混凝土配合比优化及结构早期裂缝防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构在硬化早期产生的各类缺陷,包括裂缝、裂纹、裂隙等,是导致工程耐久性破坏的主要内在诱因之一。以最低的综合施工成本,生产出符合设计要求的混凝土,并通过有效的施工、养护等控制措施,减少乃至避免结构早期裂缝的产生,从而提高工程耐久性,降低维护成本,延长使用寿命,既能提高混凝土建、构筑物的适用性,也有利于节约能源和减少污染,具有重要的理论与现实意义。
     本文首先从总体上对混凝土工程的耐久性评估,收缩变形导致的应力应变计算,以及施工、养护措施对早期裂缝的影响等问题进行理论探讨,从中找出影响早期裂缝产生的主要因素,作为配合比优化的限制性依据。在此基础上,再考虑混凝土不同龄期强度、和易性等其它要求,结合非线形多元回归、人工神经网络等预测技术,探讨采用不同方法,包括单纯形法、复形调优法、Monte-Carlo法和遗传算法等,进行配合比优化的可行性,最终建立混凝土配合比的多目标优化模型,并通过工程实例进行验证。
     以上述配合比优化模型为基础,采用面向对象的程序设计语言Visual C++6.0,开发出配合比优化设计专家系统。
     作为防止混凝土早期裂缝产生的特殊措施,本文对采用掺MgO补偿收缩混凝土、后张预应力法防裂技术也作了一定的研究,得出一些有用的结论。
Early deficiencies of concrete building, including flaws, cracks, and fractures, have been thought one of principal intrinsic predisposing causes, which lead to structure durability inactivation. By least construct cost and effective execution&curing methods, producing concrete, which can satisfy design demand, reduce structure deficiencies and improve durability, is objective requirement of modern concrete science development. It can not only reduce building service cost, but also conservatism energy and decrease pollution.In this paper, the durability evaluation, structure stress&strain calculation leaded by shrinkage distortion, and the construct&curing effect to early deficiencies have been universally discussed at first. Then, the major factors leading to early deficiencies are extracted, as limited parameters during mix-proportion optimization. After the parameters associating with concrete strength, workability in different ages, employing forecasting techniques such as non-linear regression analysis and artificial neural network program, optimize methods such as simplex method, complex method, Monte-Carlo technique, and genetic algorithms and so on, research the feasibility of mix-proportion optimization. As outcome of all the work mentioned above, the concrete mix-proportion multi-objective optimization model has been established in the end.Base on the optimize model established above, and using programming language Visual C++ 6.0, the concrete mix-proportion optimization system has been developed.In addition, as special means preventing concrete building early deficiencies, the MgO compensating contraction concrete and post-tensioned pretressing concrete has also been researched elementarily in this paper.
引文
[1-1] Aitcin, Pierre-Claude, Cements of yesterday and today: Concrete of tomorrow, Cement and Concrete Research[J], 2000 (9): 1349-1359.
    [1-2] 徐峰,王琳、储健,提高混凝土耐久性的原理与实践,混凝土[J],2001(9):21-24.
    [1-3] Aitcin, P. C, The durability characteristics of high performance concrete: a review, Cement and Concrete Composites[J], 2003 (4-5) : 409-420.
    [1-4] 中华人民共和国国家标准,《普通混凝土配合比设计规程》(JGJ55-2000),北京:中国建筑工业出版社,2001.
    [1-5] Peter Schiessl, Durability of reinforced concrete structures, Construction and Building Materials [J], 1996 (5): 289-292.
    [1-6] P. Kumar Mehta, Durability-Critical Issues for the Future, Concrete International [J], 1997 (7): 27-32.
    [1-7] 蔡正咏,混凝土性能[M],北京:中国建筑工业出版社,1979.
    [1-8] Idorn, Gunnar M, Concrete durability and resource economy, Concrete International: Design and Construction [J], 1991 (7): 18-23.
