海底声散射强度测量方法及不规则海域混响特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋中存在大量的散射体,入射声波投射到这些散射体上会产生散射,而这些散射声波在接收点的迭加就形成了混响。在水平有界海域,海洋混响受水平边界的影响严重;同时,近岸浅海的渐深海底也影响海洋混响的规律,本文题目所指的“不规则海域”,就是此类水平边界和海底边界形状不规则并且边界条件复杂的海域,不规则海域中的混响有其特殊的规律。混响是主动声探测的重要干扰背景,研究在不规则海域中的主动声纳探测问题,要求对不规则海域中混响场的特性有充分了解,才能针对该类海域声场及声干扰场特点,开发有效的水声探测技术。在浅海,海底混响是海洋混响的重要组成部分,而海底散射强度又是影响海底混响的重要因素,随着多基地声纳系统的研究和应用,就需要研究海底散射强度与入射掠射角、散射掠射角和散射方位角的关系,即海底三维散射强度。基于此,本文主要研究海底三维声散射强度的测量方法以及不规则海域的混响特性。
     本文给出了一种测量海底三维散射强度的方法,该方法由水平指向性窄垂直指向性宽的声源发射信号,在接收位置由水平、垂直指向性窄的T型接收阵接收散射区域中的某散射元的海底散射信号,根据入射声程和散射声程计算的传播损失、声源的声源级和接收到散射信号声强,计算可得距此散射元单位距离处的入射声强和散射声强,再根据散射强度定义可求得此散射元的三维散射强度。用时延波束形成技术改变T型接收阵的声轴指向方向,使声轴指向散射区域的其它散射元,用相同的方法可求得该散射点的三维散射强度,进而能测得整个散射区域中各散射元的三维散射强度。文中还引入一计算海底三维散射强度的理论模型,该模型是在海底散射是各向同性这一假设条件下建立的。湖上测量得到的湖底三维散射强度同理论模型计算得到的结果相吻合,但在海试中,相同的入射掠射角、散射掠射角和散射方位角条件下海底同一散射元在不同入射方向上测量得到的前向散射强度有近20dB的差别,表明实验海域海底散射强度各向异性。
     以射线声学理论为基础,在收发合置情况下,用Lambert散射定律计算海底散射强度,只需考虑海底的一次散射对混响强度的贡献,对倾斜海底混响强度进行建模与实验验证;在收发分置情况下,用三维散射模型计算海底散射强度,同样只需考虑海底的一次散射对混响强度的贡献,对倾斜海底收发分置混响强度进行建模与实验验证。在此基础上,通过几何变换关系,可用倾斜海底混响强度模型计算不规则海域侧面壁的混响强度,再将左侧壁面、右侧壁面和海底这三个粗糙面的混响强度迭加起来即得不规则海域总混响强度,并通过实验数据验证了模型的正确性。通过理论计算,在收发合置的情况下,由于有两侧面壁的影响,不规则海域的混响强度在近程要略大于水平海底和倾斜海底的混响强度,随时间的衰减也快。对于不规则海域混响强度,发射声源的发射脉宽对混响强度的影响较大,脉宽越宽,混响强度越大;海底倾角和两侧面壁开角对远程混响有较大影响,海底倾角越大,混响强度随时间的衰减越快,两侧壁开角越大,混响强度随时间的衰减越慢;两侧面壁倾角越小,不规则海域近程混响强度越大,远程混响强度越小。
     以海底散射系数的空间相关半径设定散射单元面积,根据混响产生的物理过程,建立海底多途混响信号模型,通过对仿真得到的混响信号进行统计分析,其瞬时幅值服从高斯分布,瞬时相位服从(0,2π)间的均匀分布,符合混响的一般统计规律。通过对仿真得到的不规则海域收发分置多途混响信号和实验得到的不规则海域混响信号的处理知,不规则海域混响垂直方向上的空间相关性比水平方向上的空间相关性强;而在水平方向上,垂直于两侧面壁方向上的空间相关性比平行于两侧面壁方向上的空间相关性强。随着混响信号频率的增高,各方向上的空间相关性减弱,并且垂直方向上混响的空间相关性变化较水平方向上的混响空间相关性变化明显。
There are a lot of scatterers in the ocean, so that when acoustic waves projected into this uneven media, it will have scattering. The sum total of the scattering contributions from all the scatters is called reverberation. Shore near the port in the gulf or in the sea area between the islands is very important. Reverberation in this irregular sea area has important infection by the shore and islands, and at the same time, the gradual deeply wedge shaped bottom also affect the reverberation rule. The irregular sea is the sea area with irregular horizontal and bottom boundary shapes and the complicated boundary conditions. Reverberation intensity in irregular sea has its own rule. The reverberation is one of the main interference factors for active sonar system, and the properties of reverberation in irregular sea area should be comprehended sufficiently when the problem about the detection with active sonar in irregular sea areas is researched. In shallow water, the bottom scattering strength is an important factor for bottom reverberation, and bottom scattering strength is an important parameter for bottom reverberation. With the development of the bistatic sonar system, research on bottom scattering strength with different incident grazing angle, scattered grazing angle and scattered azimuth angles is necessary. So the paper is focused on the investigating measurement method of three-dimensional bottom scattering strength and the properties of irregular sea area reverberation.
