injection chemiluminescence for the determination of tetracycline. Analyst, 2006. 131(7): 829-834
    122. Shi XZ, Wu AB, Zheng SL, et al. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B, 2007. 850(1-2): 24-30
    123. Schirmer C, Meisel H. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey. J Chromatogr A, 2006. 1132(1-2): 325-328
    124. Caro E, MarcéRM, Cormack PAG, et al. Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. Anal Chim Acta, 2005. 552(1-2): 81-86
    125. Caro E, MarcéRM, Cormack PAG, et al. Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples. Anal Chim Acta, 2006. 562(2): 145-151
    126. Guzmán-Vázquez DPA, Martínez-Ruiz P, Reviejo AJ, et al. Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk. Anal Chim Acta, 2005. 539(1-2): 125-132
    127. Guzmán-Vázquez DPA, Reviejo AJ, Pingarrón JM. A method for the quantification of low concentration sulfamethazine residues in milk based on molecularly imprinted clean-up and surface preconcentration at a Nafion-modified glassy carbon electrode. J Pharmaceut Biomed, 2006. 40(2): 281-28639
    128. Puoci F, Garreffa C, Iemma F, et al. Molecularly imprinted solid phase extraction for detection of Sudan I in food matrices. Food Chem, 2005. 93(2): 349-353
    129. Brüggemann O, Visnjevski A, Burch R, et al. Selective extraction of antioxidants with molecularly imprinted polymers. Anal Chim Acta, 2004. 504(1): 81-88
    130.车会莲,茅文玺,何计国.孔雀石绿分子印迹聚合物微球的制备.中国卫生检验杂志, 2006. 16: 1285-1287
    131. Kubo T, Nomachi M, Nemoto K, et al. Chromatographic separation for domoic acid using a fragment imprinted polymer. Anal Chim Acta, 2006. 577(1): 1-7
    132. Maier NM, Buttinger G, Welhartizki S, et al. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations. J Chromatogr B, 2004. 804(1): 103-111
    133. Yu JCC, Krushkova S, Lai EPC, et al. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A. Anal Bioanal Chem, 2005. 382(7): 1534-1540
    134. Yu JCC, Lai EPC. Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. React Funct Polym, 2006. 66(7): 702-711
    135. Urraca JL, Marazuela MD, Moreno-Bondi MC. Molecularly imprinted polymers applied to the clean-up of zearalenone and alpha-zearalenol from cereal and swine feed sample extracts. Anal Bioanal Chem, 2006. 385(7): 1155-1161
    136. Urraca JL, Marazuela MD, Merino ER, et al. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. J Chromatogr A, 2006. 1116(1-2): 127-134
    137. Appell M, Kendra DF, Kim EK, et al. Synthesis and evaluation of molecularly imprinted polymers as sorbents of moniliformin. Food Addit Contam, 2007. 24(1): 43-52
    138. Matsui J, Okada M, Tsuruoka M, et al. Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor. Anal Commun, 1997. 34(3): 85-87
    139. Baggiani C, Trotta F, Giraudi G, et al. A molecularly imprinted polymer for the pesticide bentazone. Anal Commun, 1999. 36(7): 263-266
    140. Tamayo FG, Casillas GL, Martin-Esteban A. Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples. Anal Chim Acta, 2003. 482(2):165-173
    141. Turiel E, Tadeo JL, Cormack PAG, et al. HPLC imprinted-stationary phase prepared by precipitation polymerisation for the determination of thiabendazole in fruit. Analyst, 2005. 130(12): 1601-1607
    142. Tamayo FG, Casillas JL, Martin-Esteban A. Clean up of phenylurea herbicides in plant sample extracts using molecularly imprinted polymers. Anal Bioanal Chem, 2005. 381(6): 1234-1240
    143. Bjarnason B. On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Anal Chem, 1999. 71(11): 2152-2156
    144. Cacho C, Turiel E, Martín-Esteban A, et al. Clean-up of triazines in vegetable extracts by molecularly-imprinted solid-phase extraction using a propazine-imprinted polymer. Anal Bioanal Chem, 2003. 376(4): 491-496