    [1-9] Dhir, R. K., Hewlett, P. C., Byars, E. A., Bai, J. P., Estimating the durability of concrete in structures, Concrete (London) [J], 1994 (6) :25-30.
    [1-10] 金伟良,赵羽习,混凝土结构耐久性研究的回顾与展望,浙江大学学报(工学版)[J],2002(4):371-380,403.
    [1-11] 金伟良,赵羽习,混凝土结构耐久性[M],北京:科学出版社,2002.
    [1-12] 黄士元,混凝土的耐久性与混凝士结构物的安全性,混凝土与水泥制品[J],1996(1):4-9.
    [1-13] 覃维祖,混凝土结构耐久性的整体论,建筑技术[J],2003(1):19-22.
    [1-14] 王媛俐,姚燕.重点工程混凝土耐久性的研究与工程应用[M],北京:中国建材工业出版社,2001.
    [1-15] 黄士元,21世纪初期我国混凝土技术发展中的几个重点问题,混凝土[J],2002(3):3-7.
    [1-16] 廉惠珍,路新瀛,按耐久性设计高性能混凝土的原则与方法,建筑技术[J],2001(1):8-11.
    [1-17] Bryant Mather, Concrete durability, Cement&Concrete Composites [J], 2004 (26): 3-4.
    [1-18] D. W. S. Ho and G. J. Chirgwint, A performance specification for durable concrete, Construction and Building Materials [J], 1996 (5): 375-379.
    [1-19] Lulu Basheer, Joerg Kropp, David J. Cleland, Assessment of the durability of concrete from its permeation properties: a review, Concrete and Building Materials, 2001 (15): 93-103.
    [1-20] A. E. Long, G. D. Henderson, F. R. Montgomery, Why assess the properties of near-surface concrete? Construction and Building Materials [J], 2001 (15): 65-79.
    [1-21] 阎培渝,廉慧珍,用整体论方法分析混凝土的早期开裂及其对策,建筑技术[J],2003(1):15-18.
    [1-22] 赵铁军,李秋义主编,高强与高性能混凝土及其应用[M],北京:中国建材工业出版社,2004.
    [1-23] ACI Committee 201. "Guide to Durable Concrete", ACI 201.2R-92 (Reapproved 1997) Manual of Concrete Practice, vol. 1.41.
    [1-24] 陈肇元执笔整理,徐有邻、钱稼茹审订.工程科技论坛“土建结构工程的安全性与耐久性”会议纪要[R],清华大学,2001年11月.
    [1-25] 王铁梦,工程结构裂缝控制[M],北京:中国建筑工业出版社,1997.
    [1-26] 吴中如,老坝病变和机理探讨,中国水利[J],2000(9):55-57.
    [1-27] 叶国华,港工混凝土结构物的温度应力和温度裂缝的研究,水运工程[J],1996(8):19-26.
    [1-28] 全国百座城市2003年商品混凝土企业生产及设备情况统计,混凝土[J],2004(4):18-20.
    [1-29] 储传英主编,三峡工程混凝土原材料研究[M],北京:中国水利水电出版社,1999.
    [1-30] 龚召熊主编,水工混凝土的温控与防裂[M],北京:中国水利水电出版社,1999.
    [1-31] P. A. M. Basheer, S. E. Chidiact and A. E. Long, Predictive models for deterioration of concrete structures, Construction and Building Materials, 1996 (1): 27-37.
    [1-32] P. K. Chang, Y. N. Peng, C. L. Hwang. A design consideration for durability of high-performance concrete. Cement&Concrete Composites [J]. 2001 (23): 375-380.
    [1-33] 王立才,受基础约束钢筋混凝土墙板的裂缝控制[D],浙江大学硕士学位论文,2002.
    [1-34] 朱伯芳,大体积混凝土温度应力与温度控制[M],北京:中国电力出版社,1998.
    [1-35] James Andrew Gilliland, Thermal and shrinkage effects in high performance concrete structures during construction [D], Ottawa: National Library of Canada, 2000.