     A method for measured bottom three-dimensional scattering strength is given in the paper which can measure sector scattering area three-dimensional bottom scattering strength. T-receiving array which has narrow horizontal directivity and narrow vertical directivity receives scattering signal from the bottom scattering unit when transmitting transducer which has wide vertical directivity and narrow horizontal directivity transmits CW pulse signal. The three-dimensional scattering strength of the bottom scattering unit could be calculated with the transmission loss which could be got with incident path and scattering path, the source level of transmit acoustic source and the strength of scattering signal. In use of the technique of phase shift beam forming the acoustic axis could be pointed to another bottom scattering unit in scattering area, then the three-dimensional scattering strength of this scattering unit could be calculated. Further more the three-dimensional scattering strength of other units in scattering area would be known. The measurement method proposed in this paper is proved feasible because the result in theory accordance with the result of dealt data of examination on lake well. But from the result of dealt data of sea trial, the bottom scatter is anisotropy.
     By ray acoustics theory, the irregular sea monostatic reverberation intensity simulation model is established by using Lambert's law to calculate scattering strength of the bottom and lateral wall. The monostatic reverberation intensity of the simulation model is in consistent with the reverberation intensity of the experimental data. And by ray acoustics theory, the incline seafloor bistatic reverberation intensity simulation model is established by using three-dimensional scattering model to calculate bottom scattering strength. The bistatic reverberation intensity of the simulation model is in consistent with the reverberation intensity of the experimental data. The conclusion that the irregular sea area monostatic reverberation intensity is bigger than horizontal seafloor monostatic reverberation intensity and oblique seafloor monostatic reverberation intensity and the decaying speed of the irregular sea area reverberation intensity is faster than horizontal seafloor monostatic reverberation intensity and incline seafloor monostatic reverberation intensity would be got by theoretical calculation. For irregular sea area reverberation, the transmit pulse width and horizontal beam width of source make a big affection. The reverberation increases with the pulse width and beam width. The seafloor tilt angle and the open angle of two lateral walls mainly influence long-distance reverberation. The reverberation intensity decays with time faster with the tilt angle bigger and the open angle smaller. The tilt angle of two sides influences the short-distance reverberation intensity heavily.
     The simulating model of mulpi-path bottom reverberation signal, developed by means of the generating process of the bottom reverberation, based on the Ray theory, using the element scattering model, has been built. It plots out the scattering element by the bottom scattering coefficient correlation radius and it has a very definite physics sense. It can be concluded from the simulating reverberation signals that the instantaneous amplitude is submitted to Gauss distribution and the instantaneous phase is submitted to uniform distribution between (0,2π). The comparison result of simulating reverberation signals of irregular sea area with experimental reverberation signals shows that vertical spatial correlation is stronger than horizontal spatial correlation. What is more, on the horizontal direction the spatial correlation of upright to the two lateral walls is stronger than the parallel's. Both vertical spatial correlation and horizontal spatial correlation decrease with reverberation signal frequency increase and the vertical spatial correlation changes more distinctness than horizontal.
