混浊海水声吸收与声散射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近岸海域,由于沿海和港湾附近的江河携带大量泥沙的注入,使得海水中悬浮有大量的泥沙颗粒,此类海水也称为混浊海水。海洋界曾对近岸混浊海水进行过大量的调查研究,但多是针对悬浮泥沙颗粒的沉积、输运过程等机理研究,对其声吸收和声散射特性的研究相对较少。声波在混浊海水中传播时,声吸收是引起声能衰减的主要原因之-,而声散射则是另外的一个原因。本文主要研究混浊海水的声吸收与声散射特性,即悬浮泥沙颗粒对海水声吸收和声散射特性的影响,这对浅海声传播建模、声纳系统设计、沉底目标探测等都是十分有意义的。
     本文从声吸收基本原理、海水化学组成、声吸收测量方法出发,以明确如何对混浊海水声吸收特性进行实验研究。其次研究圆柱形共振器(以下简称混响桶)内的声场,理论上阐明了混响桶的本征频率、简正频率的分布以及瞬态效应(混响)。研究了混响桶测量水介质声吸收系数的基本原理。利用实验研究气泡、传感器对声吸收测量的影响,以及混响时间的测量方法所引起的声吸收测量误差,仿真计算了温度、盐度、压强对混浊海水声吸收的影响。在此基础上,设计并构建了一套混响法声吸收测量实验系统,具备完善的真空除气、隔声、隔振、保温等设计。经标准溶液校验,测量误差最大不超过15%,且测量频率可低至20kHz。测量了悬浮泥沙颗粒浓度为40-490mg/L混浊海水在20~60kHz的声吸收系数,填补了低频段、低悬浮泥沙颗粒浓度混浊海水声吸收研究的空白。当混浊海水中悬浮泥沙颗粒的浓度小于110mg/L时,混浊海水的声吸收系数与纯净海水(盐度35‰)的声吸收系数差别较小,混浊海水中引起声吸收的主要成份是电解质硫酸镁;当悬浮泥沙颗粒的浓度超过140mg/L时,悬浮泥沙颗粒引起的声吸收已非常明显,混浊海水的声吸收系数最大为纯净海水声吸收系数的2倍。实验结果表明:混浊海水的声吸收系数近似与悬浮泥沙颗粒的浓度成正比,与频率的平方成正比。
     由于混浊海水中悬浮的泥沙颗粒形状极其复杂,使得直接、准确计算混浊海水的声吸收系数几乎是不可能的。提出了采用悬浮泥沙颗粒的中值粒径去计算其粘滞声吸收系数的方法。而利用纯净海水声吸收公式可计算混浊海水中电解质的弛豫声吸收系数。利用该方法计算的混浊海水的声吸收系数与混响法测量的结果符合较好!因此,若已知混浊海水的盐度、温度、悬浮泥沙颗粒的中值粒径等信息时,则可利用纯净海水的声吸收公式和采用悬浮泥沙颗粒的中值粒径计算其粘滞声吸收系数的方法来预报混浊海水的声吸收系数。
     通常把逆入射方向的声散射称为体积混响,它是主动声纳的主要背景干扰。由于浅海环境的特征及体积混响的特性,很难利用常规的水声设备进行低频段体积混响的试验测量。这是因为常规的水声设备一般不具备程控开关和时间可变增益器件,极易造成水声设备的电路阻塞。针对这一问题,研制了一套由模拟接收板、控制板和PCI总线通信板组成的数据采集器。在此基础上,设计并构建了一套混浊海水声散射特性测量实验系统。该系统在长江口外海域进行了试验。首次揭示了混浊海水的体积反向散射强度随频率、悬浮泥沙颗粒浓度、浊度等的变化规律,发现体积反向散射强度随悬浮泥沙颗粒浓度、温度的改变可有高达30dB的变化。
There exist a lot of suspended sediment particles in the seawater close to the most part of the coast of our country, since the sediment carried by the rivers pours into the sea. This kind of seawater is also characterized as turbid seawater. The domestic ocean specialists have been doing a lot of research on offshore turbid seawater. But their research is mainly done on the process of suspended sediment particles' deposition and transport. Only a little research has been done on the properties of sound absorption and sound scattering in turbid seawater. The sound absorption is one of the reasons why sound energy attenuates, when sound wave propagates in turbid seawater, the other reason is sound scattering. The paper is focused on investigating the properties of sound absorption and sound scattering, namely, how much suspended sediment particles has the effect on sound absorption and sound scattering in the seawater. It is very useful to model sound propagation in shallow water, design the sonar system, and detect the submerged objects, etc.
     Based on the basic principle of sound absorption, the composition of the seawater, and measurement method of sound absorption, the method of investigating the property of sound absorption in turbid seawater was settled down. Moreover, sound field of cylindrical resonator (reverberation barrel, hereafter) was investigated. The eigenfrequency, the distribution of normal-mode frequency, and the transient effect, namely, reverberation, of the barrel were illustrated. The basic principle for measuring sound absorption coefficient of water medium by the barrel was given. The effect of air-bubble and transducers on sound absorption, as well as the method of measuring reverberation time on the measurement error had been verified by the experiment. The effect of temperature, salinity and pressure on sound absorption in turbid seawater was investigated by the simulation. After that, a system for measuring sound absorption was designed and built up in laboratory, which had complete design of vacuum degassing, sound isolation, vibration isolation, temperature isolation, etc. The maximum measurement error was no more than 15%, after the system was calibrated by standard solution. The measured frequency could be lowered at 20 kHz. The property of sound absorption in turbid seawater between 20~60 kHz, of which the concentration was in the range from 40 to 490 mg/L, was measured by the reverberation method. It filled up the investigation of sound absorption property in turbid seawater at low frequency and low concentration of suspended sediment particles. It was investigated that when the concentration of suspended sediment particles is less than 110 mg/L, the coefficient difference between turbid seawater and clear seawater is very little, sound absorption in turbid seawater is mainly caused by the electrolyte, magnesium sulfate. If the concentration of suspended sediment particles is above 140 mg/L, sound absorption caused by suspended sediment particles is remarkable, of which maximum coefficient is twice as that in clear seawater. The results show that the coefficient of sound absorption in turbid seawater is approximately proportional to the concentration of suspended sediment particles and the square of the frequency.
