石英砂颗粒体材料泊松比特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三轴试验是最常用的土工试验之一,通过测得试样应力和应变的变化来推导土体的本构模型参数。而局部变形数字图像测量技术在三轴试样变形测量中的应用,克服了传统变形测量方法的不足,提高了变形测量的精度,为土工三轴试验提供了全新的、更合理有效的变形测量手段。本文的研究基础就是将大连理工大学环境土力学研究室自行研制开发的三轴试验土样变形的数字图像测量系统应用于土工三轴试验,主要研究了含有石英砂颗粒体材料的应力应变关系和泊松比特性。
     通过室内三轴试验方法研究了石英砂颗粒体材料在小应变条件下的应力应变特性。试验结果表明:(1)石英砂颗粒体材料在小应变(轴向应变为1%范围内)条件下的应力-应变关系比较符合理想弹塑性模型。试样的线性段区域很小,线性段所对应的轴向应变也基本在0.3%甚至更小范围内。(2)石英砂颗粒散粒体在极小变形条件下剪切模量很大,随着应变的增加,剪切模量逐渐减小。(3)石英砂颗粒散粒体的轴向变形-体积变形符合加载初期体积剪缩关系。剪缩变形部分很小,不到0.2%,与弹性阶段对应,符合弹性变形规律。
     另外,通过室内三轴试验方法研究了循环加卸载条件下的石英砂颗粒体材料应力-应变及轴向、径向和体积与时间的关系,试验结果表明:(1)石英砂颗粒体材料在第一级加卸载阶段,即10N~1/4P范围内的的变形属于弹性变形阶段,卸载能恢复的轴向和径向变形很小,试样的整体变形还是表现为卸载体积膨胀,经过5次加卸载循环后试样颗粒排列组合就达到了一个相对平衡状态。(2)石英砂颗粒体材料在第二级加卸载阶段,即1/4N~1/2P范围内的的应力应变曲线逐渐进入非线性阶段,这是由于随轴向荷载增大而产生的试样颗粒间滑移、滚动和错位等变形所致,卸载可恢复的变形轴向,径向和体积变形能恢复的则更少,而且随加卸载过程的进行,每一循环加卸载点之间的变形却有减少的趋势,这说明了颗粒间的变形趋于稳定。(3)石英砂颗粒体材料在第三级加卸载阶段,即1/2~70%P范围内的,颗粒之间的相对滑动、滚动位移变大,并且颗粒破碎程度增大,试样的塑性变形迅速增加,试样变形趋于稳定的时间也变长。同时试样的轴向、径向和体变的变化也减小,试样也逐渐进入稳定状态。(4)试样从初始状态分别直接加载到1/2P和70%P进行单级循环加卸载的轴向、径向、体积变化与时间的关系曲线中可以看到,其关系曲线中的结果与3级加卸载因为加载历史的不同而略有差异,但其关系曲线的变化趋势基本上一致。
     通过对石英砂颗粒体材料在小应变条件下三轴试验和循环加卸载条件下试验,讨论其泊松比的特性,得到以下结论:(1)石英砂颗粒体材料在小应变条件下轴向应变-径向应变在加载的初期表现出曲线,变形一定阶段后,轴向应变和径向应变显现出线性变化趋势,而且不同围压下曲线变化规律基本保持相同。(2)石英砂颗粒体材料的泊松比在加载初期基本都是在0.1-0.3开始变化,达到0.5时的轴向应变都很小。(3)将循环加卸载过程分成3级阶段分别讨论其泊松比变化情况。加载初始,泊松比从0.2-0.3之间开始,这与常规三轴试验结果基本一致,在达到0.5时对应的轴向应变很小,而后的每一级循环过程中的加卸载中,泊松比变化整体上很稳定,表现出卸载条件下,泊松比有略微增加变化,加载条件下,泊松比有略微减小的变化,而且基本上都维持在正常加载到每一级应力峰值点时的泊松比值。
Tri-axial test is one of the most common soil tests,which determines the soil constitute model parameters through the measurement of stress-strain relationship.The application of digital image processing technique for local deformation measurement in tri-axial test leads to much advantages comparing to traditional measuring method.It improves the accuracy of deformation measurement,and provides a new,more reasonable and effective method in specimen deformation measurement.By taking the advantage of digital image processing technique,the stress-strain characteristics and Poisson's ratio of Quartz sand are studied.
