蛋白质酶解历程动态特性和多肽释放规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文组合应用色谱、质谱、光谱等测试技术,系统地研究了两个极具开发价值的水解体系:牛血红蛋白—胃蛋白酶(体系I)、牛乳酪蛋白—胰酶(体系II),并基于酶学性质和蛋白质结构知识,剖析酶解历程动态特性和多肽释放规律。
     1.比较体系I在两种不同水解机制下的反应行为。在pH为4.5时,牛血红蛋白保持天然结构,在胃蛋白酶作用下发生顺次水解,底物在反应过程中始终存在;在pH为2.0时,变性的牛血红蛋白在胃蛋白酶作用下发生拉链水解,底物在反应过程中快速转化为中间多肽。胃蛋白酶主要攻击α链全链和β链两端区域,而β链中部区域由于高亲水性而少有剪切。基于多肽释放动力学规律,确定活性多肽最佳制备工艺。进一步根据胃蛋白酶水解特性和牛血红蛋白结构剖析了反应行为。
     2.跟踪体系I活性多肽相互转化历程。在抗菌肽α107-136向血管舒缓激肽α110-125转化历程中,共涉及6个相关多肽;基于序列分析和多肽释放动力学,构建了反应网络,分析胃蛋白酶对各种肽键的亲和力;依据结构分析推断多肽生物学功能。
     3.利用反相色谱、离子交换色谱和体积排阻色谱对体系II酶解产物多肽进行分离。在酶解历程中,产物多肽整体上按疏水性向亲水性、多电荷向寡电荷、高分子量向低分子量转变。
     4.体系II的底物和产物分析。酪蛋白在胰酶作用下,胶束含量逐渐降低,但胶束尺寸和分子量却在水解10min内不断增加。反应24小时内,共释放297个多肽。胰酶攻击单体的速度从快到慢为:β-酪蛋白>αs1-酪蛋白>αs2-酪蛋白>κ-酪蛋白。
     5.体系II酶解历程的理论模拟和直观表征。利用2-30-30-1的BP模型对酪蛋白酶解历程分子量分布进行模拟;基于该模型完成三维图形表征,可直观分析胶束区、单体区、巨肽区、长肽区和寡肽区的含量变化。
     6.酪蛋白磷酸肽的特殊鉴定和释放规律。采用液质联用技术结合中性丢失扫描(SALSA自定义检索模块)和数据库搜索(Sequest蛋白数据库匹对)对酪蛋白磷酸肽(CPPs)进行鉴定;CPPs在串联质谱过程均发生明显的中性丢失现象,利用中性丢失峰,可迅速判断其价态、分子量和磷酸化个数;跟踪了CPPs的释放规律,确定了其最佳制备工艺。
     7.多肽反相色谱保留行为模型构建及磷酸化影响规律研究。基于365个非磷酸肽,构建了色谱保留时间预测模型;单一和多重磷酸化分别导致多肽整体亲水性的降低和增强,因此分别比非磷酸化对应体较晚和较早洗脱。
In this thesis, peptic digestion of bovine hemoglobin and pancreatic digestion ofbovine casein were systematicallyinvestigated bya combination of chromatographic, massspectrometric and spectroscopic analyses. On the basis of enzyme mechanism and proteinstructure, we have extensively studied the reaction behavior of protein and release kineticsof peptides during enzymatic hydrolysis.The main aspectsand conclusions were displayedasfollows.
     1. Two different mechanisms of hydrolysis were compared for peptic digestion of bovinehemoglobin:“onebyone”fornativehemoglobinat pH4.5,and“zipper”fordenaturedhemoglobin at pH 2.0. The reaction mixture always contains native hemoglobin at pH4.5, whereas denatured hemoglobin were rapidly converted to intermediate peptides.For these two mechanisms, peptic cleavage sites were distributed all theα-chain andthe terminal regions ofβ-chain. Littleenzymatichydrolysisoccurredinthecenterpart ofβ-chain due mainly to their high hydrophilic nature. The reaction behavior was discussedin relation to the hydrophobicitydistribution of polypeptide chains and the mechanismofpepsin.
     2. The precursor cleavage of the antimicrobial peptideα107-136 into the bradykinin-potentiating peptideα110-125 were followed during peptic hydrolysis of bovinehemoglobin. A total of six peptides were identified as being involved in the cleavageprocess. Moreover, the reaction network of these peptides was developed according tothe sequence alignment and their release kinetics. The affinity of pepsin towardsdifferent peptide bonds of bovine hemoglobin was also compared based on data fromthe release kinetics of peptides. In addition, some potentially bioactive peptides werepredictedbymeansofsequenceanalysisandsecondarystructurecalculations.
     3. Bovine casein pancreatic hydrolysates were separated andanalyzed by reversed-phase,strong cation exchange and size exclusion chromatography. In general, the resultingpeptides were converted from hydrophobic to hydrophilic, from multiply-charged tofew-chargedandfromlargetosmallduringthecourseofhydrolysis.
     4. The substrate and products from pancreatic digestion of bovine casein were analyzedby size exclusion chromatography coupled with multi-angle laser light scattering(SEC-MALLS) and reversed-phase liquid chromatography coupled with tandem massspectrometry (RPLC-ESI-MS/MS), respectively. Upon limited hydrolysis, casein micelles displayed a continuous growth in their sizes and molecular weights, togetherwith the decrease in their concentration. The hydrolysis rate of micellar caseins bypancreatinwasrankedfromfasttoslowasfollows:β-casein>αs1-casein>αs2-casein>κ-casein.
     5. We developed a computational model to predict molecular weight distribution ofbovine casein pancreatic hydrolysates using artificial neural networks (ANN) thatcontained 2 input nodes, 1 output node and two hidden layers with 30 nodes. Based onthe prediction results from such model, a 3-D continuous surface and its correspondingcontour plot were obtained to directly and distinctly characterize the dynamic processof enzymatic hydrolysates with different molecular weight including micelles,monomers,macropeptides,polypeptidesandoligopeptides.
     6. In total, 52 casein phosphopeptides (CPPs) in the time-course samples were separatedand identified using liquid chromatography-tandem mass spectrometry by means ofneural loss scanning (SALSA) and database searching (Sequest). All the CPPs showedsignificant neutral loss of phosphoric acid(s) during the collision-induced dissociation(CID) process in the ion-trap mass spectrometer. Moreover, the charge states, molarmasses and number of phosphorylation sites of peptides could be determined on thebasis of these neural loss ions. In addition, a study of the release kinetics of CPPsallowed determination of the degrees of hydrolysis for the preparation of target CPPwithhighyields.
     7. Aprediction model as awas developed on the basis of 365non-phosphorylated peptides from casein pancreatic and peptic hydrolysates, and canbe used to accurately predict the retention times of peptides on C4 reversed-phase(300? pore size) columns with TFA as the ion pairing reagent. Singly and multiplyphosphorylations respectively reduced and increased the overall hydrophilicity ofpeptides, and thus make phosphopeptides elute after or before the non-phosphorylatedpredictivecognates,respectively.