    [1-36] 和雪峰,大体积混凝土分层分块浇筑全过程有限元仿真分析研究[D],浙江大学硕士学位论文,2001.
    [1-37] 王雍,段亚辉等,采用等效徐变度研究混凝土温度应力问题,中国农村水利水电[J],2001(9):81-83.
    [1-38] 钱晓倩,詹树林等,高性能混凝土减缩剂的研究和应用,新型建筑材料[J],2003(7):42-45.
    [1-39] 赵军,张海军,田向阳,基于耐久性的混凝土配合比设计方法,平顶山工学院学报 [J], 2003 (1):67-68, 71.
    [1-40] Kenneth C. Hover, Concrete Mixture Proportioning with Water-reducing Admixtures to Enhance Durability: A Quantitative Model, Cement and Concrete Composites [J], 20 (1998)113-119.
    [1-41] 姜德民,高振林,高性能自密实混凝土的配合比设计,北方工业大学学报[J],2001(3):89-91,96.
    [1-42] Nan Su,Kung-Chung Hsu, His-Wen Chai, A simple mix design method for self-compacting concrete, Cement and Concrete Research[J], 2001 (12): 1799-1801.
    [1-43] 高其勋、马普林,预应力混凝土配合比的优化,数理统计与管理[J],1990(2):1-5.
    [1-44] 丛树民,何庆志,混凝土配合比的优化研究,阜新矿业学院学报[J],1991(3):1-5.
    [1-45] 孙福兴,林一民,混凝土配合比的成本优化模型,西安冶金建筑学院学报[J],1993(3):253-260。
    [1-46] 林一民,孙福兴,混凝土配合比的成本优化模型,施工技术与管理[J],1993(3):30-36.
    [1-47] 吴学礼,杨钱荣,张凌翼,粉煤灰混凝土配合比设计的计算机系统,混凝土与水泥制品[J],2002(2):12-14.
    [1-48] W. Dehuai, C. zhaoyuan, and Q Weizu, Computerized Mix Proportioning for HPC, Concrete International [J], 1997 (9): 42-45.[1-49] H. C. Foo and G. Akhras, Expert Systems and Design of Concrete Mixtures, Concrete International [J], 1993 (7): 42-46.
    [1-50] 王世琪,计算机在房屋建筑材料试验中的应用—混凝土质量实时管理系统,微处理机[J],1992(3):53-57.
    [1-51] 王春明,成虎,基于计算机技术的大型施工项目的集成管理,江苏建筑[J],2000(4):97-101.
    [1-52] 宋晓辉,魏荣周,李鲁源,建筑施工质量管理软件的开发与应用,山西建筑[J],2000(3):124.
    [1-53] 吴庆明,陈东,唐秋鸿,三峡大坝混凝土浇注系统计算机仿真软件开发研究,红水河[J],2000(2):54-56.
    [1-54] 王恩智,鲁歧峰,李文伟,混凝土施工质量专家系统研制,水利水电技术[J],1999(5):41-42.
    [1-55] 钱春香,蔡瑞英,唐明述,专家系统在水泥混凝土领域的应用,硅酸盐通报[J],1991(4):52-58.
    [1-56] 中国工程院土木水利与建筑学部,混凝土结构耐久性设计与施工指南[M],北京:中国建筑工业出版社,2004.
    [2-1] 朱伯芳,大体积混凝土温度应力与温度控制[M],北京:中国电力出版社,1998.
    [2-2] 王铁梦,工程结构裂缝控制[M],北京:中国建筑工业出版社,1997.
    [2-3] 龚召熊,张锡祥,肖汉江等,水工混凝土的温控与防裂[M],北京:中国水利水电出版社,1999.
    [2-4] 江正荣,朱国梁编著,简明施工计算手册[M],北京:中国建筑工业出版社,1989.
    [2-5] James Andrew Gilliland, Thermal and shrinkage effects in high performance concrete structures during construction [D], Ottawa: National Library of Canada, 2000.