引文
[1]杨士莪.水声传播原理.哈尔滨工程大学出版社,1994:1页
    [2]R.J.Urick. Principles of underwater sound 3rd edition. Los Altos:Peninsula,1983
    [3]Paul C.Etter水声建模与仿真第三版.蔡志明等译.电子工业出版社,2005:206-272贝
    [4]H.R. Johnson, R.H. Backus, J.B. Hersey, D.M. Owen. Suspended echo-sounder and camera Studies of midwater sound scatterers. Deep-Sea Res,1956,3:266-272P
    [5]D. Middleton. A statistical theory of reverberation and similar first-order scattered fields, part 1:Waveforms and the general process. IEEE Transactions on Information Theory,1967,IT-13(3):372-392P
    [6]D. Middleton. A statistical theory of reverberation and similar first-order scattered fields, part 2:Moments, sprectra, and special distributions. IEEE Transactions on Information Theory,1967,IT-13(3):373-414P
    [7]William J. Jobst. Mathematical model for volume reverberation:experiment and simulation. J. Acoust. Soc. Am,1974,55(2):227-236P
    [8]R.A. Saenger. Volume scattering strength algorithm:a first generation model. Nav.Underwater Syst. Ctr, Tech. Memo,1984
    [9]R.A. Love. Predictions of volume scattering strengths from biological trawl data. J. Acoust. Soc. Am,1975,57:300-306P
    [10]R.A. Love. A comparison of volume scattering strengths data with model calculations based on quasi synoptically collected fishery data. J. Acoust. Soc. Am,1993,94:2255-2268P
    [11]A. Kh. Degterev. Modeling of volume reverberation in the ray approximation. Physical Oceanography.2007,17(5):296-302P
    [12]Dale D. Ellis, Terry J. Deveau, James A. Theriault. Volume reverberation and target echo calculations using normal modes. Oceanc-97,608-611P
    [13]刘永伟,陈梦英,肖妍.长江口外海域中低频体积混响特性试验研究.第十二届船舶水下噪声学术讨论会论文集,2009:451-454页
    [14]Yongwei LID, Qi LI, Mengying CHEN. Design and Experimental Research on Shallow Water Volume Reverberation signal Acquisition System. ASIC. 2009:944-947P
    [15]Suzanne T. McDaniel. Sea surface reverberation. J. Acoust. Soc. Am, 1984,75(S1):S50-S50P
    [16]Suzanne T. McDaniel. High-frequency sea surface reverberation: An overview. J. Acoust. Soc. Am,1993,94(3):1889-1889P
    [17]Suzanne T. McDaniel. High-frequency sea surface reverberation:A review. J. Acoust. Soc. Am,1993,94(4):1905-1922P
    [18]Richard Lee Culver, Suzanne T. McDaniel. Bistatic ocean surface reverberation simulation. IEEE International Conference on Acoustics, Speech and Signal Processing, 1991,2:1453-1456P
    [19]P.M. Ogden and F.T. Erskine. Surface scattering measurements using broadband explosive charges in the Critical Sea Test experiments. J. Acoust. Soc. Am, 1994,95(2):746-761P
    [20]H. Schmidt, W.A. Kuperman. Spectral representations of rough interface reverberation in stratified ocean waveguides. J. Acoust. Soc. Am,1995,97:2199-2209P
    [21]唐应吾.正声速梯度浅海远程海面混响的平均强度.地球物理学报,1989,32(6):667-674页
    [22]武洁,姬峰,王绍卿.宽波束大掠射角海面混响计算方法研究.声学技术2003,22(z2):203-205页
    [23]刘建军,李风华,彭朝晖.浅海海面随机起伏下的混响衰减.声学技术,2004,23(z1):12-14页
    [24]赵宝庆,王英民,王华荣.双基地声纳海面散射模型及仿真.情报指挥控制系统与仿真技术,2005,27(6):83-85页