     The shape of suspended sediment particles in turbid seawater is so complex that the coefficient of sound absorption can't be calculated directly and accurately. The method, that the coefficient of viscous sound absorption was calculated by median diameter of suspended sediment particles, was proposed. And the coefficient of the electrolyte's relaxation sound absorption could be calculated by clear seawater's sound absorption formula. The total sound absorption coefficient calculated by the combination of these two methods agrees very well with that measured by reverberation method. So, if the salinity, temperature, median diameter of suspended sediment particles, etc, are known, the coefficient of sound absorption in turbid seawater could be predicted by the combination of clear seawater's sound absorption formula and the proposed method of viscous sound absorption calculation.
     Generally speaking, sound scattering along anti-incident direction is characterized as volume reverberation, which is the main background interference to active sonar system. However, the volume reverberation measurements can't be fulfilled by conventional underwater acoustic equipments in lower frequency bands, due to the characteristic of shallow water environment and the property of volume reverberation. Because there are no programmable switch and time-variable-gain device in conventional underwater acoustic equipments, circuit obstruction usually happens in the measurements. In order to solve the problem, a data acquisition system, composed of analog receiving board, control board and PCI bus communication board, was developed. Then, a system for measuring sound scattering was designed and built up. The system had been tested in the sea area outside Yangtze River estuary, China. The law is firstly summarized that volume backscattering intensity changes with frequency, the concentration of suspended sediment particles, turbidity, etc. The results demonstrate that volume backscattering intensity might be changed by 30 dB, due to the variations of suspended sediment particles'concentration and temperature.
引文
[1]Vern O.Knudsen and Edwin F.Fricke. The Absorption of Sound in Carbon Dioxide and Other Gases. J.Acoust.Soc.Am.1938,10(2):89-97P
    [2]Charles J.Burton. A Study of Ultrasonic Velocity and Absorption in Liquid Mixtures. J.Acoust.Soc.Am.1948,20 (2):186-199P
    [3]L.N.Liebermann. The Origin of Sound Absorption in Water and in Sea Water. J.Acoust.Soc.Am.1948,20 (6):868-873P
    [4]Richard K.Cook and S.Edelman. Correlation Coefficients as Criteria for Randomness of Reverberant Sound Fields. J.Acoust.Soc.Am.1950,22 (5):678P
    [5]M.C.Smith, R.E.Barrett, and R.T.Beyer. Ultrasonic Absorption Measurements in Aqueous Solutions of Magnesium Sulfate. J.Acoust.Soc.Am.1951,23 (1):71-74P
    [6]O.B.Wilson Jr. and R.W.Leonard. Sound Absorption in Aqueous Solutions of Magnesium Sulfate and in Sea Water. J.Acoust.Soc.Am.1951,23 (5):624P
    [7]Frank L.Mcnamara and Robert T.Beyer. A Variation of the Radiation Pressure Method of Measuring Sound Absorption in Liquids. J.Acoust.Soc.Am.1953,25 (2):59-262P
    [8]O.B.Wilson JR. and Robert W.Leonard. Measurements of Sound Absorption in Aqueous Salt Solutions by A Resonator Method. J.Acoust.Soc.Am.1954,26(2): 23-226P
    [9]John Karpovich. Resonance Reverberation Method for Sound Absorption Measurements. J.Acoust.Soc.Am.1954,26(5):819-823P
    [10]T.A.Litovitz and E.H.Carnevale. Effect of Pressure on Sound Propagation in Water. Journal of Applied Physics.1955,26(7):816-820P
    [11]E.H.Carnevale and T.A.Lrrovitz. Pressure Dependence of Sound Propagation in the Primary Alcohols. J.Acoust.Soc.Am.1955,27(3):547-550P
    [12]W.J.Toulis. Theory of A Resonance Method to Measure the Acoustic Properties of Sediments. Geophysics.1956, x x I (2):299-304P
