高精度体积式钻孔应变仪及其观测影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳应力的状态变化是引起褶皱、断裂及地震等地表变形及破坏发生的根本因素,发生在地壳表面的各种地质灾害都与地应力的作用息息相关。钻孔应变观测是将观测仪器安装在钻孔下数十米至数百米的基岩中精确的观测地层内部应力-应变状态变化,以研究分析应变异常与地质灾害的关系,这种技术是研究地壳应力状态及其变化规律的主要手段,同时也是地震前兆观测中重要的组成部分。体积式钻孔应变观测仪力学原理简明清楚,具有良好的高频特性与高灵敏度,仪器受地面观测干扰因素小,易于取得较为可靠的观测资料,在全球的应变观测仪数量中占有很大的比例。本文研究了液压式高精度体应变仪的研制过程,开展了仪器安装孔地应力绝对测量的研究工作,同时通过资料收集,研究了体应变仪观测的影响因素,分析了体应变映震能力和研究了体应变曲线的同震前兆异常,经过近两年的学习与研究,取得了以下初步进展和认识:
     1.TY系列高精度体积式钻孔应变仪易于装配、运输与安装,系统稳定,使用寿命长。观测精度优于1×1011ε,不作调零时,系统的动态范围达±2×101以上,超过±86dB。
     2.介绍了高精度体应变仪的力学、电学及其关系设计,对比分析研究了TY系列体应变仪的数据采集、放大电路、通信方式、数据传输技术压力传感器、电磁阀等仪器研制过程中选用的技术与设备:通过模拟试验,验证了该型号体应变仪的密封性和耐压性达到1000m深度安装要求,并提出了高精度体应变仪的选址规范、安装钻孔技术指标、仪器安装流程规范,研制了仪器安装过程中的水泥投放器。
     3.深孔空心包体地应力测量仪可用于深孔体应变仪器安装地点的应力解除测量,该仪器是一种将应变仪、应力计、电子罗盘、压力传感器、温度计等集成于一体的无电缆微型探头,该仪器不破坏所测点位钻孔环境,不影响后续仪器安装及应变观测,使用该仪器在张江应变观测孔进行了地应力测量,结果表明张江观测孔365m处地应力水平最大主应力为8.5~9.0MPa,方向为93°~96°即近EW向,与附近震源机制解获得结果基本一致。
     4.研究了体积式钻孔应变仪的观测影响因素。得到了体积式应变观测的固体潮公式,固体潮汐是体应变日波、半日波的主要影响因素。同时给出了钻孔体应变观测影响的气压干扰模型,推导了应变气压干扰公式及气压系数公式。降雨通过大地负载效应渗入岩体孔隙中,引起孔隙压力增加导致地壳应变变化,降雨和水位变化对体应变的影响与应变观测台站所处地区裂隙发育情况息息相关,水位变化达到一定水平后,岩体应变才会发生相应变化。
     5.TY系列体应变仪能清晰观测到1600格值(单位)的应变固体潮,精度优于1011ε。推导了山丹体应变仪观测台站的映震能力公式以及该台站震级与应变地震波、震中距的关系式,根据该关系式可通过应变地震波最大振幅和震中距来求地震震级,计算表明山丹体应变观测台站能够记录到地球上任意位置Ms6.5级以上的地震。研究了汶川8.0级地震和日本本州9.0级地震同震应变异常,山丹台站记录到了汶川地震明显的同震应变阶跃,而代家坝台站记录到的日本本州东海岸9.0级地震体应变异常曲线中却没有以往大震都有的应变阶跃异常,这可能是由地震发震机理不同造成的;同时日本大地震引起了代家坝观测台站固体潮日漂趋势的下凹异常。山丹和代家坝体应变台站都记录到了地震引起的周期为600~1200s的地球自由震荡。
Deformation of the crust, tectonic movement within the Earth the and the varieties of geological disasters are closely associated with in-situ stress. The change of crustal stress state can cause the fault fracturing. wrinkles and even an earthquake. Borehole strainmcter observation is installed the strainmeter in the borehole which is tens to hundreds of meters underground, and then precisely monitoring the strata stress-strain state. It is a primary means to study crustal stress states, and it also plays an important part in earthquake precursor observation. The volumetric borehole strainmeters has a clear and concise mechanics, and it has a higher-frequency and sensitivity, low dependence on rock and cement status, makes it easy to obtain more reliable observational data, therefore, it occupies a large proportion of the number of strain observation instrument in the world. This paper studies how this high-precision volumetric strainmeter developed, and the work of in-situ stress measurement of the borehole which would install strainmeters is carried on in this paper, several influencing factors of volumetric strainmeters is studied through data analysis, the earthquake reflecting ability of volumetric strainmeters is analyzed. And coseismic precursory anomaly of volumetric strain curve also is studied in this paper. After nearly two years of study and research, the author has made initial progress and understanding as follows:
     The series of high-precision volume type borehole strainmeter which is named TY types, is easy to assemble, transport and install, this type of strainmeter has a stable system, which make it get a long serving life. Its' obse'rvation accuracy is superior to1×10-11ε. and the dynamic range is±2×104, which is over±86dB.