    [2-6] G. De Schutter, L. Taerwe, Estimation of Early-Age Thermal Cracking Tendency of Massive Concrete Elements By Means of Equivalent Thickness, ACI MATERIALS JOURNAL[J], 1996 (5): 403-408.
    [2-7] 中华人民共和国水利行业标准,混凝土拱坝设计规范,北京:中国水利水电出版社,2003.
    [2-8] Kawakami. M, Gamski. K, Tokuda. H, Kagaya. M, Chemical prestress and strengths of reinforced concrete pipes using expansive concrete, Materials and Structures [J], 1989 (128): 83-90.
    [2-9] 浙江大学等,微膨胀型中热和低热矿渣水泥及其机理研究专题报告[R],1998.10。
    [2-10] James Andrew Gilliland, Thermal and shrinkage effects in high performance concrete structures during construction [D], Ottawa: National Library of Canada, 2000.
    [2-11] 曹泽生 陈重喜,氧化镁微膨胀混凝土的温度应力补偿问题,华东水电技术.1989(2):1-7,25.
    [2-12] 曹泽生,MgO微膨胀混凝土快速筑坝防裂技术研究,水力发电[J],1994(6):52-54.
    [2-13] 李承木,氧化镁混凝土自生体积变形的长期试验研究成果,水力发电学报[J],1999(2):11~20.
    [2-14] 李承木,杨元慧,氧化镁混凝土自生体积变形的长期观测结果,水利学报[J],1999,(3):54~58.
    [2-15] 李承木,MgO混凝土自生体积变形的长期研究成果,水力发电[J],1998(6):53-57.
    [2-16] 李承木,李晓勇,铜头水电站外掺MgO混凝土的性能研究,广东水利水电[J],2003(3):1~3.
    [2-17] 李承木,高掺粉煤灰对氧化镁混凝土自生体积变形的影响,四川水力发电[J],2000(19)增刊:72~75.
    [2-18] 李承木,掺MgO混凝土自生变形的温度效应试验及其应用,水利水电科技进展[J],1999(5):33~37.
    [2-19] 李承木,外掺MgO混凝土自生体积变形的长期研究,四川水力发电[J],1999(2):68~72.
    [2-20] 刘珍,大体积微膨胀混凝土优化选型的研究[D],浙江大学硕士学位论文,2004.3.
    [2-21] Kwak, Hyo-Gyoung, Seo, Young-Jae, Shrinkage cracking at interior supports of continuous pre-cast pre-stressed concrete girder bridges, Construction and Building Materials [J], 2002 (1) : 35-47.
    [3-1] 朱清时主编,高强高性能混凝土研制及应用[M],中国建材工业出版社,北京:1999.
    [3-2] 陈德育,C60泵送混凝土的制备与工程应用,混凝士与水泥制品[J],2002(6):20-22.
    [3-3] 梁洪,陆兴宝,泵送混凝土的试验研究及应用,广西土木建筑[J],1996(2):53-61.
    [3-4] 林国仁,方德铭,粉煤灰高性能混凝土在公路隧道二次衬砌中的应用,华东公路[J],2003(2):75-78.
    [3-5] 储传英主编,三峡工程混凝土原材料研究[M],北京:中国水利水电出版社,1999.
    [3-6] [苏]维诺格拉多夫著,周新益译,集料对混凝土性能的影响[M],中国建筑工业出版社,北京,1985.
    [3-7] Baalbaki. Walid, Benmokrane. Brahim, Chaallal. Omar, Aietcin. Pierre-Claude, Influence of coarse aggregate on elastic properties of high-performance concrete, ACI Materials Journal [J], 1991 (5) :499-503.
    [3-8] P. C. Aitcin, P. K. Mechta, Effect of coarse-aggregate characteristics on mechanical properties of high-strength concrete, ACI Materials Journal (J), 1990 (2): 103-107.
    [3-9] Francois de Larrard, Albert Belloc, Influence of Aggregate on the Compressive Strength of Normal and High-Strength Concrete, ACI MATERIALS JOURNAL (J), 1997 (5): 417-426.