    145. Hantash J, Bartlett A, Oldfield P, et al. Use of an on-line imprinted polymer pre-column, for the liquid chromatographic-UV absorbance determination of carbaryl and its metabolite in complex matrices. J Chromatogr A, 2006. 1125(1): 104-111
    146. Zhang JH, Jiang M, Zou L, et al. Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples. Anal Bioanal Chem, 2006. 385(4): 780-786
    147. Gallego-Gallegos M, Mu?oz-Olivas R, Cámara C, et al. Synthesis of a pH dependent covalent imprinted polymer able to recognize organotin species. Analyst, 2006. 131(1): 98-105
    148. Chauvin AS, Bünzli JCG, Bochud F, et al. Use of dipicolinate-based complexes for producing ion-imprinted polystyrene resins for the extraction of yttrium-90 and heavy lanthanide cations. Chem-Eur J, 2006. 12(26): 6852-6864
    149. Gallego-Gallegos M, Liva M, Olivas RM, et al. Focused ultrasound and molecularly imprinted polymers: A new approach to organotin analysis in environmental samples. J Chromatogr A, 2006. 1114(1): 82-88
    1. Sreemantula S, Boini KM, Nammi S. Reserpine methonitrate, a novel quaternary analogue of reserpine augments urinary excretion of VMA and 5-HIAA without affecting HVA in rats. BMC Pharmacol, 2004. 4(1): 30
    2. Chen FE, Huang J. Reserpine: a challenge for total synthesis of natural products. Chem Rev, 2005. 105(12): 4671-4706
    3. Varchi G, Battaglia A, SamorìC, et al. Synthesis of deserpidine from reserpine. J Nat Prod, 2005. 68(11): 1629-1631
    4. Anderson MA, Wachs T, Henion JD. Quantitative ionspray liquid chromatographic/tandem mass spectrometric determination of reserpine in equine plasma. J Mass Spectrom, 1997. 32(2): 152-158
    5. Cao W, Yang X, Wang E. Determination of reserpine in urine by capillary electrophoresis with electrochemiluminescence detection. Electroanalysis, 2004. 16(3): 169-174
    6. Pinotsis N, Calokerinos AC, Baeyens WRG. Chemiluminometric determination of reserpine and related alkaloids. Analyst, 2000. 125(7): 1307-1311
    7. Chen H, He Q. Flow injection spectrofluorimetric determination of reserpine in tablets by on-line acetone sensitized photochemical reaction. Talanta, 2000. 53(2): 463-469
    8. Singh DK, Srivastava B, Sahu A. Spectrophotometric determination of Rauwolfia alkaloids: estimation of reserpine in pharmaceuticals. Anal Sci, 2004. 20(3): 571-573
    9. Delaunay N, Pichon V, Hennion MC. Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices. J Chromatogr B, 2000. 745(1): 15-37
    10. Dirion B, Cobb Z, Schillinger E, et al. Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design. J Am Chem Soc, 2003. 125(49): 15101-15109
    11. Urraca JL, Marazuela MD, Merino ER, et al. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. J Chromatogr A, 2006. 1116(1-2): 127-134
    12.常琦,何英梅,欧阳晓玫. RP-HPLC法测定利血平片剂的含量.中国药事, 2003. 17: 758-759
    13. Matsui J, Higashi M, Takeuchi T. Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center. J Am Chem Soc, 2000. 122(21): 5218-5219
    14. Tsai HA, Syu MJ. Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine. Biomaterials, 2005. 26: 2759-2766
    15. Yin J, Yang G, Chen Y. Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers. J Chromatogr A, 2005. 1090(1-2): 68-75
    16. Navarro-Villoslada F, San VB, Moreno-Bondi MC. Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A. Anal Chim Acta, 2004. 504(1): 149-162
    17. Xie J, Chen L, Li C, et al. Selective extraction of functional components derived from herb in plasma by using a molecularly imprinted polymer based on 2,2-bis(hydroxymethyl)butanol trimethacrylate. J Chromatogr B, 2003. 788(2): 233-242
    18. Chapuis F, Pichon V, Lanza F, et al. Optimization of the class-selective extraction of triazines from aqueous samples using a molecularly imprinted polymer by a comprehensive approach of the retention mechanism. J Chromatogr A, 2003. 999(1-2): 23-33