引文
[1] Clare DA, Swaisgood HE. Bioactive milk peptides: A prospectus. Journal of DairyScience, 2000, 83: 1187-1195.
    [2] Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415:389-395.
    [3] Fiat AM, Miglioresamour D, Jollès P, et al. Biologically active peptides from milkproteins with emphasis on two examples concerning antithrombotic andimmunomodulating activities. Journal of Dairy Science, 1993, 76: 301-310.
    [4] Chen HM, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptidesbased on the antioxidative peptide isolated from digests of a soybean protein. Journalof Agricultural and Food Chemistry, 1996, 44: 2619-2623.
    [5] Dennison SR, Whittaker M, Harris F, et al. Anticancer α-helical peptides andstructure/function relationships underpinning their interactions with tumour cellmembranes. Current Protein & Peptide Science, 2006, 7: 487-499.
    [6] Di Bello C, Pasquato A, Dettin M. Synthetic peptides for AIDS research. CurrentProtein & Peptide Science, 2004, 5: 225-234.
    [7] Sunyaev S, Lathe W, Bork P. Integration of genome data and protein structures:prediction of protein folds, protein interactions and 'molecular phenotypes' of singlenucleotide polymorphisms. Current Opinion in Structural Biology, 2001, 11: 125-130.
    [8] Steiner H, Hultmark D, Engstrom A, et al. Sequence and specificity of twoanti-bacterial proteins involved in insect immunity. Nature, 1981, 292: 246-248.
    [9] Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemicaldefense system of vertebrates. Annual Review of Microbiology, 1995, 49: 277-304.
    [10] Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as newanti-infective therapeutic strategies. Nature Biotechnology, 2006, 24: 1551-1557.
    [11] Owens J. Antibacterial drugs: Peptide power. Nature Reviews Drug Discovery, 2005,4: 957-957.
    [12] Pereira HA. Novel therapies based on cationic antimicrobial peptides. CurrentPharmaceutical Biotechnology, 2006, 7: 229-234.
    [13] Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationicantimicrobial peptides. Biochimica et Biophysica Acta-Biomembranes, 2006, 1758:1529-1539.
    [14] Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobialpeptides. Biopolymers, 1998, 47: 451-463.
    [15] McCafferty DG, Cudic P, Yu MK, et al. Synergy and duality in peptide antibioticmechanisms. Current Opinion in Chemical Biology, 1999, 3: 672-680.
    [16] Yamamoto N. Antihypertensive peptides derived from food proteins. Biopolymers,1997, 43: 129-134.
    [17] FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk proteins.Journal of Nutrition, 2004, 134: 980S-988S.
    [18] Robert MC, Razaname A, Mutter M, et al. Identification of angiotensin-I-convertingenzyme Iinhibitory peptides derived from sodium caseinate hydrolysates producedby Lactobacillus helveticus NCC 2765. Journal of Agricultural and Food Chemistry,2004, 52: 6923-6931.
    [19] Saito T, Nakamura T, Kitazawa H, et al. Isolation and structural analysis ofantihypertensive peptides that exist naturally in Gouda cheese. Journal of DairyScience, 2000, 83: 1434-1440.
    [20] Yamamoto N, Maeno M, Takano T. Purification and characterization of anantihypertensive peptide from a yogurt-like product fermented by Lactobacillushelveticus CPN4. Journal of Dairy Science, 1999, 82: 1388-1393.
    [21] Pripp AH, Isaksson T, Stepaniak L, et al. Quantitative structure-activity relationshipmodelling of ACE-inhibitory peptides derived from milk proteins. European FoodResearch and Technology, 2004, 219: 579-583.
    [22] Desai P, Coutinho E, Srivastava S. Conformational diversity of T-kinin in DMSO,water and HFA. European Journal of Medicinal Chemistry, 2002, 37: 135-146.
    [23] Gómez-Ruiz JA, Recio I, Belloque J. ACE-inhibitory activity and structuralproperties of peptide Asp-Lys-Ile-His-Pro [β-CN f(47-51)]. Study of the peptideforms synthesized by different methods. Journal of Agricultural and Food Chemistry,2004, 52: 6315-6319.
    [24] Pert CB, Snyder SH. Properties of opiate-receptor binding in rat-brain. Proceedingsof the National Academy of Sciences of the United States of America, 1973, 70:2243-2247.
    [25] Simon EJ, Hiller JM, Edelman I. Stereospecific binding of potent narcotic analgesic(H-3) etorphine to rat-brain homogenate. Proceedings of the National Academy ofSciences of the United States of America, 1973, 70: 1947-1949.
    [26] Terenius L. Characteristics of receptor for narcotic analgesics in synapticplasma-membrane fraction from rat-brain. Acta Pharmacologica et Toxicologica,1973, 33: 377-384.
    [27] Hughes J, Smith TW, Kosterlitz HW, et al. Identification of two relatedpentapeptides from brain with potent opiate agonist activity. Nature, 1975, 258: 577-579.
    [28] Teschemacher H, Koch G, Brantl V. Milk protein-derived opioid receptor ligands.Biopolymers, 1997, 43: 99-117.
    [29] Chang KJ, Killian A, Hazum E, et al. Morphiceptin: a potent and specific agonist formorphine (μ) Receptors. Science, 1981, 212: 75-77.
    [30] Mierke DF, Nossner G, Schiller PW, et al. Morphiceptin analogs containing2-aminocyclopentane carboxylic-acid as a peptidomimetic for proline. InternationalJournal of Peptide and Protein Research, 1990, 35: 35-45.
    [31] Meisel H, FitzGerald RJ. Biofunctional peptides from milk proteins: Mineralbinding and cytomodulatory effects. Current Pharmaceutical Design, 2003, 9:1289-1295.
    [32] FitzGerald RJ. Potential uses of caseinophosphopeptides. International Dairy Journal,1998, 8: 451-457.
    [33] Kitts DD. Antioxidant properties of casein-phosphopeptides. Trends in Food Science& Technology, 2005, 16: 549-554.
    [34] Zhang FM, Otani H. Immunogenicity and antigenicity of casein phosphopeptides.Milchwissenschaft-Milk Science International, 2003, 58: 9-13.
    [35] Swaisgood HE. Chemistry of caseins. In: Fox PF, editor. Advanced dairy chemistry.Cambridge, UK: Elsevier Applied Science; 1992, p. 63-110.
    [36] Reynolds EC, Riley PF, Adamson NJ. A selective precipitation purificationprocedure for multiple phosphoseryl-containing peptides and methods for theiridentification. Analytical Biochemistry, 1994, 217: 277-284.
    [37] Meisel H. Overview on milk protein-derived peptides. International Dairy Journal,1998, 8: 363-373.
    [38] Mellander O. The physiological importance of the casein phosphopeptide calciumsalts. 11. Peroral calcium dosage of infants. Acta of the Society of Medicine ofUppsala, 1950, 55: 247-255.
    [39] Hata I, Ueda J, Otani H. Immunostimulatory action of a commercially availablecasein phosphopeptide preparation, CPP-III, in cell cultures. Milchwissenschaft-Milk Science International, 1999, 54: 3-7.