     The Quartz sand is studied through the tri-axial compression tests.Laboratory tri-axial tests are carried out in order to understand the stress-strain relationship in the small strain condition.The laboratory test results show that:(1) the stress-strain relationship of Quartz sand in the a little strain condition is measured as elastoplastic model.The linear part is very small and the axial strain is about 0.3%;(2) the shear modulus of the Quartz sand is very large in the small strain and the shear modulus is getting smaller with the increase of the strain;(3) the axial strain-volume strain relationship of Quartz sand is measured shrinked and the relationship is measured as elastic variation.
     The Quartz sand is studied through the tri-axial cyclic loading experiment.We get the relation of the axial,radial and volume strain-time.The test results show that:(1)In the first cyclic loading part,the variation is the elastic,the axial and radial variation is rather small and the volume will shrink in unloading.After 5 times cycle,the Quartz sand arrives the balance condition.(2) In the second cyclic loading part,the stress-strain relationship arrives the non-linear part,which is due to the slippage,rotation and crushing.the axial and radial variation is much smaller with the cycle experiment.that is because the variation of the Quartz sand arrives at the stable state.(3) In the third cyclic loading part,the slippage, rotation and crushing is vigorous,the plastic variation is increasing,the time of the stable state will be longer.(4) In the second cyclic loading part without the first part and the third cyclic loading part without the previous two parts experiments,we get the nearly same the variety law though they are different from the loading history.
     The Poisson's ratio is studied through the tri-axial compression tests and tri-axial cyclic loading experiment.The test results show that:(1) The relationship of the axial-radial strain is curve at the loading beginning and is the linear variation after some time.And the variety law is the same in the different cell pressure.(2)The Poisson's ratio is between 0.3 to 0.5 at the loading beginning.The axial strain is small when the Poisson's ratio arrives at 0.5.(3) For studying the Poisson's ratio,we divide the cyclic loading experiment into 3 periods.The Poisson's ratio is between 0.2 to 0.3 at the loading beginning,as the same as the tri-axial compression test.When the Poisson's ratio arrives at 0.5,the axial strain is very small.The Poisson's ratio of every cycle period keeps stable and the Poisson's ratio value is nearly the same as the value when the stress arrives at the every stress peak.Besides the Poisson's ratio number increase a little in the unloading parts and decrease a little in the loading part.
引文
[1]沈珠江.关于土力学发展前景的设想.岩土工程学报,1994,16(1):110-111.
    [2]袁驷,张跃等.二十一世纪土木工程学科的发展趋势.北京:科学出版社,1997:247-260.
    [3]谢定义.二十一世纪土力学的思考.岩土工程学报,1997,19(4):112-114.
    [4]卢肇钧.关于土力学发展与展望的综合述评.北京:科学出版社,1997:195-207.
    [5]周镜.跨世纪的我国土力学及基础工程.北京:清华大学出版社,1998.
    [6]Burland J B,Symes M J.A simple axial displacement gauge for use in the tri-axial apparatus[J].Geotechnical,1982,32(1),62-65.
    [7]Clayton C R I,Khatrush S A,Bica A,Siddique A,The use of hall effect semiconductors in geotechnical instrumentation[J].Geotechnical Twisting Journal,ASTM,1989,12(1),69-76.
    [8]Goto S,Tatsuoka F,etal.A simple gauge for local small strain measurements in the laboratory[J].Soils and Foundations,1991,31(1),169-180.
    [9]孙益振.基于三轴试样局部变形测量的土体应力应变研究[D].大连:大连理工大学,2005.