    19. Dauwe C. Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers. J Chromatogr A, 1996. 753: 191-200
    20. Jamil N. Studies on the photoshtability of reserpine in parenteral solutions. Pharmazie, 1983. 38: 467-469
    21. Kim H, Kaczmarski K, Guiochon G. Mass transfer kinetics on the heterogeneous binding sites of molecularly imprinted polymers. Chem Eng Sci, 2005. 60(20): 5425-5444
    22. Yu C, Mosbach K. Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers. J Chromatogr A, 2000. 888(1-2): 63-72
    23. Brüggemann O. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering. Biomol Eng, 2001. 18(1): 1-7
    24. Zhu QZ, Haupt K, Knopp D, et al. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Anal Chim Acta, 2002. 468(2): 217-227
    25. Xu Z, Liu L, Deng Q. Study on the mechanism of binding specificity of metoclopramide- imprinted polymers. J Pharmaceut Biomed, 2006. 41(3): 701-706
    26. Lu Y, Li C, Zhang H, et al. Study on the mechanism of chiral recognition with molecularly imprinted polymers. Anal Chim Acta, 2003. 489(1): 33-43
    27. Blomgren A, Berggren C, Holmberg A, et al. Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. J Chromatogr A, 2002. 975(1): 157-164
    1. Ramos M, Mu?oz P, Aranda A, et al. Determination of chloramphenicol residues in shrimps by liquid chromatography-mass spectrometry. J Chromatogr B, 2003. 791(1-2): 31-38
    2. Mottier P, Parisod V, Gremaud E, et al. Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography - electrospray ionization tandem mass spectrometry. J Chromatogr A, 2003. 994(1-2): 75-84
    3. Singer CJ, Katz SE. Microbiological assay for chloramphenicol residues. J Assoc Off Anal Chem, 1985. 68(5): 1037-1041
    4. Shen HY, Jiang HL. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC-UVD, GC-ECD, GC-MS-EI-SIM and GCMS-NCI-SIM methods. Anal Chim Acta, 2005. 535(1-2): 33-41
    5. Santos L, Barbosa J, Castilho MC, et al. Determination of chloramphenicol residues in rainbow trouts by gas chromatography-mass spectometry and liquid chromatography-tandem mass spectometry. Anal Chim Acta, 2005. 529(1-2): 249-256
    6. Forti AF, Campana G, Simonella A, et al. Determination of chloramphenicol in honey by liquid chromatography-tandem mass spectrometry. Anal Chim Acta, 2005. 529(1-2): 257-263
    7. Vivekanandan K, Swamy MG, Prasad S, et al. A simple method of isolation of chloramphenicol in honey and its estimation by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Sp, 2005. 19(21): 3025-3030
    8. Gude TH, Preiss A, Rubach K. Determination of Chloramphenicol in muscle, liver, kindey and urine of pigs by means of immunoaffinity Chromatography and gas Chromatography with elcctron-capture detection. J Chromatogr B, 1995. 673: 197-204
    9. Guy PA, Royer D, Mottier P, et al. Quantitative determination of chloramphenicol in milk powders by isotope dilution liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A, 2004. 1054(1-2): 365-371
    10. Gantverg A, Shishani I, Hoffman M. Determination of chloramphenicol in animal tissues and urine - Liquid chromatography-tandem mass spectrometry versus gas chromatography-mass spectrometry. Anal Chim Acta, 2003. 483(1-2): 125-135
    11. Tyrpenou AE, Rigos GG, Athanassopoulou F. Determination of chloramphenicol residues ingilthead seabream (Sparus aurata L.) tissues by HPLC-PDA. J Liq Chromatogr R T, 2002. 25(4): 655-663
    12. Li TL, Chung-Wang YJ, Shih YC. Determination and confirmation of chloramphenicol residues in swine muscle and liver. J Food Sci, 2002. 67(1): 21-28
    13. Nagata T. Simultaneous determination of thiamphenicol, florfenicol and chloramphenicol residues in muscles of animal and cultured fish by liquid chromatography. J Liq Chromatogr, 1992. 15: 2045-2056