    [40] Kitts DD, Yuan YV, Nagasawa T, et al. Effect of casein, casein phosphopeptides andcalcium intake on ileal Ca-45 disappearance and temporal systolic blood-pressure inspontaneously hypertensive rats. British Journal of Nutrition, 1992, 68: 765-781.
    [41] Perutz MF. Structure and mechanism of hemoglobin. British Medical Bulletin, 1976,32: 195-208.
    [42] Perutz MF. Stereochemistry of cooperative effects in haemoglobin. Nature, 1970,228: 726-734.
    [43] Ivanov VT, Karelin AA, Philippova MM, et al. Hemoglobin as a source ofendogenous bioactive peptides: The concept of tissue-specific peptide pool.Biopolymers, 1997, 43: 171-188.
    [44] Perutz MF, Rossmann MG, Cullis AF, et al. Structure of haemoglobin: 3-dimensionalFourier synthesis at 5.5-a resolution, obtained by X-ray analysis. Nature, 1960, 185:416-422.
    [45] Perutz MF. Structure and function of haemoglobin: I. a tentative atomic model ofhorse oxyhaemoglobin. Journal of Molecular Biology, 1965, 13: 646-668.
    [46] Perutz MF, Kendrew JC, Watson HC. Structure and function of haemoglobin: II.some relations between polypeptide chain configuration and amino acid sequence.Journal of Molecular Biology, 1965, 13: 669-678.
    [47] Muirhead H, Cox JM, Mazzarel.L, et al. Structure and function of haemoglobin: III.a 3-dimensional Fourier synthesis of human deoxyhaemoglobin at 5.5 a resolution.Journal of Molecular Biology, 1967, 28: 117-150.
    [48] Muirhead H, Perutz MF. Structure of haemoglobin: a 3-dimensional Fouriersynthesis of reduced human haemoglobin at 5.5 a resolution. Nature, 1963, 199:633-638.
    [49] Perutz MF. Mechanism of denaturation of hemoglobin by alkali. Nature, 1974, 247:341-344.
    [50] Perutz MF, Raidt H. Stereochemical basis of heat-stability in bacterial ferredoxinsand in hemoglobin-A2. Nature, 1975, 255: 256-259.
    [51] De S, Girigoswami A. A fluorimetric and circular dichroism study of hemoglobin -Effect of pH and anionic amphiphiles. Journal of Colloid and Interface Science,2006, 296: 324-331.
    [52] Bispo JAC, Santos JLR, Landini GF, et al. PH dependence of the dissociation ofmultimeric hemoglobin probed by high hydrostatic pressure. Biophysical Chemistry,2007, 125: 341-349.
    [53] 赵谋明, 郭善广, 崔春, et al. 猪血血红蛋白酶解及脱苦. 吉林大学学报(工学版), 2006, 36: 1034-1040.
    [54] Froidevaux R, Krier F, Nedjar-Arroume N, et al. Antibacterial activity of apepsin-derived bovine hemoglobin fragment. FEBS Letters, 2001, 491: 159-163.
    [55] Daoud R, Dubois V, Bors-Dodita L, et al. New antibacterial peptide derived frombovine hemoglobin. Peptides, 2005, 26: 713-719.
    [56] Nedjar-Arroume N, Dubois-Delval V, Miloudi K, et al. Isolation and characterizationof four antibacterial peptides from bovine hemoglobin. Peptides, 2006, 27: 2082-2089.
    [57] Piot JM, Zhao QY, Guillochon D, et al. Isolation and characterization of abradykinin-potentiating peptide from a bovine peptic hemoglobin hydrolysate. FEBSLetters, 1992, 299: 75-79.
    [58] Fukui K, Shiomi H, Takagi H, et al. Isolation from bovine brain of a novel analgesicpentapeptide, neo-kyotorphin, containing the Tyr-Arg (kyotorphin) unit.Neuropharmacology, 1983, 22: 191-196.
    [59] Blishchenko EY, Mernenko OA, Yatskin ON, et al. Neokyotorphin andneokyotorphin (1-4): Cytolytic activity and comparative levels in rat tissues.Biochemical and Biophysical Research Communications, 1996, 224: 721-727.
    [60] Zhao Q, Garreau I, Sannier F, et al. Opioid peptides derived from hemoglobin:Hemorphins. Biopolymers, 1997, 43: 75-98.
    [61] Zhao QY, Sannier F, Garreau I, et al. Inhibition and inhibition kinetics of angiotensinconverting enzyme activity by hemorphins, isolated from a peptic bovinehemoglobin hydrolysate. Biochemical and Biophysical Research Communications,1994, 204: 216-223.
    [62] Barkhudaryan N, Kellermann J, Galoyan A, et al. High molecular weight asparticendopeptidase generates a coronaro-constrictory peptide from the β-chain ofhemoglobin. FEBS Letters, 1993, 329: 215-218.
    [63] Aubes-Dafau I, Capdevielle J, Seris JL, et al. Bitter peptide from hemoglobinhydrolysate: Isolation and characterization. FEBS Letters, 1995, 364: 115-119.
    [64] Davis TP, Gillespie TJ, Porreca F. Peptide fragments derived from the β-chain ofhemoglobin (hemorphins) are centrally active in vivo. Peptides, 1989, 10: 747-751.
    [65] Zhao QY, Piot JM, Gautier V, et al. Isolation and characterization of a bacterialgrowth-stimulating peptide from a peptide bovine hemoglobin hydrolysate. AppliedMicrobiology and Biotechnology, 1996, 45: 778-784.
    [66] Yu Y, Hu JN, Miyaguchi YJ, et al. Isolation and characterization of angiotensinI-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides,2006, 27: 2950-2956.
    [67] Mito K, Fujii M, Kuwahara M, et al. Antihypertensive effect of angiotensinI-converting enzyme inhibitory peptides derived from hemoglobin. European Journalof Pharmacology, 1996, 304: 93-98.
    [68] Brantl V, Gramsch C, Lottspeich F, et al. Novel opioid peptides derived fromhemoglobin: hemorphins. European Journal of Pharmacology, 1986, 125: 309-310.
    [69] Zhao Q, Sannier F, Garreau I, et al. Reversed-phase high-performance liquidchromatography coupled with second-order derivative spectroscopy for thequantitation of aromatic amino acids in peptides: Application to hemorphins. Journalof ChromatographyA, 1996, 723: 35-41.
    [70] Zhao QY, Sannier F, Piot JM. Kinetics of appearance of four hemorphins frombovine hemoglobin peptic hydrolysates by HPLC coupled with photodiode arraydetection. Biochimica et Biophysica Acta-Protein Structure and MolecularEnzymology, 1996, 1295: 73-80.
    [71] Froidevaux R, Lignot B, Nedjar-Arroume N, et al. Kinetics of appearance ofhemorphins from bovine hemoglobin peptic hydrolysates by a direct coupling ofreversed-phase high-performance liquid chromatography and electrospray ionizationmass spectrometry. Journal of ChromatographyA, 2000, 873: 185-194.