    [13]J.E.Piercy. Ultrasonic Absorption of Binary Liquid Mixtures. J.Acoust.Soc.Am.1956, 28(4):785P
    [14]Leonard Liebermann. On the Pressure Dependence of Sound Absorption in Liquids. J.Acoust.Soc.Am.1956,28(6):1253-1255P
    [15]P.D.EDMONDS and J.LAMB. A Method for Deriving the Acoustic Absorption Coefficient of Gases from Measurement of the Decay-time of A Resonator. PROC.PHYS.SOC.1957,71 (Pt 1):17-32P
    [16]S.R.Murphy GR.Garrison and D.S.Potter. Sound Absorption at 50 to 500 Kc from Transmission Measurements in the Sea. J.Acoust.Soc.Am.1958,30(9):871-875P
    [17]F.H.Fisher. Effect of High Pressure on Sound Absorption in a Water-dioxane Solution of Magnesium Sulfate. J.Acoust.Soc.Am.1959,31(6):848P
    [18]F.H.Fisher. Effect of High Pressure on Sound Absorption in Water-dioxane Solutions of Magnesium Sulfate. J.Acoust.Soc.Am.1960,32(11):1510P
    [19]M.Schulkin and H.W.Marsh. Sound Absorption in Sea Water. J.Acoust.Soc.Am.1962, 34:864-865P
    [20]John.P.Beam. Sound Absorption in the Ocean as A Function of Temperature, Salinity and Frequency. J.Acoust.Soc.Am.1962,44(12):1975P
    [21]Gordon Atkinson and S.K.Kor. The Kinetics of Ion Association in Manganese Sulfate Solutions. I. Results in Water, Dioxane-water Mixture, and Methanol-water Mixtures at 250. The Journal of Physical Chemistry.1965,69(1):128-133P
    [22]John GPowell and John J. Van Houten. A Tone-burst Technique of Sound Absorption Measurement. J.Acoust.Soc.Am.1970,48(6):1299-1303P
    [23]T.J.Schultz. Persisting Questions in Steady-state Measurement of Noise Power and Sound Absorption. J.Acoust.Soc.Am.1972,52(1):140P
    [24]F.H.Fisher and H.F.Bezdek. Multistate Dissociation and Sound Absorption in Sea Water. J.Acoust.Soc.Am.1972,52(1):176P
    [25]W.M.Madigosky. Sound Absorption in Dimethyl Sulfoxide-water Mixtures. J.Acoust.Soc.Am.1973,53(1):364P
    [26]Ernest Yeager, F.H.Fisher, John Miceli and Robert Bressel. Origin of the Low-frequency Sound Absorption in Sea Water. J.Acoust.Soc.Am.1973,53(6): 1705-1707P
    [27]R.GHarlow and P.R.Street. Sound Absorption in Mixtures of Oxygen and Water Vapor in the Temperature Range 298-410K. J.Acoust.Soc.Am.1974,56(3):873-877P
    [28]V.P.Simmons and F.H.Fisher. Low-frequency (1 kHz) Sound Absorption in Sea Water as Measured in the Laboratory Using A Spherical Resonator. J.Acoust.Soc.Am.1975, 57(S1):S56P
    [29]G.R.Garrison, R.E.Francois, and E.A.Pence. Sound Absorption Measurements at 10-60 kHz in Near-freezing Sea Water. J.Acoust.Soc.Am.1975,58(3):608-619P
    [30]F.H.Fisher and V.P.Simmons. Discovery of Boric Acid as Cause of Low Frequency Sound Absorption in the Ocean. IEEE OCEAN.1975:21-24P
    [31]GR.Garrison, E.W.Early, and T.Wen. Additional Sound Absorption Measurements in Near-freezing Sea Water. J.Acoust.Soc.Am.1976,59(6):1278-1283P
    [32]R.H.Mellen and D.G.Browning. Variability of Low-frequency Sound Absorption in the Ocean:pH Dependence. J.Acoust.Soc.Am.1976,60(1):S36P
    [33]Robert H.Mellen and David GBrowning. Variability of Low-frequency Sound Absorption in the Ocean:pH Dependence. J.Acoust.Soc.Am.1977,61(3):704-706P
    [34]GA.Atkinson, E.Enwall, and H.Endo. Simulation of Sound Absorption in Seawater. J.Acoust.Soc.Am.1977,61(S1):S13P
    [35]F.H.Fisher and V.P.Simmons. Sound Absorption in Sea Water. J.Acoust.Soc.Am.,1977, 62(3):558-564P
    [36]Dan Chang, F.D.Shields, and H.E.Bass. Sound-tube Measurements of the Relaxation Frequency of Moist Nitrogen. J.Acoust.Soc.Am.1977,62(3):577-581P
    [37]Jacques Rouch, C.C.Lai, and Sow-Hsin Chen. High Frequency Sound Velocity and Sound Absorption in Super-cooled Water and the Thermodynamic Singularity at 2280K. The Journal of Chemical Physics.1977,66(1):5031-5034P