    [3-10] British Standards Institution, Methods of sampling and testing of mineral aggregate, sands and fillers[M], BS 812, London, 1975;
    [3-11] 徐飞,粗骨料颗粒形状评定方法的研究,扬州大学学报(自然科学版)[J],2002(2):1-63.
    [3-12] 戴镇潮,大坝混凝土的粗骨料级配,人民长江[J],1994(9):14-20.
    [3-13] 王谦源、胡京爽,混凝土集料级配与分形,岩土力学[J],1997(3):93-99.
    [3-14] Cordon W. A., and Gillespie, H. A., Variables in Concrete Aggregates and Portland Cement Paste which Influence the Strength of Concrete, ACI JOURNAL[J], 1963 (8): 1029-1051.
    [3-15] A.M.伊布拉基莫夫,刘国良译,粗骨科的极限粒径对泥凝土主要参数的影响,水工建设[J],1989(9):22-24,38.
    [3-16] Stock, A. F.; Hannant, D. J.; and Williams, R. I. T., The effect of aggregate concentration upon the strength and modulus of elasticity of concrete, Magazine of Concrete Research [J], 1979 (109): 225-234.
    [3-17] 沈旦申,粉煤灰混凝土[M],中国铁道出版社,北京:1989.
    [3-18] 中华人民共和国国家标准,混凝土外加剂(GB8076-1997).
    [3-19] 汪树玉,杨德铨,刘国华,张科锋,优化原理、方法与工程应用[M],浙江大学出版社,杭州;1991.
    [3-20] 杨建刚,人工神经网络实用教程[M],浙江大学出版社,杭州,2001.
    [3 21] 汪树玉,刘国华等,系统分析[M],浙江大学出版社,杭州,2002.
    [3-22] 钱镜林,李富强,陈斌等,Volterra级数滤波器的自适应解法及其在洪水预报中的应用,浙江大学学报(工学版)[J],2005(1):160-164.
    [3-23] Cannon. J. P, Krishna Murti. G. R, Concrete Optimized Mix Proportioning(COMP), Cement and Concrete Research[J], 1971 (1), No 4.
    [4-1] Ni Hong-Guang, Wang Ji-Zhong, Prediction of compressive strength of concrete by neural networks, Cement and Concrete Research, 2000 (8): 1245-1250.
    [4-2] Ju-Won Oh, In-Won Lee, Ju-Tae Kim, and Gyu-Won Lee, Application of Neural Networks for Proportioning of Concrete Mixes, ACI Material Journal, 1999 (1): 61-67.
    [4-3] Lai Sergio, Serra Mauro, Concrete strength prediction by means of neural network, Construction and Building Materials, 1997 (2): 93-98.
    [4-4] 杨朝晖等,混凝土强度预测与设计的神经网络方法[J],水力发电学报,1997(1):33-40.
    [4-6] 黄莘、陈谦应,路面混凝土配合比优化设计[J],公路交通科技,2000(3):1-5.
    [4-7] I-Cheng Yeh, Design of High-Performance Concrete Mixture Using Neural Networks and Nonlinear Programming, JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1999 (1):36-42.
    [4-8] 杨建刚,人工神经网络实用教程[M],杭州:浙江大学出版社,2001.
    [4-9] 汪树玉、刘国华等,优化原理、方法与工程应用[M],浙江大学出版社,1991.
    [4-10] James (N. K) Liu, Quality prediction for concrete manufacturing, Automation in construction [J], 1997 (5): 491-499.
    [4-11] Ju-Won Oh, In-Won Lee, Ju-Tae Kim, Gyu-Won Lee, Appliction of Neural Networks for Proportioning of Concrete Mixes, ACI MATERIALS JOURNAL [J], 1999 (1): 61-67.
    [4-12] Kim, Jong-In, Kim, Doo Kie; Feng, Maria Q.; Yazdani, Frank, Application of neural networks for estimation of concrete strength, Journal of Materials in Civil Engineering [J], 2004 (3): 257-264.