     The mechanics designing and the relationships between mechanics and electricity is introduced, the technology of data-capture, amplifying circuit, communication method between ground and underground instrument is studied, and contrastive study of different instruments (pressure sensor. solenoid valve) is carried on. It is shown that the TY series strainmeters can work at the depth of1000meters underground through simulation experiments like encapsulation test and voltage withstand tests. The GPRS wireless network data transmission technology and network address of the primary server exchange data processing technology that this series strainmeters used is introuduced. The site selection principle, technical indicators, installation steps is studied, and a cement dispenser for installing the strainments is developed.
     The deep borehole hollow inclusion strain gauge in-situ stress measuring instrument and its assistive tools which were used for deep borehole in-situ stress measurement.lt integrates hollow inclusion strain gauge, strain recording apparatus and electronic compass into a micro-probe, which can be installed at predesignated position in the borehole when measuring the in-situ stress. We obtained in-situ stress data of Zhangjiang observation borehole at the deepest depth of385m underground by using this technology, the results shows the maximum principal stress direction in surveying area is near EW direction, and the values of maximum principal stresses are between8.5and9.0MPa. The minimum principal stress direction is near vertical, and the values of minimum principal stresses are near to the overburden pressure. Measurement shows that deep borehole hollow inclusion strain gauge in-situ stress measuring instrument is suitable for deep hole of3d in-situ measurement.
     It shows that1600grid values strain solid tidal is clearly observed by TY series volumetric strainmeters, which proved that its" accuracy is better than10-11ε. The coseismic precursory formula of Shandan volumetric strain observation station is derived. And the relationship of strain curve magnitude,the strain earthquake waves and epicentral distance is studied, according to this relationship we can obtained the earthquake epicenter when we know the information of stain seismic waves maximum amplitude and epicenter. It shows Shandan volumetric strainmeters observation station can record any earthquake over Ms6.5wherever it happen on the planet. The coseismic strain anomaly of Wenchuan8.0earthquake and Honshu, Japan9.0earthquake are studied, Shandan station recorded a significant earthquake coseismic-strain step, but train records of the east coast of Honshu Japan9.0earthquake of Daijiaba station did not have the apparent strain step phenomenon, this may be caused by different mechanisms of the earthquakes. Meanwhile, Japan earthquake caused the concave exception of solid tide day drift trends of Daijiaba observation stations. Shandan and daijiaba observation stations all recorded free oscillation curves of the earth with the cycle from600to1200s, which is caused by earthquake.
引文
[01]李海亮,李宏.钻孔应变观测现状与展望[J].地质学报.2010,84(6):895-900.
    [02]邱泽华,石耀霖.国外钻孔应变观测的发展现状[J].地震学报.2004,26(增刊):162-168.
    [03]欧阳祖熙,张宗润,舒桂林.中国西部钻孔应变仪台网工作回顾与前瞻[J].岩石力学与工程学报.2004,23(23):4058-4062.
    [04]谢富仁,邱泽华,王勇,等.我国地应力观测与地震预报[J].国际地震动态.2005,(5):54-59.
    [05]苏恺之,张钧,李秀环,等.钻孔环境在钻孔地形变观测中的作用[J].地震地磁观测与研究.2005,26(6):46-55.
    [06]Sacks I S, Suyehiro S, Evertson D W, et al. Sacks-Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps[J]. Pap Met Geophys 1971,22:195-207.
    [07]Mc Garr A, Sacks I S, Linde A T, et al. Coseismic and other short-term strain changes recorded with Sacks-Everston strainmeters in a deep mine, South Africa[J]. Geophys J R astr Soc,1982,70:717-740.
    [08]Sacks I S, Suyehiro S, Linde A T, et al. Slow earthquake and stress distribution[J] Nature,275:5681,1978,599-602.
    [09]Ishii H, Yamauchi T, Matsumoto S, et al. Development of multi2component borehole instrument for eathquake prediction study:some observed examples of precursory and co-seismic phenomena relating to earthquake swarms and application of the instrument forrock mechanics[A]. In:Ogasawara H, Ando M, Yanagiani T eds. Seismic Process Monitoring[C]. Rotterdam:Balkema,2002,365-377.