    [72] Lignot B, Froidevaux R, Nedjar-Arroume N, et al. Solvent effect on kinetics ofappearance of haemorphins in the course of peptic hydrolysis of bovine haemoglobin.Biotechnology and Applied Biochemistry, 1999, 29: 25-30.
    [73] Lignot B, Froidevaux R, Nedjar-Arroume N, et al. Solvent effect on kinetics ofappearance of neokyotorphin, VV-haemorphin-4 and a bradykinin-potentiatingpeptide in the course of peptic hydrolysis of bovine haemoglobin. Biotechnology andApplied Biochemistry, 1999, 30: 201-207.
    [74] Froidevaux R, Vercaigne-Marko D, Kapel R, et al. Study of a continuous reactor forselective solvent extraction of haemorphins in the course of peptic haemoglobinhydrolysis. Journal of Chemical Technology and Biotechnology, 2006, 81: 1433-1440.
    [75] Ticu EL, Vercaigne-Marko D, Huma A, et al. A kinetic study of bovine haemoglobinhydrolysis by pepsin immobilized on a functionalized alumina to preparehydrolysates containing bioactive peptides. Biotechnology and Applied Biochemistry,2004, 39: 199-208.
    [76] Kapel R, Froidevaux R, Nedjar-Arroume N, et al. Continuous production of apeptidic fraction containing the intermediate opioid peptide LVV-haemorphin-7(LVVh-7) by peptic hydrolysis of bovine haemoglobin in a continuous membranereactor. Biotechnology and Applied Biochemistry, 2003, 37: 317-324.
    [77] Fogaca AC, da Silva PI, Miranda MTM, et al. Antimicrobial activity of a bovinehemoglobin fragment in the tick Boophilus microplus. Journal of BiologicalChemistry, 1999, 274: 25330-25334.
    [78] Sforca ML, Machado A, Figueredo RCR, et al. The micelle-bound structure of anantimicrobial peptide derived from the alpha-chain of bovine hemoglobin isolatedfrom the tick Boophilus microplus. Biochemistry, 2005, 44: 6440-6451.
    [79] Lantz I, Glamsta EL, Talback L, et al. Hemorphins derived from hemoglobin have aninhibitory-action on angiotensin converting enzyme-activity. FEBS Letters, 1991,287: 39-41.
    [80] Holt C. The milk salts and their interaction with casein. In: Fox PF, editor. Advanceddairy chemistry. London: Chapman & Hall; 1997, p. 233-256.
    [81] Silva SV, Malcata FX. Caseins as source of bioactive peptides. International DairyJournal, 2005, 15: 1-15.
    [82] Horne DS. Casein interactions: Casting light on the black boxes, the structure indairy products. International Dairy Journal, 1998, 8: 171-177.
    [83] Gebhardt R, Doster W, Friedrich J, et al. Size distribution of pressure-decomposedcasein micelles studied by dynamic light scattering and AFM. European BiophysicsJournal with Biophysics Letters, 2006, 35: 503-509.
    [84] Dickinson E, Semenova MG, Belyakova LE, et al. Analysis of light scattering dataon the calcium ion sensitivity of caseinate solution thermodynamics: Relationship toemulsion flocculation. Journal of Colloid and Interface Science, 2001, 239: 87-97.
    [85] Lucey JA, Srinivasan M, Singh H, et al. Characterization of commercial andexperimental sodium caseinates by multiangle laser light scattering andsize-exclusion chromatography. Journal of Agricultural and Food Chemistry, 2000,48: 1610-1616.
    [86] Thurn A, Burchard W, Niki R. Structure of casein micelles: 1. Small-angleneutron-scattering and light-scattering from ?-casein and ?-casein. Colloid andPolymer Science, 1987, 265: 653-666.
    [87] Marchin S, Putaux JL, Pignon F, et al. Effects of the environmental factors on thecasein micelle structure studied by cryo transmission electron microscopy andsmall-angle x-ray scattering/ultrasmall-angle x-ray scattering. Journal of ChemicalPhysics, 2007, 126: 045101.
    [88] Holt C, de Kruif CG, Tuinier R, et al. Substructure of bovine casein micelles bysmall-angle X-ray and neutron scattering. Colloids and Surfaces a-Physicochemicaland Engineering Aspects, 2003, 213: 275-284.
    [89] Dalgleish DG, Spagnuolo PA, Goff HD. A possible structure of the casein micellebased on high-resolution field-emission scanning electron microscopy. InternationalDairy Journal, 2004, 14: 1025-1031.
    [90] McMahon DJ, McManus WR. Rethinking casein micelle structure using electronmicroscopy. Journal of Dairy Science, 1998, 81: 2985-2993.
    [91] Walstra P. On the stability of casein micelles. Journal of Dairy Science, 1990, 73:1965-1979.
    [92] Holt C, Wahlgren NM, Drakenberg T. Ability of a ?-casein phosphopeptide tomodulate the precipitation of calcium phosphate by forming amorphous dicalciumphosphate nanoclusters. Biochemical Journal, 1996, 314: 1035-1039.
    [93] Home DS. Casein micelle structure: Models and muddles. Current Opinion inColloid & Interface Science, 2006, 11: 148-153.
    [94] Lahov E, Regelson W. Antibacterial and immunostimulating casein-derivedsubstances from milk: Casecidin, isracidin peptides. Food and Chemical Toxicology,1996, 34: 131-145.
    [95] Minkiewicz P, Slangen CJ, Dziuba J, et al. Identification of peptides obtained viahydrolysis of bovine casein by chymosin using HPLC and mass spectrometry.Milchwissenschaft-Milk Science International, 2000, 55: 14-17.
    [96] Meisel H, Olieman C. Estimation of calcium-binding constants of caseinphosphopeptides by capillary zone electrophoresis. Analytica Chimica Acta, 1998,372: 291-297.
    [97] Loukas S, Varoucha D, Zioudrou C, et al.Opioid activities and structures of ?-caseinderived exorphins. Biochemistry, 1983, 22: 4567-4573.
    [98] McCann KB, Shiell BJ, Michalski WP, et al. Isolation and characterisation of a novelantibacterial peptide from bovine αS1-casein. International Dairy Journal, 2006, 16:316-323.
    [99] Pihlanto-Lepp?l? A, Rokka T, Korhonen H. Angiotensin I converting enzymeinhibitory peptides derived from bovine milk proteins. International Dairy Journal,1998, 8: 325-331.
    [100] Miglioresamour D, Floch F, Jollès P. Biologically active casein peptides implicatedin immunomodulation. Journal of Dairy Research, 1989, 56: 357-362.
    [101] Smacchi E, Gobbetti M. Bioactive peptides in dairy products: synthesis andinteraction with proteolytic enzymes. Food Microbiology, 2000, 17: 129-141.
    [102] Recio I, Visser S. Identification of two distinct antibacterial domains within thesequence of bovine ?s2-casein. Biochimica et Biophysica Acta-General Subjects,1999, 1428: 314-326.
    [103] Tauzin J, Miclo L, Gaillard JL. Angiotensin-I-converting enzyme inhibitory peptidesfrom tryptic hydrolysate of bovine ?s2-casein. FEBS Letters, 2002, 531: 369-374.