    [10]王助贫,邵龙潭.三轴试验土样的端部影响问题研究[J].岩土力学,2003,24(3):363-368.
    [11]BURLAND J B.Ninth laurits bjerrum memorial lecture:small is beautiful-the stiffness of soils at small strains[J].CanadianGeotechnical Journal,1989,26(4):499-514.
    [12]MAIR R J.Developments in geotechnical engineering research:application to tunnels and deep excavations[J].Proc Instn Civ Engrs CivEngng,1993,93(2):27-41.
    [13]JARDINE R J,SYMES MJ,BURLAND J B.The measurement of soil stiffness in the triaxial apparatus[J].Geotechnique,1984,34(3):323-340.
    [14]门福录.岩土力学研究观点、方法若干问题之我见.岩土工程学报,2001,23(3):380-382.
    [15]濮家骝,李广信.发展水平报告之二:土的本构类系及其验证与应用.岩土工程学报,1986,8(1):47-82.
    [16]朱思哲,刘虔,包承纲 et al.三轴试验原理与应用技术.北京:中国电力出版社,2003.Bishop A W,Henkel D F.The measurement of soil properties in the triaxial test[M].London:Edward imold Ltd,1969.
    [17]刘学尧,张克恭等.土力学和地基.北京,中国建筑工业出版社,1995.
    [18]刘祖德,陆土强,包承纲 etal.发展水平报告之一:土的抗剪强度特性.岩土工程学报,1986,8(1):6-46.
    [19]郭莹,郭承侃,陆尚漠.土力学(第二版).大连,大连理工大学出版社,2003.
    [20]陈春霖,张惠明.饱和砂土三轴试验中的若干问题.岩土工程学报,2000,22(6):659-663.
    [21]常素萍.浅谈影响三轴压缩试验结果的冈素.岩土工程界,2004,6(11):69-72.
    [22]Bressani L A.External measurement of axial strain in the triaxial test.Geotechnical Testing Journal,1995,18(2):226-240.
    [23]Ueng T,Tzou Y,Lee C.The effect of end restraint on volume change and partical breakage of sands in triaxial tests.Advanced Trixial Testing of Soil and Rock,ASTM STP977,1988.
    [24]Duncan J M,Dunlop P.The significance of cap and base restraint.Journal of soil mechanics and foundations division,ASCE,1968,94(1):271-290.
    [25]Zhang H,Garga V K.Quasi-steady state:a real behavior.Can Geotech Journal,1997,34(5):749-761.
    [26]Rowe P W,Barden L.Importance of free ends in triaxial testing.Journal of soil mechanics and foundations division,ASCE,1964,90(i):1-27.Saada A S,Townsend F C.Laboratory strength testing of soils[A].Laboratory Shear Strength of Soil,ASTM STP 740[C],1981.
    [27]Emir J M,Nicholas C,Joey K P.Digital image techniques for volume change measurements in triaxial tests.Proceedings of the conference on digital image processing techniques and applications in civil engineering,1993:211-219.
    [28]邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法.岩土工程学报,2002,24(2):159-163.
    [29]邵龙潭,王助贫,韩国城.三轴试验土样径向变形的计算机图像测量.岩士工程学报,2002,23(3):337-314.
    [30]王助贫,邵龙潭,韩国城 etal.三轴试样变形数字图像测量误差和精度分析.大连理工大学学报,2002,42(1):95-103.
    [31]邵龙潭,王助贫,刘永禄.三轴试验土样变形的数字图像测量方法及设备.中国,发明专利,ZL01 1 13831.9.2004.
    [32]吴良平,程展林,丁红顺.球形颗粒散粒体的强度和变形特性试验研究[J].长江科学院院报,2007,24(5)64-67.
    [33]程展林,丁红顺,吴良平.粗粒土试验研究[J],岩土工程学报,2007,29(8):1151-1158.
    [34]汪中卫,王海飙,戚科骏,宰金珉.土体小应变试验研究综述与评价[J].岩土力学,2007.28(7):1518-1524.