    [38]Ryusuke Kono, Toshihiko Yamaoka, and Haruyo Yoshizaki John McGinness. Anomalous Absorption and Dispersion of Sound Waves in Diethylamine Melanin. J.Appl.Phys.1979,50(3):1236-1244P
    [39]R.H.Mellen, V.P.Simmons, D.G. Browning. Sound Absorption in Sea Water:A Third Chemical Relaxation. J.Acoust.Soc.Am.1979,65(4):923-925P
    [40]F.H.Fisher. Sound Absorption in Sea Water by A Third Chemical Relaxation. J.Acoust.Soc.Am.1979,65(4):1327-1329P
    [41]R.H.Mellen, V.P.Simmons, D.G. Browning. Low-frequency Sound Absorption in Sea Water:A borate complex relaxation. J.Acoust.Soc.Am.1980,67(1):341-342P
    [42]G Carini, M.Cutroni, G Maisano, P Migliardo and F Wanderlingh. Sound Absorption and Relaxation Phenomena in Aqueous CdCl2 solutions. J.Phys.C:Solid St.Phys.1980, 13:967-981P
    [43]R.H.Mellen, V.P.Simmons, D.GBrowning. Low-frequency Sound Absorption in Sea Water: A Borate Complex Relaxation. J.Acoust.Soc.Am.1981,67(1):341-342P
    [44]Allan J.Zuckerwar and William A.Griffin. Effect of Water Vapor on Sound Absorption in Nitrogen at Low Frequency/pressure Ratios. J.Acoust.Soc.Am.1981,69(1): 150-154P
    [45]R.H.Mellen and D.G.Browning V.P.Simmons. Investigation of Chemical Sound Absorption in Sea Water: PartⅢ. J.Acoust.Soc.Am.1981,70(1):143-148P
    [46]Harumi Endo. Mechanism of the Sound Absorption in H2O and D2O Liquid Water. J.Chem.Phys.1982,76(9):4578-4586P
    [47]R.E.Francois and GR.Garrison. Sound Absorption Based on Ocean Measurements: Part I:Pure Water and Magnesium Sulfate Contributions. J.Acoust.Soc.Am.1982, 72(3):896-907P
    [48]R.E.Francois and GR.Garrison. Sound Absorption Based on Ocean Measurements. Part Ⅱ:Boric Acid Contribution and Equation for Total Absorption. J.Acoust.Soc.Am. 1982,72(6):1879-1890P
    [49]D.J.Whelan. Approaches to A Quantitative Analytical Description of Low Frequency Sound Absorption in Sea Water. J.Acoust.Soc.Am.1982,72(6):2040P
    [50]C.C.Hsu and F.H.Fisher. Pressure Dependence of Sound Absorption in An Aqueous Solution of CaSO4. J.Phys.Chem.1983,87(14):2581-2584P
    [51]F.H.Fisher. Sound Absorption in Aqueous Mixture of MgSO4-HCl and MgSO4-H2SO4. J.Phys.Chem.1983,87(24):4881-4885P
    [52]GR.Garrison, R.E.Francois, E.W.Early, and T.Wen. Sound Absorption Measurements at 10-650 kHz in Arctic Waters. J.Acoust.Soc.Am.1983,73(2):492-501P
    [53]R.H.Mellen and D.G.Browning V.P.Simmons. Investigation of Chemical Sound Absorption in Seawater. Part IV. J.Acoust.Soc.Am.1983,74(3):987-993P
    [54]V.P.Simmons. Investigation of the 1-kHz Sound Absorption in Sea Water. J.Acoust.Soc.Am.1984,75(2):639P
    [55]Udo Kaatze and Bernd Wehrmann. High-Q Plano-concave Resonator with and without Straubel Quartz for Ultrasonic Absorption Measurements of Liquids. IEEE Transaction on Instrumentation and Measurement.1988,37(4):648-651P
    [56]Simon D.Richards. The Effect of Temperature, Pressure, and Salinity on Sound Attenuation in Turbid Seawater. J.Acoust.Soc.Am.1998,103(1):205-211P
    [57]Michael A.Ainslie and James G.McColm. A Simplified Formula for Viscous and Chemical Absorption in Sea Water. J.Acoust.Soc.Am.1998,103(3):1671-1672P
    [58]Niven R.Brown and Timothy GLeighton, Simon D.Richards, Anthony D.Heathershaw. Measurement of Viscous Sound Absorption at 50-150 kHz in A Model Turbid Environment. J.Acoust.Soc.Am.1998,104(4):2114-2120P
    [59]Frederick H.Fisher. Chemical Sound Absorption in the Ocean. J.Acoust.Soc.Am.2001, 110(5):2690P
    [60]F.H.Fisher and C.C.Hsu. Sound Absorption in Titanium at 25 kHz. J.Acoust.Soc.Am. 2001,110(5):2701-2702P
    [61]Harumi Endo and Kazuyuki Honda. Sound Absorption in Non-electrolyte Aqueous Solutions. J.Chem.Phys.2001,115(6):7575-7585P
    [62]J.F.Ternon, C.Oudot, V.Gourlaouen, D.Diverres. The Determination of pHT in the Quatorial Atlantic Ocean and Its Role in the Sound Absorption Modeling in Seawater. Journal of Marine System.2001,30:67-87P