    [4-13] Lee, Seung-ehang, Prediction of concrete strength using artificial neural networks, Engineering Structures [J], 2003 (7): 849-857.
    [4-14] 刘国华,陈斌等.基于人工神经网络和Monte-Carlo法的混凝土配合比优化设计研究[J].水力发电学报.2003(4):45-53.
    [4-15] W. P. S. Dias, S. P. Pooliyadda, Neural networks for predicting properties of concretes with admixtures, Construction and Building Materials, 2001 (7): 371-379.
    [4-16] Liu, N. K., Quality prediction for concrete manufacturing, Automation in Construction, 1997 (6): 491-499.
    [4-17] Carpenter WC, Barthelemy J-F, Common misconceptions about neural networks as approximators, ASCE J Comput Civil Eng, 1994 (3): 345-358.
    [5-1] 江树玉,刘国华等,系统分析[M],杭州:浙江大学出版社,2003.
    [5-2] Krakovski, M. B, Monte Carlo simulation of the acceptance control of concrete, Structural Safety [M], 1995 (1): 43.
    [5-3] Choi, Bong-Seob, Scanlon, Andrew, Johnson, Peggy A, Monte Carlo simulation of immediate and time-dependent deflections of reinforced concrete beams and slabs, ACI Structural Journal [J], 2004 (5): 633-641.
    [5-4] 刘国华,陈斌等.基于人工神经网络和Monte-Carlo法的混凝土配合比优化设计研究[J].水力发电学报.2003(4):45-53.
    [5-5] Melanie Mitchell, An introduction to genetic algorithms [M], MIT Press, Cambridge, Mass:1996.
    [5-6] Edited by Joachim Stender, Parallel genetic algorithms: theory and application [M], IOS Press, Amsterdam: 1993.
    [5-7] 杨建刚,人工神经网络实用教程[M],杭州:浙江大学出版社,2001.
    [5-8] 陈斌,李富强,刘国华等,混凝土配合比的非线性多目标优化算法研究,浙江大学学报(工学版)[J],2005(1):16-19.
    [5-9] Akkurt, Sedat, Ozdemir, Serhan, Tayfur, Gokmen, Akyol, Burak, The use of GA-ANNs in the modeling of compressive strength of cement mortar, Cement and Concrete Research, 2003 (7) : 973-979.
    [5-10] Lim, Chul-Hyun, Yoon, Young-Soo, Kim, Joong-Hoon, Genetic algorithm in mix proportioning of high-performance concrete, Cement and Concrete Research [J], 2004 (3): 409-420.
    [5-11] E. M. R. Faribairn, M. M. S. Romildo, D. T. Filho et al, Optimization of mass concrete construction using genetic algorithms, Computers&Structures [J], 2004 (82): 281-299.
    [6-1] Ralph W. Pike, Optimization for engineering systems [M], Van Nostrand Reinhold, New York: 1986.
    [6-2] Barakat, Samer, Bani-Hani, Khaldoon; Taha, Mohammed Q, Multi-objective reliability-based optimization of prestressed concrete beams, Structural Safety[J], 2004 (3): 311-342
    [6-3] 李荣湘,李岳军.混凝土配合比多目标优化实时控制[J].水利学报.1996,4:36-39.
    [6-4] 汪树玉,刘国华等,系统分析[M],杭州:浙江大学出版社,2003.
    [6-5] Spathopoulos, M. P., de Ridder, M, Modelling and distributive control design of a flexible manufacturing system, Computers in Industry [J], 1999 (2): 115-130.
    [6-6] 侯俊杰,深入浅出MFC[M],华中科技大学出版社,武汉:2001.
    [6-7] Eugene Olafsen,Kenn Scribner,K.David White等著,王建华,陈一飞等译,MFC Visual C++6编程技术内幕[M],北京:机械工业出版社,2000.
    [6-8] 徐士良主编,C常用算法程序集(第二版)[M],清华大学出版社,北京:1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700