    [35]Manbeian T.The influence of soil moisture suction,cyclic wetting and drying,and plant roots on shear strength of cohesive soil[R].Berkeley:University of California,1973.
    [36]Endo T.,Tsuruta T.The effect of tree roots upon the shearing strength of soil[A].Annual report of the Hokkaido Branch[C],Tokyo:Japan Tokyo Forest Experiment.Station.1969(18).168-179.
    [37]Wu T.H.,Beal P.E.,Lan C.In2situ test of soil-root systems[J].Journal of Geotechnical Engineering ASCE.1988,114(12):1 376-1 394.
    [38]赖勇,宋雄伟,施建勇.土体小应变下的非线性特征试验研究[J].河海大学学报,2005,33(3):306-309.
    [39]伊颖峰,施建勇.小应变范围内土体力学特性的试验研究[J].西部探矿工程,2005,8:14-16.
    [40]刘元雪,施建勇.岩土小应变问题研究进展[J].地下空间,2001,12(5):349-353.
    [41]张培森.小应变条件下土体刚度影响因素分析.西部探矿工程,2007,11:1-4.
    [42]常素萍.浅谈影响三轴压缩试验结果的因素.岩土工程界,2004,6(11):69-72.
    [43]赵彭年.松散介质力学.北京:地震出版社,1995.
    [44]章根德,韦昌富.循环载荷下砂质土的本构模型.固体力学学报,1998,19(4):299-304.
    [45]邱长林,阎澍旺.循环荷载作用下砂土的一种普遍弹塑性模型[J],天津大学学报,1999,32(2):154-158.
    [46]马建勋,梅占馨.散粒体的增量型内时本构关系.土木工程学报,1995,28(3):17-22.
    [47]Das Braja M.Advanced soil mechanics,Washington:HemispherePub.Corp.,1983.
    [48]Lambe rW.Soil mechanics,SI version.New York:Wiley,1979.
    [49]孔亮,花丽坤,郑颖人.慢速往复荷载下饱和砂土变形特性试验研究.工程勘察,2001,6:1-4.
    [50]梅迎军,梁乃兴.反复荷载作用下级配砂砺石基层的力学性能分析.重庆交通学院学报,2003,22(2):54-57.
    [51]孔亮,花丽坤,郑颖人.土体循环塑性模型研究进展[J],水利水运工程学报,2004,4:61-69.
    杨桂芳.静力本构模型试验、参数确定及参数对计算结果的影响分析[D],成都:四川大学,1999.
    [52]Duncan J M,Wong K S,Mabry P.Strength stress-strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movement in Soil Masses,Report No VCB/GT/78-02.Berkeley:Univ of California,1978.
    [53]孙益振,邵龙潭.三轴循环加卸载条件下砂性土变形特性研究[J].岩土工程学报,2005,27(11):1353-1357.
    [54]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型[J],岩土工程学报,1983,5(1):65-76.
    [55]许江,王维忠,杨秀贵,于鸿.细粒砂岩在循环加、卸载条件下变形实验,重庆大学学报,2004;27(12):60-62.
    [56]崔伟群,曾校丰.求取泊松比的理论探讨.地学前缘,1998,5(4):243-244
    [57]汤大明,曾纪全,胡应德,陈梦德.关于泊松比的试验和取值讨论,岩土工力学与工程学报,2001;20(增):1772-1775.
    [58]孙益振,邵龙潭.基于局部与整体变形测量的粉土泊松比试验研究[J].岩土工程学报,2002,28(2):1033-1038.
    [59]王红卫,李育文.有限变形下泊松比变化规律研究[J].河南科学,2001,19(2):134-136.
    [60]冯劲梅,连之伟,孙云.材料泊松比对塑性屈服的影响[J].大庆石油学院学报,2003,27(3):74-76.
    [61]沈庭芳.粘弹性泊松比与弹性泊松比对比[J].北京理工大学学报,1999,19(6):682-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700