    [63]F.H.Fisher. Effect of Hydrochloric Acid on Sound Absorption and Relaxation Frequency in Magnesium Sulfate Solutions. J.Acoust.Soc.Am.2002,111(5): 2399-2400P
    [64]Simon D.Richards Timothy G.Leighton and Niven R.Brown. Sound Absorption by Suspensions of Non-spherical Particles:Measurements Compared with Predictions Using Various Particle Sizing Techniques. J.Acoust.Soc.Am.2003,114(4): 1841-1850P
    [65]Emi Toyoda, Shinichi Sakamoto and Hideki Tachibana. Effects of Room Shape and Diffusing Treatment on the Measurement of Sound Absorption Coefficient in A Reverberation Room. Acoust.Sci. & Tech.2004,25(4):255-266P
    [66]Steve Vanlanduit, Joris Vanherzeele, Patrick Guillaume, and Gert De Sitter. Absorption Measurement of Acoustic Materials Using A Scanning Laser Doppler Vibrometer. J.Acoust.Soc.Am.2005,117(3):1168-1172P
    [67]T.Yamaguchi, T.Matsuoka, and S.Koda. Theoretical Study on the Sound Absorption of Electrolytic Solutions. I. Theoretical Formulation. The Journal of Chemical Physics. 2007,126:14505-1-14505-14P
    [68]T.Yamaguchi, T.Matsuoka, and S.Koda. Theoretical Study on the Sound Absorption of Electrolytic Solutions. Ⅱ. Assignments of Relaxations. The Journal of Chemical Physics.2007,127:064508-1-064508-9P
    [69]钱祖文.化学反应媒质中的声吸收理论及关于MgSO4水溶液的弛豫机构.物理学报.1962,18(10):501-508页
    [70]裘辛方,蒋济良,万世敏.海水的低频化学弛豫声吸收.声学学报.1984,9(1):21-28页
    [71]裘辛方,蒋济良,万世敏.海水中硼酸弛豫声吸收机理的研究.声学学报.1985,10(3):137-148页
    [72]裘辛方,韩嗣康.海水中硫酸镁弛豫声吸收的温度关系.声学学报.1987,12(2):151-154页
    [73]方彦军,唐懋官.一种新的声吸收系数测试法.武汉水利电力学院学报.1988,3:13-19页
    [74]裘辛方,蒋济良,万世敏.海水低频声吸收与pH值的关系.声学学报.1989,14(3):196-201页
    [75]裘辛方.一个预报海水声吸收的公式.声学技术.1989,8(2):1-4页
    [76]裘辛方.海洋环境要素对海水硼酸弛豫声吸收的影响.海洋学报.1991,13(5):639-648页
    [77]徐禹擎,胡浩浩.悬浮颗粒物对海水声衰减的影响.科技资讯.2007,32:3-4页
    [78]胡浩浩,彭临慧,张学刚,韩晶.混浊海水中声衰减规律初步研究.装备环境工程.2008,5(4):14-18页
    [79]彭临慧,王桂波.悬浮颗粒物海水及其声吸收.声学技术.2008,27(2):168-171页
    [80]彭临慧,王桂波.中国近海悬浮颗粒物海水声波衰减.声学学报.2008,33(5):389-395页
    [81]Carl F.Eyring, Ralph. J.Christensen and Russell W.Taitt. Reverberation in the Sea. J.Acoust.Soc.Am.1948,20(4):462-475P
    [82]Herbert R.Carleton. Theoretical Development of Volume Reverberation as A First-order Scattering Phenomenon. J.Acoust.Soc.Am.1961,33(3):317-323P
    [83]Benjamin F.Cros and William R.Schumacher. Theoretical and Experimental Study of Underwater Sound Reverberation. J.Acoust.Soc.Am.1961,33(7):881-888P
    [84]G.R.Lund and R.J.Urick. Vertical Coherence of Explosive Reverberation. J.Acoust.Soc.Am.1964,1015P
    [85]R.J.Urick and GR.Lund. Vertical Coherence of Explosive Reverberation. J.Acoust.Soc.Am.1964,36(11):2164-2170P
    [86]Barry A.Gold. Measurements of Volume Scattering from A Deep Scattering Layer. J.Acoust.Soc.Am.1966,40(3):688-696P
    [87]David middleton. A Statistical Theory of Reverberation and Similar First Order Scattered Fields Part I:Waveforms and the General Process. IEEE Transactions on Information Theory.1967,13(3):372-392P
    [88]David middleton. A Statistical Theory of Reverberation and Similar First Order Scattered Fields Part II:Moments, Spectra, and Special Distributions. IEEE Transactions on Information Theory.1967,13(3):393-414P
    [89]W.E.Batzler and R.J.vent. Volume-Scattering Measurements at 12 Kc/sec in the Western Pacific. J.Acoust Soc Am.1967,41(1):154-157P
    [90]Victor C. Anderson. Frequency Dependence of Reverberation in the Ocean. J.Acoust.Soc.Am.1967,41(6):1467-1474P
    [91]R.S.Thomas. Range-Doppler Analysis of Underwater Acoustic Backscatter. J.Acoust.Soc.Am.1967,41(6):1596P
    [92]Peter Van Schuyler. Volume-Scattering Measurements in the Western North Atlantic and Gulf of Mexico. J.Acoust.Soc.Am.1967,41(6):1597P
    [93]W.E.Batzler and R.J.Vent. Volume Scattering at 3 kHz and 12 kHz off Southern California. J.Acoust.Soc.Am.1967,42(5):1201P