    [25]C.M. Mckinney, C.D. Anderson. Measurements of backscattering of sound from the: ocean bottom. J. Acoust. Soc. Am,1964,36:158-163P
    [26]E.R. Franchi, J.M. Griffin, S.N. Wolf. NRL reverberation model:Acomputer program for the prediction and analysis of medium-to long-range boundary reverberation. Naval Research Laboratory, Washington DC. Report 8721,1984
    [27]H. Weinberg. The Generic Sonar Model".Naval Underwater Systems Center. New London,CT. Technical Document 5971D.1985
    [28]H.G. Schneider. MOCCASIN: Sound propagation and sonar range predition model for shallow water environments. FWG TB 1990-9, Kiel,Germany,1990
    [29]A.W. Nolle, W.A. Hoyer, J.F. Mifsud, W.R. Runyan and M.A. Ward. Acoustical Properties of Water Filled Sands. J. Acoust. Soc. Am,1963,35:1394-1408P
    [30]Tokuo Yamamoto. Acoustic scattering in the ocean from velocity and density fluctuations in the sediments. J. Acoust. Soc. Am,1996,99(2):866-879P
    [31]S.A. Swift, R.A. Stephen. The scattering of a low-angle pulse beam from seafloor volume heterogeneities. J. Acoust. Soc. Am,1994,96:991-1001P
    [32]高天赋. 粗糙界面的波导散射和非波导散射之间的关系. 声学学报,1989,14(2):126-132页
    [33]P.C. Hines. Theoretical model of acoustic backscatter from a smooth seabed. J. Acoust. Soc. Am,1990,87:324-334P
    [34]H.H.Essen. scattering from a rough sedimental seafloor containing shear and layering. J. Acoust. Soc. Am,1994,95:1299-1310P
    [35]A.N. Ivakin. Sound scattering by random inhomogeneities in stratified ocean sediments. Sov Phys Acoust.1986,32:827-837P
    [36]C.W. Holland, P. Neumann. Sub-bottom scattering:A modeling approach. J. Acoust. Soc. Am,1998,104:1363-1373P
    [37]P.D. Mourad, D.R. Jackson. A model/data comparison for low-prequency bottom backscatter. J. Acoust. Soc. Am,1993,94:344-358P
    [38]A.N. Ivakin. A unified approach to volume and roughness scattering. J. Acoust. Soc. Am,1998,103:827-837P
    [39]E.C. Shang, T.F. Gao, and J.R. Wu. A Shallow-water Reverberation Model based on Perturbation Theory. IEEE Journal of Oceanic Engineering,2008,33(4):451-461
    [40]D.Collins Michaael, B.Evans Richard. A two-way parabolic equation for acoustic backscattering in the ocean. J. Acoust. Soc. Am,1992,91 (3):1357-1368P
    [41]B.smith Kevin, S.Hodgkiss William. Propagation and analysis issues in the prediction of long-range reverberation. J. Acoust. Soc. Am,1996,99(3):1387-1404P
    [42]吴金荣,高天赋.浅海波数积分混响研究.声学技术,2003,22(z2):200-202页
    [43]郭熙业,苏绍璨,王跃科.基于射线理论的海底混晌建模研究.声学技术2009,28(3):203-207页
    [44]H.P. Bucker, H.E. Morris. Normal-Mode reverberation in channels or ducts. J. Acoust. Soc. Am,1968,44:827-828P
    [45]金国亮.均匀浅海远程平均混响强度.声学学报,1980,4:279-285页
    [46]张仁和,金国亮.浅海平均混响强度的简正波理论.声学学报,1984,9:12-20页
    [47]R.H. Zhang, G.L. Jin. Normal-mode theory of average reverberation intensity in shallow water. J.Sound Vib,1987,119(2):215-223P
    [48]金国亮,张仁和.浅海平均混响强度的数值模拟.声学学报,1990,15(4):251-2256页