    [104] Maeno M, Yamamoto N, Takano T. Identification of an antihypertensive peptidefrom casein hydrolysate produced by a proteinase from Lactobacillus helveticusCP790. Journal of Dairy Science, 1996, 79: 1316-1321.
    [105] Miquel E, Gomez JA, Alegria A, et al. Identification of casein phosphopeptides aftersimulated gastrointestinal digestion by tandem mass spectrometry. European FoodResearch and Technology, 2006, 222: 48-53.
    [106] Nakamura Y, Yamamoto N, Sakai K, et al. Purification and characterization ofangiotensin I-converting enzyme inhibitors from sour milk. Journal of Dairy Science,1995, 78: 777-783.
    [107] Maruyama S, Suzuki H. A peptide inhibitor of angiotensin-I converting enzyme inthe tryptic hydrolysate of casein. Agricultural and Biological Chemistry, 1982, 46:1393-1394.
    [108] Sandre C, Gleizes A, Forestier F, et al. A peptide derived from bovine ?-caseinmodulates functional properties of bone marrow-derived macrophages fromgermfree and human flora-associated mice. Journal of Nutrition, 2001, 131: 2936-2942.
    [109] Schlimme E, Meisel H. Bioactive peptides derived from milk proteins. Structural,physiological and analytical aspects. Nahrung-Food, 1995, 39: 1-20.
    [110] Jollès P, Loucheuxlefebvre MH, Henschen A. Structural relatedness of κ-casein andfibrinogen γ-chain. Journal of Molecular Evolution, 1978, 11: 271-277.
    [111] Fiat AM, Jollès P. Caseins of various origins and biologically active casein peptidesand oligosaccharides: Structural and physiological aspects. Molecular and CellularBiochemistry, 1989, 87: 5-30.
    [112] Chabance B, Jollès P, Izquierdo C, et al. Characterization of an antithromboticpeptide from κ-casein in new born plasma after milk ingestion. British Journal ofNutrition, 1995, 73: 583-590.
    [113] Karaki H, Doi K, Sugano S, et al. Antihypertensive effect of tryptic hydrolysate ofmilk casein in spontaneously hypertensive rats. Comparative Biochemistry andPhysiology C-Pharmacology Toxicology & Endocrinology, 1990, 96: 367-371.
    [114] Hata Y, Yamamoto M, Ohni M, et al. Placebo-controlled study of the effect of sourmilk on blood pressure in hypertensive subjects. American Journal of ClinicalNutrition, 1996, 64: 767-771.
    [115] Brantl V, Teschemacher H, Henschen A, et al. Novel opioid peptides derived fromcasein (β-casomorphins) .1. Isolation from bovine casein peptone. Hoppe-SeylersZeitschrift Fur Physiologische Chemie, 1979, 360: 1211-1216.
    [116] Meisel H. Chemical characterization and opioid activity of an exorphin isolated fromin vivo digests of casein. FEBS Letters, 1986, 196: 223-227.
    [117] Brantl V, Teschemacher H, Blasig J, et al. Opioid activities of β-casomorphins. LifeSciences, 1981, 28: 1903-1909.
    [118] Perpetuo EA, Juliano L, Lebrun I. Biochemical and pharmacological aspects of twobradykinin-potentiating peptides obtained from tryptic hydrolysis of casein. Journalof Protein Chemistry, 2003, 22: 601-606.
    [119] Yamamoto N, Akino A, Takano T. Antihypertensive effects of different kinds offermented milk in spontaneously hypertensive rats. Bioscience Biotechnology andBiochemistry, 1994, 58: 776-778.
    [120] Xu RJ. Bioactive peptides in milk and their biological and health implications. FoodReviews International, 1998, 14: 1-16.
    [121] Jollès P, Parker F, Floch F, et al. Immunostimulating substances from human casein.Journal of Immunopharmacology, 1982, 3: 363-369.
    [122] Parker F, Miglioresamour D, Floch F, et al. Immunostimulating hexapeptide fromhuman casein: Amino acid sequence, synthesis and biological properties. EuropeanJournal of Biochemistry, 1984, 145: 677-682.
    [123] Kayser H, Meisel H. Stimulation of human peripheral blood lymphocytes bybioactive peptides derived from bovine milk proteins. FEBS Letters, 1996, 383:18-20.
    [124] Ganjam LS, Thornton WH, Marshall RT, et al. Antiproliferative effects of yogurtfractions obtained by membrane dialysis on cultured mammalian intestinal cells.Journal of Dairy Science, 1997, 80: 2325-2329.
    [125] Otani H, Kihara Y, Park M. The immunoenhancing property of a dietary caseinphosphopeptide preparation in mice. Food and Agricultural Immunology, 2000, 12:165-173.
    [126] Bruck WM, Kelleher SL, Gibson GR, et al. rRNA probes used to quantify the effectsof glycomacropeptide and α-lactalbumin supplementation on the predominantgroups of intestinal bacteria of infant rhesus monkeys challenged withenteropathogenic Escherichia coli. Journal of Pediatric Gastroenterology andNutrition, 2003, 37: 273-280.
    [127] Bruck WM, Graverholt G, Gibson GR. A two-stage continuous culture system tostudy the effect of supplemental α-lactalbumin and glycomacropeptide on mixedcultures of human gut bacteria challenged with enteropathogenic Escherichia coliand Salmonella serotype Typhimurium. Journal of Applied Microbiology, 2003, 95:44-53.
    [128] Zucht HD, Raida M, Adermann K, et al. Casocidin-I: a casein αs2 derived peptideexhibits antibacterial activity. FEBS Letters, 1995, 372: 185-188.
    [129] Chabance B, Marteau P, Rambaud JC, et al. Casein peptide release and passage tothe blood in humans during digestion of milk or yogurt. Biochimie, 1998, 80: 155-165.
    [130] Meisel H, Bernard H, Fairweather-Tait S, et al. Detection of caseinophosphopeptidesin the distal ileostomy fluid of human subjects. British Journal of Nutrition, 2003, 89:351-358.
    [131] Ait-oukhatar N, Bouhallab S, Arhan P, et al. Iron tissue storage and hemoglobinlevels of deficient rats repleted with iron bound to the caseinophosphopeptide 1-25of β-casein. Journal of Agricultural and Food Chemistry, 1999, 47: 2786-2790.
    [132] Peres JM, Bouhallab S, Petit C, et al. Improvement of zinc intestinal absorption andreduction of zinc/iron interaction using metal bound to the caseinophosphopeptide1-25 of β-casein. Reproduction Nutrition Development, 1998, 38: 465-472.
    [133] Ferraretto A, Signorile A, Gravaghi C, et al. Casein phosphopeptides influencecalcium uptake by cultured human intestinal HT-29 tumor cells. Journal of Nutrition,2001, 131: 1655-1661.
    [134] Ferraretto A, Gravaghi C, Fiorilli A, et al. Casein-derived bioactive phosphopeptides:role of phosphorylation and primary structure in promoting calcium uptake by HT-29tumor cells. FEBS Letters, 2003, 551: 92-98.