    [94]R.H.Adlington. Volume Rverberation Masurements between Bermuda and Puerto Rico. J.Acoust.Soc.Am.1967,42(5):1201P
    [95]John J.Keane. Volume Reverberation as A Function of Single Frequency Pulse Lengths and FM Sweep Rates. J.Acoust.Soc.Am.1968,43(3):566-570P
    [96]R.H.Adlington, A.E.Robison and R.P.Chapman. Volume Reverberation in the North Atlantic Ocean. J.Acoust.Soc.Am.1968,44(1):356P
    [97]R.J.Urick. Reverberation from An Arbitrary Transient Source. J.Acoust.Soc.Am.1968, 44(1):356P
    [98]J.C.Nickles and R.K.Johnson. A Digital System for Volume Reverberation Studies. J.Acoust.Soc.Am.1971,50(1):314-320P
    [99]M.Hall. Volume Backscattering in the South China Sea and the Indian Ocean. J.Acoust.Soc.Am.1971,50(3):940-945P
    [100]R.J.Vent. Acoustic Volume-scattering Measurements at 3.5,5.0, and 12.0 kHz in the Eastern Pacific Ocean:Diurnal and Seasonal Variations. J.Acoust.Soc.Am.1972,52(1): 373-382P
    [101]William John Jobst. Acoustic Volume Reverberation in the Ocean:Theory, Experiment, and Simulation. IEEE Transactions on Information Theory.1973,376P
    [102]J.M.Ross and C.Brochu. Doppler Spreading of Reverberation in Shallow Water. J.Acoust.Soc.Am.1973,53(1):352P
    [103]M.Hall. Volume Backscattering in the Tasman Sea, the Coral Sea, and the Indian Ocean. J.Acoust.Soc.Am.1973,54(2):473-477P
    [104]R,K.Johnson. Frequency Dependence of the Daily Pattern of Sea Reverberation. J.Acoust.Soc.Am.1973,54(2):478-482P
    [105]William J.Jobst. Acoustic Volume Reverberation in the Ocean:Theory, Experiment, and Simulation. Mathematical Model for Volume Reverberation:Experiment and Simulation. Ph, D. The Catholic University of America.1972,1-128
    [106]Paul T.McElroy. Geographic Patterns in Volume-reverberation Spectra in the North Atlantic between 330N and 630 N. J.Acoust.Soc.Am.1974,56(2):394-407P
    [107]Richard H.Love. Predictions of Volume Scattering Strengths from Biological Trawl Data. J.Acoust.Soc.Am.1975,57(2):300-306P
    [108]Brett D.Castile. Reverberation from Plankton at 330 kHz in the Western Pacific. J.Acoust.Soc.Am.1975,58(5):972-976P
    [109]Barry A.Gold and Wayne E.Renshaw. Joint Volume Reverberation and Biological Measurements in the Tropical Western Atlantic. J.Acoust.Soc.Am.1978,63(6): 1809-1819P
    [110]Richard H.Love. Resonant Acoustic Scattering by Swimbladder-bearing Fish. J.Acoust.Soc.Am.1978,64(2):571-579P
    [111]Timothy K.Stanton and Clarence S.Clay. Sonar Echo Statistics as a Remote-sensing Tool:Volume and Seafloor. IEEE Journal of Oceanic Engineering.1986, Oell(1): 79-96P
    [112]L.Goodman, J.Oeschger, D.Szargowicz. Ocean Acoustic Turbulence Study:Acoustic Scattering from A Buoyant Axisymmetric Plume. J.Acoust.Soc.Am.1992,91(6): 3212-3227P
    [113]Cynthia B.Straney and Michael J.Forbes. Numerical Model of the Transmit-receive Response of An Active Sonar. J.Acoust.Soc.Am.1992,92(4):2468P
    [114]Dale D.Eillis. Shallow Water Reverberation:Normal-mode Model Predictions Compared with Bistatic Towed-array Measurements. IEEE Journal of Oceanic Engineering.1993,18(4):474-482P
    [115]Tuncay Akal, Robert K.Dullea, Guido Guidi, John H.Stockhausen. Low-frequency Volume Reverberation Measurements. J.Acoust.Soc.Am.1993,93(5):2535-2548P
    [116]Richard H.Love. A Comparison of Volume Scattering Strength Data with Model Calculations Based on Quasisynoptically Collected Fishery Data. J.Acoust.Soc.Am. 1993,94(4):2255-2268P
    [117]Peter M.Ogden and Fred T.Erskine. Surface and Volume Scattering Measurements Using Broadband Explosive Charges in the Critical Sea Test 7 Experiment. J.Acoust.Soc.Am.1994,96(5):2908-2920P
    [118]Tokuo Yamamoto. Acoustic Scattering in the Ocean from Velocity and Density Fluctuations in the Sediments. J.Acoust.Soc.Am.1996,99(2):866-879P