    [49]Dale D. Ellis. A shallow-water normal-mode reverberation model. J. Aonust. Soc. Am, 1995,97(5):2804-2814P
    [50]K.D. LePage. Bottom reverberation in shallow water:coherent properties as a function of bandwidth, waveguide characteristics and scatter distributions. J. Acoust. Soc. Am, 1999,106:3240-3254P
    [51]李风华,金国亮,张仁和.浅海相干混响理论与混响强度的振荡现象.中国科学(A辑),2000,30(6):560-566页
    [52]Fenghua Li, Jianjun Liu, Renhe Zhang. A medel/data comparison for shallow-water reverberation. IEEE Journal of Oceanic Engineering,2004,29(4):1060-1066P
    [53]李风华,刘建军,李整林,张仁和.浅海低频混响的振荡现象及其物理解释.中国科学(G辑),2005,35(2):140-148页
    [54]刘建军,李风华,张仁和.浅海异地混响理论与实验比较.声学学报,2006,31(2):173-178页
    [55]王志强,姜卫东,安良.三维浅海简正波混响模型.声学技术,2007,26(5):802-805页
    [56]吴承义.用射线方法计算浅海混响平均强度(Ⅰ).声学学报,1979,2:114-119页
    [57]姚万军,蔡志明.浅海混响的建模与预报.海军工程大学学报,2009,21(2):88-91页
    [58]姚万军,蔡志明,卫红凯.浅海混响建模的声束跟踪理论.声学学报,2009,34(3):223-228页
    [59]D.R. Haller. A fast and accurate bistatic bottom reverberation model. J. Acoust. Soc. Am,1988,83(S1):S48-S49P
    [60]D.J. Kewley, H.P. Bucker. A fast bistatic reverberation and systems model. J. Acoust. Soc. Am,1987,82(S1):S75-S75P
    [61]Dale D. Ellis, D. Vance Crowe. Bistatic reverberation calculations using a three-dimensional scattering function. J. Acoust. Soc. Am,1991,89(5):2207-2214P
    [62]J.W. Caruthers, J.C. Novarini. Modeling bistatic bottom scattering strength including a forward scatter lobe. IEEE Journal of Oceanic Engineering,1993,18(2):100-107P
    [63]D.R. Jackson. A model for Bistatic Bottom Scattering in the Frequency Range 10-100kHz. APL-UW TR 9305,1993
    [64]K.L. Williams, D.R. Jackson. A model for bistatic scattering into ocean sediments for frequency from 10-100kHz. APL-UW TR 9505,1995
    [65]A.N. Ivakin, D.R. Jackson. High-frequency bistatic scattering from elastic seafloors. J. Acoust. Soc. Am,1996,99(4):2500-2500P
    [66]D.R. Jackson. High-Frequency Bistatic Scattering Model for Elastic Seafloors. APL-UW TM 2-98,2000
    [67]K.L. Williams, D.R. Jackson. Bistatic bottom scattering:model, experiments and model/data comparison. J. Acoust. Soc. Am,1998,103(1):169-181P
    [68]Jee Woong Choi, Jungyul Na, Woojae Seong.240-kHz bistatic bottom scattering measurements in shallow water. IEEE Journal of Oceanic Engineering, 2001,26(1):54-62P
    [69]G. Canepa, E. Pouliquen, L. Pautet, N.G. Pace. Bistatic scattering from the seabed at high frequency. Proc. ECUA-2004,2004:595-600P
    [70]G. Canepa, N.G. Pace, E. Pouliquen. Field measurements of bistatic scattering strength of a sandy seabed at 118kHz. Proc. ECUA-2002,2002:183-188P
    [71]Dezhang Chu, K.L. Williams, Dajun Tang, D.R. Jackson. High-frequency bistatic scattering by sub-bottom gas bubbles. J. Acoust. Soc. Am,1997,102(2):806-814P
    [72]李楠,张明敏,杨丽.双基地海底混响衰减规律研究.舰船电子工程,2009,29(10):165-167页
    [73]袁骏,肖卉,张明敏,何青海.双基地声纳海底混响面元划分与建模.探测与控制学报,2009,31(4):1-4页
    [74]李楠,张明敏.双基地海底散射模型仿真与实验研究.海洋技术,2009,28(4):48-51页
    [75]惠娟,惠俊英,王自娟.收、发分置混响平均强度理论预报.声学学报,2009,34(1):47-53页
