超声波在线测量聚合物熔体动态密度的实验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外对于超声波测量聚合物熔体密度的方法多为离线法,即通过超声波透射声速的波形图,在图上测量出波幅的衰减值,结合相关参数求得熔体的声阻抗值,并利用声阻抗、声速与密度的数学关系,间接得到熔体密度的方法,此法由于其滞后性与低效性,不宜用于聚合物成型加工过程中对熔体的密度进行连续测量。
     本文介绍了一种利用超声波在线测量聚合物熔体在不同温度及压力状态下熔体密度的方法,该方法分为三个步骤:
     第一步借助聚合物熔体PVT相互关系原理,将测量微距离的读数百分表安装在改进结构的熔体流动速率试验机上,可以测量出任意熔融温度及压力下的聚合物熔体密度,并对测量结果进行了理论分析,其熔体密度测量值符合聚合物自由体积理论,即聚合物熔体密度随温度增大而减小,随压力的增大而增大。另外,运用该方法还能够测量聚合物熔体体积弹性模量,通过对测量结果的理论分析,发现熔体的体积模量也随温度的升高而减小,随压力的增大而增大。
     第二步利用自己设计制作的装置,可以测量出不同温度及压力状态下的聚合物熔体的透射声速,通过对测量结果的分析,发现透射声速与聚合物熔体的动态密度变化规律保持一致。
     第三步将测量得到的聚合物熔体动态密度与对应条件下的熔体透射声速,采用改进最小二乘多项式拟合曲线法来建立熔体密度软测量的数学模型。通过拟合出的曲线,结合透射声速的数值,直接得到相对应的熔体密度。
     该方法操作简单,实验装置便于设计制作,所得数据较为准确。后期需要做出相应的配套软件系统,就能够通过透射声速瞬时得到熔体的密度,实现在线测量的目的。
At present many domestic and foreign ultrasonic measurement of polymer melt density depend on offline methods. It means through the ultrasonic transmission sound speed oscillogram, measuring the wave amplitude pad value. Use related parameter to obtain the melt acoustic impedance value. Through the acoustic impedance, the sound speed and the density relation, the melt density can be obtained indirectly. Because of its hysteresis and low efficiency, it is not suitable for melt density measurement continuously in the polymer formation process.
     This article introduced one kind of ultrasonic online measuring polymer melt density under the different temperature and the pressure, and the method divides into three steps:
     First step, based on the PVT theory of polymer melt, a Melt Flow Rates Tester was modified with a dial indicator for the measurement of the micro distance. With the modified instrument, polymer melt density can be measured under any pressure and melting temperature. By further analyzing the result, the data of the melt density is agreed with the free volume theory, that is, the polymer melt density decreased with the higher temperature and increased with the higher pressure. Moreover, this method also to be able to survey the polymer melt bulk modulus, by analyzing the result, the melt the bulk modulus also elevates along with the temperature reduces and increases along with the pressure increases.
     Second step, uses the equipment designed and manufactured by ourselves to survey polymer melt transmission sonic speed under different temperature and pressure. With analysis of result, the rule that transmission sonic speed maintains consistent with the polymer melt dynamic density changing was discovered.
     Third step, depending on polymer melt dynamic density and the corresponding condition melt transmission sonic speed, uses the Least square polynomial method to establish the melt density measurement mathematical model. With the curve the melt density can be obtained directly.
     This method has a simple operation, and the test equipment is easy to design and manufacture, and the data is more accurate. Later period if the corresponding data software system can be created, the melt density will be obtained through the transmission sonic speed, then the online measurement can be realized.
引文
[1]李鹏远.超声波油品密度检测仪的设计研究[D].西安电子科技大学,2008
    [2]何方成,宫兆斌.超声波声速测量技术及其在材料评价中的应用[J].材料工程,2003,(8):32-33.
    [3]Alf Puttmer, Peter Hauptmann. Ultrasonic measurement of the acoustic impedance of liquids. In Development and Application Systems,1997,6:83-90
    [4]Kim T J, Grill W. Determination of the velocity of ultrasound by short pulse switched sinusoidal excitation and phase-sensitive detection by a computer-controlled pulse-echo system [J]. Ultrasonics,1998,36:233-238
    [5]Alf Puttmer. Ultrasonic sensors for liquid characterization. In Summer School on Advanced Sensor Technologies,1996:83-93
    [6]Hong Xu, Damin Wu, Qunxiong Zhu. Application of Ultrasonic Measurement Technology in Polymer Precision Injection Molding Processing.2010 International Conference on Mechanic Automation and Control Engineering. MACE 2010,6228-6331
    [7]A. Puttrmer, R. Lucklum, B.Henning, P.Hauptmann. Improved ultrasonic density sensor with reduced diffraction influence, Sensors and Actuators A,1998,67:8-12