    [10]何成平,欧阳祖熙.倾斜形变观测技术发展综述[J].地壳构造与地壳应力文集.2006,149-157.
    [11]上垣内修,董书香.钻孔应变仪观测及其研究课题[J].《国际地震动态》.2000,5.
    [12]苏恺之.我国钻孔应变观测的回顾与展望[J].《地震地磁观测与研究》.2003,2.
    [13]苏恺之,刘瑞民,裴玉珍.中国的三种体积式应变仪[J].内陆地震.1993,7(2):151-157.
    [14]刘文义,张海涛,李丽,等.光纤传感技术[J].地震.2012, 32(4):92-102.
    [15]Tokunaga T, He Z, Liu Q, et al. Development of an ultra-high-resolution FBG strain sensor and laboratory experiments to evaluate its performance for application to the rock masses[A]. American Geophysical Union, Fall Meeting 2011.
    [16]http://Gravity.ucsd.edu/research/ofss/safod/index.php.
    [17]彭华,吴珍汉,马秀敏.青藏铁路无人值守地应力综合监测站.《地质力学学报》.2006,03.
    [18]http://www.gkong.com/solutions/solution_detail.asp?solution_id=501820
    [19]http://www.gongso.com/jsjj/433966.asp
    [20]杨洁洁(导师:刘大茂),基于互联网的嵌入式远程测控通信系统的研究,《福州大学硕士论文》
    [21]舒安鹏,地质构造和构造应力场对富溪隧道稳定性影响研究.《合肥工业大学硕士论文》.2006,04.
    [22]张耀平,矿山空区诱发的岩移特征及覆盖层冒落效应研究.《中南大学博士论文》.2010,09.
    [23]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2 803-2 813.
    [24]李朋武,崔军文,王连捷等.中国大陆科学钻探主孔钻孔崩落与现场应力状态的确定[J].岩石学报,2005,21(2):421-426.
    [25]王连捷,崔军文,张晓卫等.中国大陆科学钻主孔现今地应力状态[J]地球科学-中国地质大学学报,2006,31(4):0505-0513.
    [26]张宁.岩体初始地应力场发育规律研究.《浙江大学硕士论文》.2002,04.
    [27]景峰,梁合成,卞智华等.地应力测量方法研究综述[J].华北水利水电学院学报,2008,29(2):71-75.
    [28]葛修润,侯明勋.一种测定深部岩体地应力的新方法——钻孔局部壁面应力全解除法[J].岩石力学与工程学报,2004,23(23):3923-3927.
    [29]蔡美峰,乔兰,于波,等.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999,18(4):414-418.
    [30]吴满路,廖椿庭,张春山,等.红透山铜矿地应力测量及其分布规律研究[J].岩石力学与工程学报,2004,23(23):3943-3946.
    [31]刘允芳,尹健民,刘元坤.新疆下坂地水利枢纽地应力测量与研究[J].岩石力学与工程学报,2004,23(2):242-246.
    [32]刘允芳,朱杰兵,刘元坤.空心包体式钻孔三向应变计地应力测量的研究[J].岩石力学与工程学报,2001,20(4):448-453.
    [33]刘允芳,尹健民,刘元坤.深钻孔套心应力解除法的测量技术和实例[J].长江科学院院报,2008,25(5):1-6.
    [34]刘允芳,龚壁新.深钻孔地应力测试技术与地应力场分析方法[J].岩土工程学报,1993,15(3),63-72.
    [35]谢富仁,崔效锋,赵建涛等.中国大陆及邻区现代构造应力场分区[J].地球物理学报,2004,47(4):654-662.
    [36]周翠英,王铮铮,蒋海昆等.华东地区现代地壳应力场及地震断层错动性质[J].地震地质,2005,27(2):273-289.
    [37]程紫燕,刘瑞春,郑树平,等.山西昔阳地震台体应变观测固体潮研究.《山西地震》.2009,04.
    [38]http://www.astronomy.com.cn/bbs/thread-37431-3-8.html
    [39]http://www.hudong.com/wiki/%e5%9b%ba%e4%bd%93%e6%bd%ae?prd=citiao_right_xiangguanc itiao
    [40]程子燕,刘瑞春,郑数平,等.山西昔阳地震台体应变观测固体潮研究[J].山西地震.2009,(2):24-27.
    [41]张凌空,牛安福,闫伟.Sacks体应变仪日波、半日波观测值影响因素分析[J].2008,28(2):28-33.
    [42]唐九安,王勇,刘福生.北京昌平地震台TJ-1体积钻孔应变仪潮汐参数动态特征及其稳定性研究[J].华北地震科学.2001,19(4):34-40.变与地震.1988,8(4):354-358.