    [135] Kawasaki Y, Isoda H, Tanimoto M, et al. Inhibition by lactoferrin and κ-caseinglycomacropeptide of binding of cholera toxin to its receptor. BioscienceBiotechnology and Biochemistry, 1992, 56: 195-198.
    [136] Kelleher SL, Chatterton D, Nielsen K, et al. Glycomacropeptide and α-lactalbuminsupplementation of infant formula affects growth and nutritional status in infantrhesus monkeys. American Journal of Clinical Nutrition, 2003, 77: 1261-1268.
    [137] Anema SG. The effect of chymosin on κ-casein coated polystyrene latex particlesand bovine casein micelles. International Dairy Journal, 1997, 7: 553-558.
    [138] 夏其昌, 曾嵘. 蛋白质化学与蛋白质组学. 北京: 科学出版社; 2004.
    [139] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecularmasses exceeding 10000 daltons. Analytical Chemistry, 1988, 60: 2299-2301.
    [140] Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass-spectrometry oflarge biomolecules. Science, 1989, 246: 64-71.
    [141] Steen H, Mann M. The ABC's (and XYZ's) of peptide sequencing. Nature ReviewsMolecular Cell Biology, 2004, 5: 699-711.
    [142] Biemann K. Mass spectrometry of peptides and proteins. Annual Review ofBiochemistry, 1992, 61: 977-1010.
    [143] Papayannopoulos IA. The interpretation of collision-induced dissociation tandemmass spectra of peptides. Mass Spectrometry Reviews, 1995, 14: 49-73.
    [144] Breci LA, Tabb DL, Yates JR, et al. Cleavage N-terminal to proline: Analysis of adatabase of peptide tandem mass spectra. Analytical Chemistry, 2003, 75: 1963-1971.
    [145] Sadygov RG, Cociorva D, Yates JR. Large-scate database searching using tandemmass spectra: Looking up the answer in the back of the book. Nature Methods, 2004,1: 195-202.
    [146] Zolnierowicz S, Bollen M. Protein phosphorylation and protein phosphatases. DePanne, Belgium, September 19-24, 1999. The EMBO Journal, 2000, 19: 483-488.
    [147] Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome.Science, 2001, 291: 1304-1351.
    [148] Ruotolo BT, Gillig KJ, Woods AS, et al. Analysis of phosphorylated peptides by ionmobility-mass spectrometry. Analytical Chemistry, 2004, 76: 6727-6733.
    [149] Spickett CM, Pitt AR, Morrice N, et al. Proteomic analysis of phosphorylation,oxidation and nitrosylation in signal transduction. Biochimica et BiophysicaActa-Proteins and Proteomics, 2006, 1764: 1823-1841.
    [150] Mann M, Ong SE, Gronborg M, et al. Analysis of protein phosphorylation usingmass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology,2002, 20: 261-268.
    [151] Hunter AP, Games DE. Chromatographic and mass spectrometric methods for theidentification of phosphorylation sites in phosphoproteins. Rapid Communications inMass Spectrometry, 1994, 8: 559-570.
    [152] Beausoleil SA, Jedrychowski M, Schwartz D, et al. Large-scale characterization ofHeLa cell nuclear phosphoproteins. Proceedings of the National Academy ofSciences of the United States of America, 2004, 101: 12130-12135.
    [153] Syka JEP, Coon JJ, Schroeder MJ, et al. Peptide and protein sequence analysis byelectron transfer dissociation mass spectrometry. Proceedings of the NationalAcademy of Sciences of the United States of America, 2004, 101: 9528-9533.
    [154] Jun SY, Park PJ, Jung WK, et al. Purification and characterization of an antioxidativepeptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frameprotein. European Food Research and Technology, 2004, 219: 20-26.
    [155] Pellegrini A. Antimicrobial peptides from food proteins. Current PharmaceuticalDesign, 2003, 9: 1225-1238.
    [156] Mercier A, Gauthier SF, Fliss L. Immunomodulating effects of whey proteins andtheir enzymatic digests. International Dairy Journal, 2004, 14: 175-183.
    [157] Motoi H, Fukudome S, Urabe I. Continuous production of wheat gluten peptide withfoaming properties using immobilized enzymes. European Food Research andTechnology, 2004, 219: 522-528.
    [158] Ruiz JAG, Ramos M, Recio I. Angiotensin converting enzyme-inhibitory activity ofpeptides isolated from Manchego cheese. Stability under simulated gastrointestinaldigestion. International Dairy Journal, 2004, 14: 1075-1080.
    [159] Tang J. Specificity of pepsin and its dependence on a possible hydrophobic bindingsite. Nature, 1963, 199: 1094-1095.
    [160] Diaz O, Gouldsworthy AM, Leaver J. Identification of peptides released from caseinmicelles by limited trypsinolysis. Journal of Agricultural and Food Chemistry, 1996,44: 2517-2522.
    [161] Daniel H. Molecular and integrative physiology of intestinal peptide transport.Annual Review of Physiology, 2004, 66: 361-384.
    [162] 赵南明, 周海梦. 生物物理学. 北京: 高等教育出版社; 2000.
    [163] Sreerama N, Venyaminov SY, Woody RW. Estimation of protein secondary structurefrom circular dichroism spectra: Inclusion of denatured proteins with native proteinsin the analysis. Analytical Biochemistry, 2000, 287: 243-251.
    [164] Ducret A, Van Oostveen I, Eng JK, et al. High throughput protein characterization byautomated reverse-phase chromatography electrospray tandem mass spectrometry.Protein Science, 1998, 7: 706-719.
    [165] Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectraldata of peptides with amino-acid-sequences in a protein database. Journal of theAmerican Society for Mass Spectrometry, 1994, 5: 976-989.
    [166] Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism.Biochimica et Biophysica Acta-Proteins and Proteomics, 2005, 1751: 119-139.
    [167] Rupley JA, Hirs CHW. Susceptibility to attack by proteolytic enzymes. Methods inEnzymology: Academic Press; 1967, p. 905-917.
    [168] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of aprotein. Journal of Molecular Biology, 1982, 157: 105-132.
    [169] El-Zahar K, Sitohy M, Choiset Y, et al. Peptic hydrolysis of ovine β-lactoglobulinand α-lactalbumin: Exceptional susceptibility of native ovine β-lactoglobulin topepsinolysis. International Dairy Journal, 2005, 15: 17-27.
    [170] Qi W, He ZM, Shi DQ. Product distribution of casein tryptic hydrolysis based onHPSEC analysis and molecular mechanism. Chemical Engineering Science, 2003,58: 767-775.
    [171] Shi DQ, He ZM, Qi W. Lumping kinetic study on the process of tryptic hydrolysis ofbovine serum albumin. Process Biochemistry, 2005, 40: 1943-1949.
    [172] Adibi SA, Kim SK. Peptide absorption and hydrolysis. In: Johnson LR, editor.Physiology of the Gastro Gastrointestinal Tract. New York: Raven Press; 1981, p.1097-1122.