    [76]惠娟,王自娟,惠俊英,何文翔.双基地混响平均强度理论及仿真预报.物理学报,2009,58(8):5491-5500页
    [77]B.B奥里雪夫斯基.第1版.海洋混响的统计特性.科学出版社,1977
    [78]J.O. Ackroyd. The detection of sonar echoes in reverberation and noise. J.Brit.I.R.E, 1963,25(2):119-123P
    [79]C.G. Balachandran. Random sound field in reverberation chambers. J. Acoust. Soc. Am,1959,31(10)1319-1321P
    [80]H.K. Carleton. Theoretical development of volume reverberation as of first-order scattering pgenomenon. J. Acoust. Soc. Am,1961,33(3):317-323P
    [81]P. Conley. Continuons tone underwater reverberation. J. Acoust. Soc. Am, 1955,27(5):962-966P
    [82]B.Cron. W.R. Schumacher. Theoretical and experimental study of underwater sound reverberation. J. Acoust. Soc. Am,1961,33(7):881-888P
    [83]P.Foure. Theoretical model of reverberaton noise. J. Acoust. Soc. Am, 1964,36(2):259-266P
    [84]徐新盛,张燕,李海森,杨士莪.海底混响仿真研究.声学学报,1998,23(2):141-148页
    [85]吴金荣,马力.浅海低频远程随机混响模型.声学技术,2008,27(5):82-83页
    [86]姚万军,蔡志明.基于简正波的浅海混响序列研究.声学技术,2009,28(1):25-28页
    [87]郭熙业,苏绍璟,王跃科.海底混响统计建模与仿真方法研究.兵工学报,2009,30(7):940-944页
    [88]郭熙业,苏绍璟,王跃科.运动声纳海底混晌建模及仿真研究.国防科技大学学报,2009,31(5):92-96页
    [89]刘胜,常绪成.收发分置式声纳系统混响仿真方法.声学技术,2010,29(4):356-360页
    [90]方世良.海洋混响信号的序贯仿真.声学技术,1996,15(3):101-104页
    [91]蔡平,梁国龙,葛凤祥,惠俊英.界面混响信号的仿真研究.哈尔滨工程大学学报,2000,21(4):31-35页
    [92]王新晓,黄建国,张群飞.海洋混响仿真技术研究.声学与电子工程,2000,3:27-30页
    [93]姜可宇,蔡志明,陆振波.海底混响中基于前后向预测模型的信号检测.电子学报,2007,35(9):1766-1769页
    [94]Qingyan Sun, Haiyan Wang, Xiaohong Shen, Wanzheng Ning, Xinyi Fu. Research on the Statistical Modeling and Simulation for Interface Reverberation. ICCSIT 2010, 566-570P
    [95]Douglas A. Abraham, K.L. Hillsley, J. Norrmann. A robust model-based detector for active sonar. OCEANS 2001,2139-2146P
    [96]Douglas.A. Abraham. Reverberation envelope statistics and their dependence on sonar bandwidth and scattering patch size. IEEE Journal of Oceanic Engineering, 2004,29(1):126-137P
    [97]Douglas A. Abraham, Anthony P. Lyons. Bootstrapped K-distribution parameter estimation. OCEANS 2006,1-6P
    [98]Douglas A. Abraham. The effect of multipath on the envelope statistic of bottom clutter. IEEE Journal of Oceanic Engineering,2007,32(4):848-861P
    [99]Douglas A. Abraham. Choosing a non-Rayleigh reverberation model. OCEANS 2001, 284-288P
    [100]Douglas A. Abraham. Non-Rayleigh reverberation characteristics near 400Hz observed on the New Jersey Shelf. IEEE Journal of Oceanic Engineering,2004,29(2):215-235P
    [101]Ming Gu, Douglas A. Abraham. Parameter estimation for McDaniel's Non-Rayleigh reverberation model. OCEANS 1999,279-283P
    [102]Ming Gu, Douglas A. Abraham. Using McDaniel's model to represent non-Rayleigh reverberation. IEEE Journal of Oceanic Engineering,2001,26(3):348-357P
    [103]R.J. Urick. Reverberation-derived scattering strength of the shallow sea bed. J. Acoust. Soc. Am,1970,48:392-397P
    [104]周纪浔,关定华,尚尔昌,罗恩生.浅海远程混响与海底散射强度.声学学报,1982,7(5):281-289页