    [8]N. Hoppe, A. Puttmer, P. Hauptmann. Optimization of buffer rod geometry using MATLAB, IEEE Ultrasonics symposium,2001,365-368
    [9]王文明,潘复生,Lu Yun,曾苏民.颗粒增强铝基复合材料弹性模量的影响因素[J].重庆大学学报(自然科学版),2006,299(7):64-68
    [10]吴成宝,盖国胜,杨玉芬,董怀.无机粒子填充聚丙烯复合材料弹性模量的预测模型及影响因素分析[J].材料导报,2010,24(8):103-106
    [11]Liang J Z, Li R K Y. Mechanical properties and morphology of glass bead-filled polypropylene [J]. Polymer Composition,1998,19(6):698
    [12]Yang K, Yang Q, Li G X, et al. Mechanical properties and morphologies of polypropylene with different sizes of glass bead particles [J]. Polymer Composition,2008,29(9):992
    [13]王经武.塑料改性技术[M].北京:化学工业出版社,2004:2
    [14]Leong Y W, Abu Bakar M B, Mohd Ishak Z A, et al. Comparision of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled poly-propylene composites [J]. J Apply Polymer Science,2004,91:3315
    [15]Pukanszky B, Moczo J. Morphology and properties of particulate filled polymers [J]. Macromol Symposia,2004,214:115
    [16]Fenglan Zhang, Xin Ji. Measurement of Liquid Bulk Modulus of Elasticity. Journal of Yanbian University[J].2002,28(3):168-170
    [17]Thio Y S,et al. Toughening of isotacic polypropylene with CaCO3 particles[J]. Polymer, 2002,43(13):3661
    [18]黄锐,王旭,张铃,等.熔融共混法制备聚合物/纳米无机粒子复合材料[J].中国塑料,2003,17(4):20
    [19]花世群.利用电容器测量杨氏弹性模量[J].大学物理,2003,22(7):27-28
    [20]胡哲,宋显辉.振动法测量材料弹性模量与阻尼比[J].固体力学学报,2008(29):255-257
    [21]许明耀,胡毓华,吴瑜.激光干涉法测量弹性模量[J].物理实验,2005,25(12):3-5
    [22]Sheng Ling, Xiufen Wang, Youping Wu. Polymer Material[M]. China Light Industry Press,2000:19-21
    [23]凌绳,王秀芬,吴友平.聚合物材料[M].中国轻工业出版社,2000:19-21
    [24]Barlow J W. Measurement of the PVT behavior of cis-1,4-polybutadiene[J]. Polymer Engineering and Science,1978,18(3):238-245
    [25]张耀光,许晓晶,太玉兴.熔体流动速率仪的发展与应用.工程塑料应用[J].2007,35(5):67-68
    [26]钱汉英,刘均科,张圣领.聚合物PVT关系测定技术[J].中国塑料,1996,10(2):61-67
    [27]Sato Y, Yamasaki Y, Takishima S, et al.Precise measurement of the PVT of polypropylene and polycarbonate up to 33O℃ and 200MPa[J]. Applied Polymer Science,1997,66(1): 141-150
    [28]Hong Xu, Damin Wu, Qunxong Zhu, Yajun Zhang. Research of Precision Infection Control System based on the On-line Measurement of Polymer Melt Density.2010 International Conference on Electical Engineering and Automatic Control. ICEEAC 2010, v5:551-555
    [29]中国标准化技术委员会.GB/T3682-2000热塑性塑料熔体质量流动速率和熔体体积流动速率的测定[S].北京:中国标准出版社:2003
    [30]American Society for Testing and Materials. ASTM D1238 Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer[S]. Annual Book of ASTM Standards.1990
    [31]International Standard.ISO 1133:2005 Plastics—determination of the melt mass-flow rate(MFR)and the melt volume-flow rate(MVR) of thermoplastics[S]. International Standard.2005.6
    [32]姚汉梁.塑料熔体(质量、体积)流动速率及熔体密度的测定.工程塑料应用[J].1999,27(10):21-23
    [33]陈超,龚国芳,杨华勇,冯彬,王静.液压油体积弹性模量综合测试试验台的设计及研究[J].液压与气动,2008(11):21-24
    [34]余经洪,陆元章.测试液压系统油液综合体积弹性模量的互相关测速方法[J].液压与气动,1992(5):46-48
    [35]李松年,葛思华,史维祥.油液体积弹性模量的在线测试技术[J].机械工程学报,1989,25(3):88-93
    [36]S. Smerdin, S. Doerner, G. Schonfelder, P. Hauptmann. The ultrasonic sensor system for measurement of density of liquids[J]. Russian Acoustical Society,2003(8):443-446
    [37]吴其晔,巫静安.高分子材料流变学导论[M].北京.化学工业出版社,1994
    [38]Paul Zoller. Applied Polymer Science[J].1979,23,1051-1056
    [39]焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版,2001:304-312
    [40]Chakravorty S. PVT testing of polymers under industrial processing conditions[J]. Polymer Testing,2002,21(3):313-317
    [41]Park C B, Park S S, Ladin D, et al. Online measurement of the PVT properties of polymer melts using a gear pump[J]. Advances in Polymer Technology,2004,23(4): 316-327
    [42]金日光,华幼卿.高分子物理[M].化学工业出版社.2000:105-107
    [43]符若文,李谷,冯开才.高分子物理[M].化学工业出版社,2005:159-161
    [44]杨玉良,胡汉杰.高分子物理,北京:化学工业出版,2001:114-129
    [45]郑子聪,曹贤武,何和智.聚丙烯及聚苯乙烯发泡体系熔体密度的研究.塑料科技[J].2009,37(8):34-37
    [46]Little WJ R. Wolstenholme W E[J]. Polymer. Science,1962,56:455-463
    [47]V. S. Nanda and R. Simha. Chemical.Physics[J].1964,41,3870
    [48]陆健.最小二乘法及其应用[J].中国西部科技,2007:19-21
    [49]王新和,程世洲.曲线拟合的最小二乘法[J].新疆职业大学学报,2004,2:84-86
    [50]余长青.浅谈最小二乘法及其在科学实验中的应用[J].黔南民族师范学院学报,2005,6:53-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700