    [43]洛鸣津,顾梦林,杨毅.用固体潮观测资料将钻孔应变变化换算为地层的应力变化[J].地壳形变与地震.2000,20(1):73-78.
    [44]刘序俨,李平,张雁滨.地表面应变和体应变固体潮理论值计算及其调和分析[J].地壳形
    [45]李杰,刘敏,邹钟毅,等。数字化钻孔体应变干扰机理及异常分析。《地震研究》.2003,07.
    [46]卢双苓,于庆民,曲保安,等.山东数字化钻孔体应变观测的干扰异常分析.《西北地震学报》.2010,06.
    [47]张凌空,何世海,刘北顺.体应变观测中的气压干扰机制和排除方法的研究.《地震》.1996,04.
    [48]李杰,邹钟毅,闫德桥,等.TJ-11型钻孔体应变仪数字化观测资料分析.《大地测量与地球动力学》.2002,08.
    [49]王梅.数字化体应变与气压、水位相关性研究[J].大地测量与地球动力学.2002,22(4):85-88.
    [50]李杰,刘敏,邹钟毅,等.数字化钻孔体应变干扰机理及异常分析[J].地震研究.2003,26(3):230-238.
    [51]陈鹏,李正媛,刘妙龙,等.地下水位对定点形变观测干扰的抽水实验[J].打底测量与地球动力学.2004.24(3):79-83.
    [52]苏恺之.TJ型钻孔式体应变仪井孔注水实验[J].地壳构造与地壳应力文集.2003:139-151.
    [53]吴培稚,徐平,邢成起,等.东三旗台站的GPS、体应变和水位观测[J].地震.2006,26(3):131-135.
    [54]卢双苓,于庆民,曲保安,等.山东数字化钻孔体应变观测的干扰异常分析[J].西北地震学报.2010,32(2):186-190.
    [55]晏锐,高福旺,黄辅琼.从昌平井体应变、水位对地震波的响应特征求算含水层的Skempton常数[J].地震学报.2008,30(2):144-151.
    [56]赵楠,江沛春,李罡风.六安地震台TJ-Ⅱ井下体应变观测与资料初析[J].华南地震.2010,30(3):105-110.
    [57]汪翠枝,张磊,刘双庆,等.定点形变观测的降雨干扰及排除方法研究[J].华北地震科学.2010,28(1):42-47.
    [58]陈莹,刘序俨,朱石军,等.福建省井水位、体应变仪与伸缩仪对汶川地震的响应分析[J].大地测量与地球动力学.2010,30(1):33-37.
    [59]马京杰,李海亮,李哲,等.锦州台体应变观测受钻孔条件影响的分析[J].地壳构造与地壳应力文集.2011,106-113.
    [60]郝军丽,卢双苓,于庆民,等.长清地震台体应变观测干扰识别分析[J].华北地震科学,2012,30(1).
    [61]彭华,马秀敏,姜景捷.山丹地应力监测站体应变仪的地震效应.《地质力学学报》.2008,06.
    [62]彭华,马秀敏,姜景捷,等WFSD地应力台应变特征及其同震效应分析.以日本MW9.0级特大地震为例.《地质力学学报》.2011,03.
    [63]张凌空,牛安福Sacks体应变地震波的观测结果分析[J].大地测量与地球动力学.2009,28(5):33-37.
    [64]陈莹,刘序俨,朱石军,等.汶川大地震时福建四种观测系统的体应变响应分析[J].华南地震.2009,29(4):85-94.
    [65]肖攀,宋国华,吴辉,等.安徽省TJ-Ⅱ型钻孔应变体应变同震效应分析[J].防灾科技学院学报.2012,14(4):42-46.
    [66]陈启林,狄梁,霍雨佳,等.江苏体应变观测对日本9级大震的记录特征[J].四川地震.2012, (4):18-21.
    [67]陈启林,霍雨佳,王皓.日本9.0级大震体应变同震分析[J].山西地震.2012,(2):18-20.
    [68]邱泽华,唐磊,张宝红,等.用小波-超限率分析提取宁陕台汶川地震体应变异常[J].地球物理学报.2012,55(2):538-546.
    [69]武晓军,胡澜缤,贾秀玲,等.用小波方法识别并提取通河体应变震前异常[J].防灾科技学院学报.2012,14(3):37-43.
    [70]唐磊,邱泽华,阚宝祥.中国钻孔体应变台网观测到的地球球型振荡.《大地测量与地球动力学》.2007,12.
    [71]唐磊,邱泽华.用钻孔体应变资料检测地球球型震荡的数据处理方法[J].地壳构造与地壳应力文集.2007:27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700