    [105]金国亮,张仁和.由浅海混响反演海底反射和散射系数.声学学报,1996,21(4):565-572页
    [106]刘建军,李风华,郭良浩.浅海混响的垂直相关和海底反射损失与散射强度的反演.声学学报,2004,29(1):51-56页
    [107]D.D. Ellis, P. Gerstoft. Using inversion technique to extract bottom scattering strength and sound speed from shallow-water reverberation data. Proceeding of 3rd ECUA, 1996,552-562P
    [108]G.Cable Peter, D.Frrech Karen. Reverberation-derived shallow-water bottom scattering strength. IEEE Journal of Oceanic Engineering,1997,22(3):534-540P
    [109]彭临慧,王宁,尚尔昌.由浅海混响数据提取海底反向散射矩阵的数值模拟.声学技术,2002,21:149-150页
    [110]吴金荣.浅海混响中简正波反向散射矩阵的准可分离性及其反演方法.中国科学院研究生院博士论文,2005
    [111]E.C. Shang, T.F. Gao, D.J. Tang. Extraction of model back-scattering Matrix from reverberation data in shallow-water waveguide. Theoretical and Computational Acoustics 2001,66-74P
    [112]Tims A. C., Henriquez T. A., Williams J. G. A Transducer for Bottom-Scattering Measurements. Final rept. Jan 81-Jan 82
    [113]金国亮,吴承义,张国华,贺邦正.浅海二维海底散射系数的测量.声学学报,1987,12(3):227-231页
    [114]王忠康,丁烽,宫先仪.浅海海底反向散射的实验研究.中国声学学会2001年青年学术会议论文集
    [115]Steve Stanic, Ralph R. Goodman, Kevin B. Briggs, Nicholas P. Chotiros. Shallow-water bottom reverberation measurements. IEEE Journal of Oceanic Engineering, 1998,23(3):534-540P
    [116]Eric I. Thorsos, Kevin L. Williams, Darrell R. Jackson, Michael D. Richardson, Kevin B. Briggs, Dajun Tang. An experiment in High-Frequency Sediment Acoustics:SAX99.
    [117]Michael D. Richardson, Kevin B. Briggs, L. Dale Bibee, Peter A. Jumars. Overview of SAX99:Environmental Considerations. IEEE Journal of Oceanic Engineering, 2001,26(1):26-53P
    [118]Charles W. Holland, Reginald Hollett, Luigi Troiano. Measurement technique for bottom scattering in shallow water. J. Acoust. Soc. Am,2000,108(3):997-1011P
    [119]Jee Woong Choi, Jungyul Na, Woojae Seong.240-kHz bistatic bottom scattering measurements in shallow water. IEEE Journal of Oceanic Engineering, 2001,26(1):55-62P
    [120]Jee Woong Choi, Jungyul Na, Kwan-Seob Yoon. High-Frequency Bistatic Sea-Floor Scattering from Sandy Ripple bottom, IEEE Journal of Oceanic Engineering, 2003,28(4):711-719P
    [121]J.Soukup Raymond, F.Gragg Robert. Backscattering from a limestone seafloor at 2-3.5 kHz:measurements and modeling. J. Acoust. Soc. Am,2003,113(5):2501-2514P
    [122]Paul C.Hines, John C.Osler, Darcy J.MacDougald. Acoustic backscatter measurement from littoral seabeds at shallow grazing angles at 4 and 8 kHz. J. Acoust. Soc. Am, 2005,117(6):3504-3516P
    [123]Hyoungsul La, Jee Woong Choi.8-kHz bottom backscattering measurements at low grazing angles in shallow water. J. Acoust. Soc. Am,2010,127(4):160-165P
    [124]刘伯胜等.水声学原理.第1版.哈尔滨船舶工程学院出版社.1993
    [125]朴胜春,黄益旺,杨士莪.水声传播中射线声学方法的应用.声学技术.
    [126]Finn B.Jensen, William A.Kuperman, Michael B.Porter, Henrik Schmidt. Computational Ocean Acoustic. American Institute of Physics,1993
    [127]王梓坤编著.概率论基础及其应用.第1版.科学出版社,1979:86-91页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700