    14. Zhu QZ, DeGelmann P, Niessner R, et al. Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer. Environ Sci Technol, 2002. 36(24): 5411-5420
    15. Zhu X, Yang J, Su Q, et al. Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. J Chromatogr A, 2005. 1092(2): 161-169
    16. Alexander C, Andersson HS, Andersson LI, et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit, 2006. 19(2): 106-180
    17. Yamato S, Sugihara H, Shimada K. An enzymatic assay of chloramphenicol coupled with fluorescence reaction. Chem Pharm Bull, 1990. 38(8): 2290-2292
    18. Levi R, McNiven S, Piletsky SA, et al. Optical detection of chloramphenicol using molecularly imprinted polymers. Anal Chem, 1997. 69(11): 2017-2021
    19. Suarez-Rodriguez JL, Diaz-Garcia ME. Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers. Biosens Bioelectron, 2001. 16(9-12): 955-961
    20. Mena ML, AgüíL, Martinez-Ruiz P, et al. Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination. Anal Bioanal Chem, 2003. 376(1): 18-25
    21.陈小霞,岳振峰,郑卫平,等.氯霉素分子烙印固相萃取柱的制备及萃取条件优化.华南理工大学学报, 2004. 32: 51-55
    22.颜流水,黄智敏,蒲守智,等.氯霉素分子印迹聚合物的制备研究.南昌航空工业学院学报, 2005. 19: 1-5
    23. Le Moullec S, Bégos A, Pichon V, et al. Selective extraction of organophosphorus nerve agentdegradation products by molecularly imprinted solid-phase extraction. J Chromatogr A, 2006. 1108(1): 7-13
    24. Zurutuza A, Bayoudh S, Cormack PAG, et al. Molecularly imprinted solid-phase extraction of cocaine metabolites from aqueous samples. Anal Chim Acta, 2005. 542(1): 14-19
    25. Molinelli A, Weiss R, Mizaikoff B. Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J Agr Food Chem, 2002. 50(7): 1804-1808
    26. Hu SG, Li L, He XW. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers. J Chromatogr A, 2005. 1062(1): 31-37
    27. Flores A, Cunliffe D, Whitcombe MJ, et al. Imprinted polymers prepared by aqueous suspension polymerization. J Appl Polym Sci, 2000. 77(8): 1841-1850
    28. Ansell RJ, Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent. J Chromatogr A, 1997. 787(1-2): 55-66
    29. Lai JP, He XW, Jiang Y, et al. Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait by molecularly imprinted solid-phase extraction. Anal Bioanal Chem, 2003. 375(2): 264-269
    30. Hu SG, Wang SW, He XW. An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography. Analyst, 2003. 128(12): 1485-1489
    31. Rachkov A, Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatogr A, 2000. 889(1-2): 111-118
    32. Matsui J, Fujiwara K, Ugata S, et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. J Chromatogr A, 2000. 889(1-2): 25-31
    33. Andersson LI, Paprica A, Arvidsson T. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia, 1997. 46(1-2): 57-62
    34. Rashid BA, Briggs RJ, Hay JN, et al. Preliminary evaluation of a molecular imprinted polymer for solid-phase extraction of tamoxifen. Anal Commun, 1997. 34(10): 303-305
    35. Zander ?, Findlay P, Renner T, et al. Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid phase extraction. Anal Chem, 1998. 70(15): 3304-3314
    36. Ellwanger A, Berggren C, Bayoudh S, et al. Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst, 2001. 126(6): 784-792
    37. Berggren C, Bayoudh S, Sherrington D, et al. Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine. J Chromatogr A, 2000. 889(1-2): 105-110
    1. Goto T, Ito Y, Yamada S, et al. High-throughput analysis of tetracycline and penicillin antibiotics in animal tissues using electrospray tandem mass spectrometry with selected reaction monitoring transition. J Chromatogr A, 2005. 1100(2): 193-199
    2. Cha JM, Yang S, Carlson KH. Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A, 2006. 1115(1-2): 46-57
    3. Nakajima C, Okayama A, Sakogawa T, et al. Disposition of ampicillin in honeybees and hives. J Vet Med Sci, 1997. 59(9): 765-767