    [173] Tapper H, Sundler R. Glucan receptor and zymosan-induced lysosomal: Enzymesecretion in macrophages. Biochemical Journal, 1995, 306: 829-835.
    [174] Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides.Biopolymers, 2000, 55: 4-30.
    [175] Soffer RL. Angiotensin-converting enzyme and regulation of vasoactive peptides.Annual Review of Biochemistry, 1976, 45: 73-94.
    [176] Cotton J, Hayashi MAF, Cuniasse P, et al. Selective inhibition of the C-domain ofangiotensin I converting enzyme by bradykinin potentiating peptides. Biochemistry,2002, 41: 6065-6071.
    [177] Cuff JA, Clamp ME, Siddiqui AS, et al. JPred: a consensus secondary structureprediction server. Bioinformatics, 1998, 14: 892-893.
    [178] Dunn BM. Structure and mechanism of the pepsin-like family of aspartic peptidases.Chemical Reviews, 2002, 102: 4431-4458.
    [179] Tauzin J, Miclo L, Roth S, et al. Tryptic hydrolysis of bovine αS2-casein:identification and release kinetics of peptides. International Dairy Journal, 2003, 13:15-27.
    [180] Schmelzer CEH, Schops R, Ulbrich-Hofmann R, et al. Mass spectrometriccharacterization of peptides derived by peptic cleavage of bovine β-casein. Journalof ChromatographyA, 2004, 1055: 87-92.
    [181] Bonnerjea J, Oh S, Hoare M. Protein purification: the right step at the right time.Bio-Technology, 1986, 4: 954-958.
    [182] Crimmins DL. Strong cation-exchange high-performance liquid chromatography asa versatile tool for the characterization and purification of peptides. AnalyticaChimica Acta, 1997, 352: 21-30.
    [183] Le Bihan T, Duewel HS, Figeys D. On-line strong cation exchangeμ-HPLC-ESI-MS/MS for protein identification and process optimization. Journal ofthe American Society for Mass Spectrometry, 2003, 14: 719-727.
    [184] Bressollier P, Petit JM, Julien R. Enzyme hydrolysis of plasma proteins in a CSTRultrafiltration reactor: performances and modeling. Biotechnology andBioengineering, 1988, 31: 650-658.
    [185] Liebler DC, Hansen BT, Davey SW, et al. Peptide sequence motif analysis of tandemMS data with the SALSA algorithm. Analytical Chemistry, 2002, 74: 203-210.
    [186] Adamson NJ, Reynolds EC. Characterization of multiply phosphorylated peptidesselectively precipitated from a pancreatic casein digest. Journal of Dairy Science,1995, 78: 2653-2659.
    [187] Antal J, Pal G, Asboth B, et al. Specificity assay of serine proteinases byreverse-phase high-performance liquid chromatography analysis of competingoligopeptide substrate library. Analytical Biochemistry, 2001, 288: 156-167.
    [188] Narayana.As, Anwar RA. Specificity of purified porcine pancreatic elastase.Biochemical Journal, 1969, 114: 11-&.
    [189] Caessens P, De Jongh HHJ, Norde W, et al. The adsorption-induced secondarystructure of β-casein and of distinct parts of its sequence in relation to foam andemulsion properties. Biochimica et Biophysica Acta-Protein Structure and MolecularEnzymology, 1999, 1430: 73-83.
    [190] Horne DS. Casein structure, self-assembly and gelation. Current Opinion in Colloid& Interface Science, 2002, 7: 456-461.
    [191] Philippe M, Le Graet Y, Gaucheron F. The effects of different cations on thephysicochemical characteristics of casein micelles. Food Chemistry, 2005, 90:673-683.
    [192] Andrews AT, Williams RJH, Brownsell VL, et al. β-CN-5P and β-CN-4Pcomponents of bovine milk proteose-peptone: Large scale preparation and influenceon the growth of cariogenic microorganisms. Food Chemistry, 2006, 96: 234-241.
    [193] Pizzano R, Nicolai MA, Padovano P, et al. Immunochemical evaluation of bovineβ-casein and its 1-28 phosphopeptide in cheese during ripening. Journal ofAgricultural and Food Chemistry, 2000, 48: 4555-4560.
    [194] McDonagh D, FitzGerald RJ. Production of caseinophosphopeptides (CPPs) fromsodium caseinate using a range of commercial protease preparations. InternationalDairy Journal, 1998, 8: 39-45.
    [195] Corsetti A, Massitti O, Minervini F, et al. Production of caseinophosphopeptidesfrom Na-caseinates prepared from the milk of several species by a proteinase ofLactobacillus helveticus PR4. Food Biotechnology, 2003, 17: 183-192.
    [196] Hoffert JD, Pisitkun T, Wang GH, et al. Quantitative phosphoproteomics ofvasopressin-sensitive renal cells: Regulation of aquaporin-2 phosphorylation at twosites. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2006, 103: 7159-7164.
    [197] Lasa-Benito M, Marin O, Meggio F, et al. Golgi apparatus mammary gland caseinkinase: Monitoring by a specific peptide substrate and definition of specificitydeterminants. FEBS Letters, 1996, 382: 149-152.
    [198] Schellenberger V, Turck CW, Hedstrom L, et al. Mapping the S' subsites of serineproteases using acyl transfer to mixtures of peptide nucleophiles. Biochemistry, 1993,32: 4349-4353.
    [199] 张和平, 张列兵. 现代乳品工业手册. 北京: 中国轻工业出版社; 2005.
    [200] Dalgleish DG. Casein micelles as colloids: Surface structures and stabilities. Journalof Dairy Science, 1998, 81: 3013-3018.
    [201] Farrell HM, Malin EL, Brown EM, et al. Casein micelle structure: What can belearned from milk synthesis and structural biology? Current Opinion in Colloid &Interface Science, 2006, 11: 135-147.
    [202] Smiddy MA, Martin J, Kelly AL, et al. Stability of casein micelles cross-linked bytransglutaminase. Journal of Dairy Science, 2006, 89: 1906-1914.
    [203] Vasbinder AJ, Rollema HS, Bot A, et al. Gelation mechanism of milk as influencedby temperature and pH; Studied by the use of transglutaminase cross-linked caseinmicelles. Journal of Dairy Science, 2003, 86: 1556-1563.
    [204] Vetier N, Banon S, Chardot V, et al. Effect of temperature and aggregation rate onthe fractal dimension of renneted casein aggregates. Journal of Dairy Science, 2003,86: 2504-2507.
    [205] Crudden A, Afoufa-Bastien D, Fox PF, et al. Effect of hydrolysis of casein byplasmin on the heat stability of milk. International Dairy Journal, 2005, 15:1017-1025.
    [206] Chen SX, Swaisgood HE, Foegeding EA. Gelation of β-lactoglobulin treated withlimited proteolysis by immobilized trypsin. Journal of Agricultural and FoodChemistry, 1994, 42: 234-239.
    [207] Otte J, Lomholt SB, Ipsen R, et al. Aggregate formation during hydrolysis ofβ-lactoglobulin with a Glu and Asp specific protease from Bacillus licheniformis.Journal of Agricultural and Food Chemistry, 1997, 45: 4889-4896.