    [119]Redwood W.nero, Charles H.thompson and Richard H.love. Abyssopelagic Grenadiers: the Probable Cause of Low Frequency Sound Scattering at Great Depths off the Oregon and California Coasts. Deep-Sea Research Ⅰ.1997,44(4):627-645 P
    [120]Francine Desharnais and Dale D.Ellis. Data-Model Comparisons of Reverberation at Three Shallow-water Sites. IEEE Journal of Oceanic Engineering.1997,22(2): 309-316P
    [121]Peter H.Wiebe, Timothy K.Stanton, Mark C.Benfield, David GMountain, and Charles H.Greene. High-Frequency Acoustic Volume Backscattering in the Georges Bank Coastal Region and its Interpretation Using Scattering Models. IEEE Journal of Oceanic Engineering.1997,22(3):445-464P
    [122]Kevin D.LePage, Henrik Schmidt. Spectral Integral Representations of Volume Scattering in Sediments in Layered Waveguides. J.Acoust.Soc.Am.2000,108(4): 1557-1567P
    [123]Timothy C.Gallaudet and Christian P. de Moustier. Multibeam Volume Acoustic Backscatter Imagery and Reverberation Measurements in the Northeastern Gulf of Mexico. J.Acoust.Soc.Am.2002,112(2):489-503P
    [124]Timothy C.Gallaudet and Christian P.de Moustier. High-frequency Volume and Boundary Acoustic Backscatter Fluctuations in Shallow Water. J.Acoust.Soc.Am.2003, 114(2):707-725P
    [125]Richard H.love, Charles H.thompson and Redwood W.nero. Changes in Volume Reverberation from Deep to Shallow Water in the Eastern Gulf of Mexico. J.Acoust.Soc.Am.2003,114(5):2698-2708P
    [126]V.E.Sklyarov and A.V.Berezutskii. The Influence of Thermohaline Fine Structure on Volume Sound Scattering in the Ocean. Proc. of SPIE.2004,5397:191-198P
    [127]李玉昕,杨颐华,李志宽,董仲奎.南海深水散射层的实验研究.海洋学报.1986,8(1):107-110页
    [128]孙瀛.鱼体声散射测量.海洋学报.1986,8(3):347-354页
    [129]包青华,柴心玉.黄海温跃层声散射与浮游生物垂直分布的关系.海洋学报.1995,17(5):59-64页
    [130]时钟,张叔英,HAMILTON L J.河口近底细颗粒悬沙运动的声散射观测.声学学报.1998,23(3):221-227页
    [131]裘辛方,张仁和,殷业.黄海中部高频反向体积声散射的观察.声学技术.1999,18(2):50-53页
    [132]王虹斌.水中气泡幕的多体多次声散射模型分析.船舶工程.2006,28(3):30-33贝
    [133]何祚镛,赵玉芳.声学理论基础.第1版.国防工业出版社.1981:96-105;353-382:401页
    [134]R.J.尤立克.水声原理.第3版. 哈尔滨船舶工程学院出版社.1990:79-117页
    [135]裘辛方.海水声吸收问题.科学出版社.1966:150-153页
    [136]陈敏.化学海洋学.第1版.海洋出版社.2009:10-32页
    [137]翟世奎,孟伟,于志刚.三峡工程一期蓄水后的长江口海域环境.第1版.科学出版社.2008:27-39;75-97页
    [138]高抒,程鹏,汪亚平,曹奇源.长江口外海域1998年夏季悬沙浓度特征.海洋通报.1999,18(6):44-50页
    [139]何文珊,陆健健.高浓度悬沙对长江河口水域初级生产力的影响.中国生态农业学报.2001,9(4):24-27页
    [140]张怀静,翟世奎,范德江,郭志刚,魏立青,种法运.三峡工程一期蓄水后长江口悬浮体形态及物质组成.海洋地质与第四纪地质.2007,27(2):1=10页
    [141]中国物理学会编.水声学(第一集),科学出版社.1960:58-66页,98页,62-64页,102页
    [142]Xin-Fang Qiu. A cylindrical resonator method for the investigation of low frequency sound absorption in sea water. J.Acoust.Soc.Am.1991,90(6):3263-3270P
    [143]T.G.Leighton, N.R.Brown and S.D.Richards. Effect of acoustic absorption by hydrophone and cable on a reverberation technique for measuring sound absorption coefficient of particulate suspensions. ISVR Technical Report No 299.2002
    [144]Simon Richards, Timothy Leighton. High frequency sonar performance predictions for littoral operations-the effects of suspended sediments and micro-bubbles. Journal of Defence Science.2002,8(1):1-7P
    [145]S.D.Richards, T.G.Leighton and N.R.Brown. Visco-inertial absorption in dilute suspensions of irregular particles. Proc.R.Soc.Lond.A.2003,459:2153-2167P
    [146]梁昆淼编.数学物理方法.第3版.高等教育出版社.1998:325-372页
    [147]裘辛方,蒋济良,袁文昌,万世敏.430升充水圆柱形声共振器的研究.声学学报.1981,(1):50-53页
    [148]PHILIP M.MORSE. THEORETICAL ACOUSTICS. MCGRAW-HILL BOOK COMPANY.1968:492-501P,576-599P
    [149]P.M.莫尔斯.振动与声.第1版.科学出版社.1974:403-424页
    [150]杜功焕,朱哲民,龚秀芬.声学基础.第2版.南京大学出版社.2001:32-40页,214-220页,418-432页
    [151]李琪.水筒噪声测量方法研究.哈尔滨船舶工程学院博士学位论文,1990
    [152]李敏毅,孙海涛,吴杰歆,杨德俊.混响时间及测量方法简介.中国测试技术.2005,31(1):18-20页
    [153]张武威.关于室内混响时间的计算问题.声频工程.2005,03:17-27页
    [154]成忠军,周笃强,牛聪敏.脉冲响应法测量混响时间技术的研究.应用声学.2000,19(1):1-15页