    4. S?rensen LK, Snor LK, Elk?r T, et al. Simultaneous determination of seven penicillins in muscle, liver and kidney tissues from cattle and pigs by a multiresidue high-performance liquid chromatographic method. J Chromatogr B, 1999. 734(2): 307-318
    5. Luo W, Ang CYW, Thompson J, et al. Rapid method for the determination of ampicillin residues in animal muscle tissues by high-performance liquid chromatography with fluorescence detection. J Chromatogr B, 1997. 694(2): 401-407
    6. S?rensen LK, Rasmussen BM, Boison JO, et al. Simultaneous determination of six penicillins in cows' raw milk by a multiresidue high-performance liquid chromatographic method. J Chromatogr B, 1997. 694(2): 383-391
    7. Benito-Pe?a E, Partal-Rodera AI, León-González ME, et al. Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection. Anal Chim Acta, 2006. 556(2): 415-422
    8. Santos SM, Henriques M, Duarte AC, et al. Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta, 2007. 71(2): 731-737
    9. Wang J. Confirmatory determination of six penicillins in honey by liquid chromatography/ electrospray ionization-tandem mass spectrometry. J Aoac Int, 2004. 87(1): 45-55
    10. Msagati TAM, Nindi MM. Determination of beta-lactam residues in foodstuffs of animal origin using supported liquid membrane extraction and liquid chromatography-mass spectrometry. Food Chem, 2007. 100(2): 836-844
    11. Caro E, MarcéRM, Borrull F, et al. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. Trac-Trend Anal Chem, 2006. 25(2): 143-154
    12. Chapuis F, Pichon V, Hennion MC. Molecularly imprinted polymers: Developments and applications of new selective solid-phase extraction materials. Lc Gc Europe, 2004. 17(7): 408-417
    13. Pichon V. Selective sample treatment using molecularly imprinted polymers. J Chromatogr A, 2007. 1152(1-2): 41-53
    14. Berggren C, Bayoudh S, Sherrington D, et al. Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine. J Chromatogr A, 2000. 889(1-2): 105-110
    15. Lubke C, Lubke M, Whitcombe MJ, et al. Imprinted polymers prepared with stoichiometric template-monomer complexes: Efficient binding of ampicillin from aqueous solutions. Macromolecules, 2000. 33(14): 5098-5105
    16. Cederfur J, Pei Y, Zihui M, et al. Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G. J Comb Chem, 2003. 5(1): 67-72
    17. Fernández-González A, Badía Laí?o R, Diaz-García ME, et al. Assessment of molecularly imprinted sol-gel materials for selective room temperature phosphorescence recognition of nafcillin. J Chromatogr B, 2004. 804(1): 247-254
    18. Guardia L, Badía R, Díaz-García ME. Molecular imprinted ormosils for nafcillin recognition by room temperature phosphorescence optosensing. Biosens Bioelectron, 2006. 21(9): 1822- 1829
    19. Benito-Pe?a E, Moreno-Bondi MC, Aparicio S, et al. Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays. Anal Chem, 2006. 78(6): 2019-2027
    20. Urraca JL, Moreno-Bondi MC, Hall AJ, et al. Direct extraction of penicillin g and derivatives from aqueous samples using a stoichiometrically imprinted polymer. Anal Chem, 2007. 79(2): 695-701
    21. Le Moullec S, Bégos A, Pichon V, et al. Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction. J Chromatogr A, 2006. 1108(1): 7-13
    22. Zurutuza A, Bayoudh S, Cormack PAG, et al. Molecularly imprinted solid-phase extraction ofcocaine metabolites from aqueous samples. Anal Chim Acta, 2005. 542(1): 14-19
    23. Zhu QZ, Haupt K, Knopp D, et al. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Anal Chim Acta, 2002. 468(2): 217-227
    24. Chen C, Chen Y, Zhou J, et al. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone H-1-indole-3-acetic acid. Anal Chim Acta, 2006. 569(1-2): 58-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700