    [208] Otte J, Lomholt SB, Halkier T, et al. Identification of peptides in aggregates formedduring hydrolysis of β-lactoglobulin B with a Glu and Asp specific microbialprotease. Journal of Agricultural and Food Chemistry, 2000, 48: 2443-2447.
    [209] Doucet D, Otter DE, Gauthier SF, et al. Enzyme-induced gelation of extensivelyhydrolyzed whey proteins by Alcalase: Peptide identification and determination ofenzyme specificity. Journal of Agricultural and Food Chemistry, 2003, 51:6300-6308.
    [210] Doucet D, Gauthier SF, Otter DE, et al. Enzyme-induced gelation of extensivelyhydrolyzed whey proteins by Alcalase: Comparison with the plastein reaction andcharacterization of interactions. Journal of Agricultural and Food Chemistry, 2003,51: 6036-6042.
    [211] Wyatt PJ. Light-scattering and the absolute characterization of macromolecules.Analytica Chimica Acta, 1993, 272: 1-40.
    [212] Shen CL, Scott GL, Merchant F, et al. Light-scattering analysis of fibril growth fromthe amino-terminal fragment β(1-28) of β-Amyloid Peptide. Biophysical Journal,1993, 65: 2383-2395.
    [213] Wen J, Arakawa T, Philo JS. Size-exclusion chromatography with on-linelight-scattering, absorbance, and refractive index detectors for studying proteins andtheir interactions. Analytical Biochemistry, 1996, 240: 155-166.
    [214] Brown JC, Pusey PN, Dietz R. Photon correlation study of polydisperse samples ofpolystyrene in cyclohexane. Journal of Chemical Physics, 1975, 62: 1136-1144.
    [215] Lorenzen PC, Schlimme E, Roos N. Crosslinking of sodium caseinate by a microbialtransglutaminase. Nahrung-Food, 1998, 42: 151-154.
    [216] Lynch AG, Mulvihill DM, Law AJR, et al. Chromatographic elution profiles,electrophoretic properties and free amino and sulphydryl group contents ofcommercial sodium caseinates. International Dairy Journal, 1997, 7: 213-220.
    [217] Liu W, Cellmer T, Keerl D, et al. Interactions of lysozyme in guanidinium chloridesolutions from static and dynamic light-scattering measurements. Biotechnology andBioengineering, 2005, 90: 482-490.
    [218] Lopez-Fandino R, Otte J, van Camp J. Physiological, chemical and technologicalaspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitoryactivity. International Dairy Journal, 2006, 16: 1277-1293.
    [219] Li WF, Ma GX, Zhou XX. Apidaecin-type peptides: Biodiversity, structure-functionrelationships and mode of action. Peptides, 2006, 27: 2350-2359.
    [220] Levin ER, Gardner DG, Samson WK. Mechanisms of disease: Natriuretic peptides.New England Journal of Medicine, 1998, 339: 321-328.
    [221] Becklin RR, Desiderio DM. The amount of ultraviolet absorbency in a syntheticpeptide is directly proportional to its number of peptide bonds. Analytical Letters,1995, 28: 2175-2190.
    [222] van der Ven C, Gruppen H, de Bont DBA, et al. Reversed phase and size exclusionchromatography of milk protein hydrolysates: relation between elution fromreversed phase column and apparent molecular weight distribution. InternationalDairy Journal, 2001, 11: 83-92.
    [223] Walstra P. Casein sub-micelles: do they exist? International Dairy Journal, 1999, 9:189-192.
    [224] Hutchins JRA, Clarke PR. Many fingers on the mitotic trigger: Post-translationalregulation of the Cdc25C phosphatase. Cell Cycle, 2004, 3: 41-45.
    [225] Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine:Its role in cell growth and disease. Philosophical Transactions of the Royal Societyof London Series B-Biological Sciences, 1998, 353: 583-605.
    [226] Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature, 2001, 411: 355-365.
    [227] Lee HG, Perry G, Moreira PI, et al. Tau phosphorylation in Alzheimer's disease:pathogen or protector? Trends in Molecular Medicine, 2005, 11: 164-169.
    [228] Knight ZA, Schilling B, Row RH, et al. Phosphospecific proteolysis for mappingsites of protein phosphorylation. Nature Biotechnology, 2003, 21: 1047-1054.
    [229] Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a toolfor probing the phosphoproteome. Nature Biotechnology, 2001, 19: 379-382.
    [230] Zhou HL, Watts JD, Aebersold R. A systematic approach to the analysis of proteinphosphorylation. Nature Biotechnology, 2001, 19: 375-378.
    [231] Hoffmann R, Segal M, Otvos L. Separation of sets of mono- and diphosphorylatedpeptides by reversed-phase high performance liquid chromatography. AnalyticaChimica Acta, 1997, 352: 327-333.
    [232] Tholey A, Toll H, Huber CG. Separation and detection of phosphorylated andnonphosphorylated peptides in liquid chromatography-mass spectrometry usingmonolithic columns and acidic or alkaline mobile phases. Analytical Chemistry,2005, 77: 4618-4625.
    [233] Steen H, Jebanathirajah JA, Rush J, et al. Phosphorylation analysis by massspectrometry - Myths, facts, and the consequences for qualitative and quantitativemeasurements. Molecular & Cellular Proteomics, 2006, 5: 172-181.
    [234] Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chemical Reviews,2001, 101: 269-295.
    [235] Petritis K, Kangas LJ, Yan B, et al. Improved peptide elution time prediction forreversed-phase liquid chromatography-MS by incorporating peptide sequenceinformation. Analytical Chemistry, 2006, 78: 5026-5039.
    [236] Krokhin OV. Sequence-specific retention calculator. Algorithm for peptide retentionprediction in ion-pair RP-HPLC: Application to 300-and 100-angstrom pore sizeC18 sorbents. Analytical Chemistry, 2006, 78: 7785-7795.
    [237] Shinoda K, Sugimoto M, Yachie N, et al. Prediction of liquid chromatographicretention times of peptides generated by protease digestion of the Escherichia coliproteome using artificial neural networks. Journal of Proteome Research, 2006, 5:3312-3317.
    [238] Guo D, T. MC, Taneja AK, et al. Prediction of peptide retention times inreversed-phase high-performance liquid chromatography I. Determination ofretention coefficients of amino acid residues of model sythetic peptides. Journal ofChromatography, 1986, 359: 499-517.
    [239] Meek JL. Prediction of peptide retention times in high-pressure liquidchromatography on the basis of amino acid composition. Proceedings of the NationalAcademy of Sciences of the United States of America, 1980, 77: 1632-1636.
    [240] Palmblad M, Ramstrom M, Markides KE, et al. Prediction of chromatographicretention and protein identification in liquid chromatography/mass spectrometry.Analytical Chemistry, 2002, 74: 5826-5830.
    [241] Mant CT, Burke TWL, Black JA, et al. Effect of peptide chain length on peptideretention behavior in reversed-phase chromatography. Journal of Chromatography,1988, 458: 193-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700