    [155]Rosendahls Bogtrykkeri. PRODUCT DATA Hydrophones-Types 8103,8104,8105,8106. http://www.bksv.com/doc/bp0317.pdf
    [156]M.Schulkin, H.W.Marsh.海水声吸收.声学译丛-水声学(水声物理专辑).1965,1:57-60页
    [157]封光寅.河流泥沙颗粒分析原理及方法.第1版.中国水利水电出版社.2008:7-24页
    [158]钱宁,万兆惠.泥沙运动力学.第1版.科学出版社.2003:15-43页
    [159]文洪涛,杨燕明,刘贞文,牛富强.近海混浊水的附加声衰减研究.声学学报.2010,35(1):45-52页
    [160]金泰义.精度理论与应用.第1版.中国科学技术大学出版社.2005:6-39页
    [161]Rosendahls Bogtrykkeri. IDAe Hardware Configurations for PULSE Types 3560-B, 3560-C,3560-D and 3560-E. http://www.bksv.com/doc/bu0228.pdf
    [162]刘伯胜,雷家煜.水声学原理.第1版.哈尔滨工程大学出版社.2002:187-211页
    [163]柯寿斌.混响数据采集系统的研制及其数据处理.哈尔滨工程大学硕士学位论文,2009
    [164]沈国英,施并章.海洋生态学.第2版.科学出版社.2008:64-93页
    [165]杨东方,王凡,高振会,陈永利,谢利.长江口理化因子影响初级生产力的探索Ⅱ磷不是长江口浮游植物生长的限制因子.海洋科学进展.2006,24(1):97-107页
    [166]徐兆礼,白雪梅,袁骐,蒋玫,顾新根.长江口浮游植物生态研究.中国水产科学.1999,6(5):52-54页
    [167]王金辉.长江口3个不同生态系的浮游植物群落.青岛海洋大学学报.2002,32(3):422-428页
    [168]王金辉,黄秀清,刘阿成,张有份.长江口及邻近水域的生物多样性变化趋势分析.海洋通报.2004,23(1):32-39页
    [169]杨东方,高振会.胶州湾和长江口的生态.第1版.海洋出版社.2007:200-222页
    [170]厦门水产学院.海洋浮游生物学.第1版.农业出版社.1981:97-218页
    [171]陈亚瞿,徐兆礼,王云龙,胡方西,胡辉,谷国传.长江口河口锋区浮游动物生态研究Ⅰ:生物量及优势种的平面分布.中国水产科学.1995,2(1):49-58页
    [172]徐兆礼,王云龙,白雪梅,陈亚瞿.长江口浮游动物生态研究.中国水产科学.1999,6(5):55-58页
    [173]徐兆礼,王云龙,陈亚瞿,沈焕庭.长江口最大浑浊带区浮游动物的生态研究.中国水产科学.1995,2(1):39-48页
    [174]郭沛涌,沈焕庭,刘阿成,王金辉,杨元利.长江河口浮游动物的种类组成、群落结构及多样性.生态学报.2003,23(5):892-900页
    [175]徐兆礼,王荣,陈亚瞿.黄海南部及东海中小型浮游桡足类生态学研究Ⅰ:数量分布.水产学报.2003,27suppl:1-8页
    [176]王荣,陈亚瞿,左涛,王克.黄、东海春秋季磷虾的数量分布及其与水文环境的关系.水产学报.2003,27suppl:31-38页
    [177]徐兆礼,陈亚瞿,韩金娣,王云龙,袁骐,蒋玫.东海浮游动物生态特征的研究Ⅰ:种类分布与多样度.甲壳动物学论文集.2003,4:295-309页
    [178]陈亚瞿,徐兆礼,杨元利.黄海南部及东海中小型浮游桡足类生态学研究Ⅱ:种类组成及群落特征.水产学报.2003,27suppl:9-15页
    [179]纪焕红,叶属峰.长江口浮游动物生态分布特征及其与环境的关系.海洋科学.2006,30(6):23-30页
    [180]李宝泉,李新正,王洪法,王永强,王金宝,张宝琳.长江口附近海域大型底栖动物群落特征.动物学报.2007,53(1):76-82页
    [181]蔡萌,徐兆礼,朱德弟.长江口及邻近海域浮游端足类分布特征.海洋学报.2008,30(5):81-87页
    [182]徐韧,李亿红,李志恩,王金辉.长江口不同水域浮游动物数量特征比较.生态学报.2009,29(4):1688-1696页
    [183]黄加祺,许振祖,李应仁.厦门港浮游甲壳动物昼夜垂直移动的初步研究.海洋学报.1986,8(2):215-222页
    [184]徐兆礼,王云龙,陈亚瞿,胡辉,韩明宝,李兴华.长江口河口锋区浮游动物生态研究Ⅲ:优势种的垂直分布.中国水产科学.1995,2(1):64-70页
    [185]王荣,范春雷.东海浮游桡足类的摄食活动及其对垂直碳通量的贡献.海洋与湖沼.1997,28(6):579-586页
    [186]王克,王荣,高尚武.东海浮游动物昼夜垂直移动的初步研究.海洋与湖沼.2001,32(5):534-540页
    [187]刘芝花,白国志,石春艳.水体中的溶解气体.黑龙江水利科技.2005,33(2):63页
    [188]严利平,李建生,沈德刚,俞连福,凌兰英.黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化.海洋渔业.2006,28(2):117-123页
    [189]王金辉,孙亚伟,刘材材,秦玉涛,程祥圣,徐韧.长江口鱼卵仔鱼资源现状的调查与分析.海洋学研究.2007,25(4):40-50页
    [190]李建生,严利平,李惠玉,刘洋.黄海南部、东海北部夏秋季小黄鱼数量分布及与浮游动物的关系.海洋渔业.2007,29(1):31-37页
    [191]严利平,张寒野,程家骅,袁兴伟.东海区带鱼底拖网昼夜渔获率差异的统计分析.海洋渔业.2008,30(4):333-339页
    [192]王云龙,成永旭,徐兆礼,陈亚瞿.长江口疏浚土悬沙对中华绒螯蟹幼体发育和变态的影响.中国水产科学.1999,6(5):20-23页
    [193]徐兆礼,沈新强,陈亚瞿.长江口悬沙对牟氏角毛藻(Chaetoceros muelleri)生长的影响.海洋环境科学.2004,23(4):28-30页
    [194]段中华,孙建贻,谭细畅,常剑波.鱼类早期资源调查中不同网具采集效率的研究.水生生物学报.1999,23(6):670-676页
    [195]林龙山,郑元甲,程家骅,刘勇,凌建忠.东海区底拖网渔业主要经济鱼类渔业生物学的初步研究.海洋科学.2006,30(2):21-42页
    [196]Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J.Sedim.Petro.1941,11:64-72P
    [197]Krumbein, W.C. Fundamental attributes of sedimentary particles. Proc.2nd Hyd.Conf. 1943:318-331P
    [198]Inman, D.L. Measures for describing the size distribution of sediments. J.Sedim.Petro. 1952,22:125-145P
    [199]Friedman, G.M. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies.1962,32:15-25P
    [200]钱宁,马惠民.浑水的黏性及流型.泥沙研究.1958,3(3):52-77页
    [201]Bagnold, R.A. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc.Royal.Soc.Lond.A.1954,225:49-63P
    [202]Bagnold, R.A. The flow of cohesionless grains in fluids. Phil.Trans.Royal.Soc. Lond. A.1956,249:235-297P
    [203]Thomas, D.G. Transport characteristics of suspensions:Ⅲ.laminar flow properties of flocculated suspensions. J.Am.Inst.Chem.Engrs.1961,7(3):431-437P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700