温度和葡萄糖双重敏感性共聚物微凝胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟生命活动过程中的分子识别现象,能识别特定生物分子而产生刺激响应性的生物分子识别响应性水凝胶非常接近于生物组织,用它构筑的智能系统类似于具有反馈和平衡功能的生物系统,因此在生物工程和生物医学领域有非常诱人的应用前景。本论文研究的葡萄糖分子识别响应性微凝胶是以N-异丙基丙烯酰胺(NIPAM)为主单体,含苯硼酸基团的乙烯基单体为共聚功能单体,通过无皂乳液聚合法合成。形成的葡萄糖敏感性微凝胶完全由人工合成材料组成,没有用到昂贵的生物活性物质,具有稳定性好、制备成本低等优势。由于合成过程中不使用乳化剂,微凝胶表面无乳化剂污染。葡萄糖敏感性微凝胶的潜在用途是作为胰岛素的给药载体,它可根据人体血糖水平控制释放胰岛素。另外,葡萄糖敏感性微凝胶还可作为葡萄糖氧化酶的载体,在产生葡萄糖酸的生化反应过程中,能起到根据葡萄糖浓度控制酶活性的作用。本文的具体研究工作主要分为以下几方面:
     1.以碳二亚胺为催化剂,3-氨基苯硼酸(APBA)和丙烯酸(AA)为原料,在比较温和的条件下合成含苯硼酸基团的功能单体-3-丙烯酰胺基苯硼酸(AAPBA),重结晶后的产物用元素分析、红外吸收光谱、核磁共振氢谱、紫外吸收光谱、有机质谱对产物结构进行表征,确证合成所得产物为3-丙烯酰胺基苯硼酸。推测AAPBA的合成分为两步,第一步是1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)中的碳二亚胺基团与AA中的羧基反应形成O-酰基脲中间体,第二步是O-酰基脲中间体与APBA中的氨基反应生成AAPBA。
     2.采用无皂乳液聚合法合成poly(MPAM-co-AAPBA)共聚物微凝胶。扫描电镜和动态激光光散射分析结果证实合成的微凝胶具有良好的单分散性,表明无皂乳液聚合过程中微凝胶按均相成核机理进行成核,无二次成核过程。微凝胶的粒径和溶胀比随着AAPBA用量的增加逐渐减小。poly(NIPAM-co-AAPBA)微凝胶具有温敏性和葡萄糖敏感性,其相转变温度随着AAPBA用量增加而下降。
     3.以4-乙烯基苯硼酸(VPBA)为共聚的功能单体,采用无皂乳液聚合法合成poly(NIPAM-co-VPBA)共聚物微凝胶。通过微凝胶中B元素含量分析,傅立叶变换红外光谱和BNMR谱的表征,确证了微凝胶的化学结构和组成。微凝胶的粒径和溶胀比均随着VPBA用量的增加逐渐减小,在中性水介质中,VPBA单元之间的疏水相互作用可能在微凝胶内的聚合物分子链间形成了物理交联点。poly(NIPAM-co-VPBA)微凝胶具有温敏性,其体积相转变温度(VPTT)随着微凝胶中VPBA单元含量的增加而减小。微凝胶在pH=10.5的水介质中具有葡萄糖敏感性,微凝胶水动力学直径随葡萄糖浓度增加的幅度是随着微凝胶中VPBA含量的增加而减少。
Biomolecule recognition responsive hydrogels,which can recognize specific biomolecules and respond to them mimicking the molecule-recognizing process of life activity,are very close to biological tissue.The intelligent systems fabricated from the hydrogels resemble the biological systems with feedback and equilibrium functions,and they have a great deal of potential applications in the fields of bioengineering and biomedicine.In this paper,the glucose molecule recognition responsive microgels were synthesized by surfactant-free emulsion polymerization based on N-isopropylacrylamide(NIPAM)as main monomer and the vinyl monomer with phenylboronic acid group as functional comonomers. The glucose-sensitive microgels were composed of artificial materials without using expensive bioactive substance,so they have the advantage of good stability and low preparation cost.Due to the fact that any surfactant was not used in the synthesis process,there was no surfactant pollution on the surface of the microgels.The glucose-sensitive microgels will potentially be utilized as self-regulated insulin delivery system,in which insulin can be released in respond to body blood glucose concentration,In addition,the glucose-sensitive microgels could be used as the carrier of glucose oxidase,in which the activity of the glucose oxidase can be controlled by glucose concentration in the biochemical reaction system for producing glucose acid.The detailed results are as follows:
     1.3-acrylamidophenylboronic acid(AAPBA)was synthesized by the condensation reaction between carboxyl acid group(-COOH)and amino group,based on 3-aminophenylboronic acid(APBA)and acrylic acid (AA)as starting materials and N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride(EDCI)as condensating agent.The product purified by recrystallization was verified by elemental analysis,FTIR,~1H NMR,UVand MS.The synthesis mechanism of AAPBA was speculated to be divided into two steps:in the first step,the 0-acylcarbamide intermediate was formed by the reaction between ethylcarbodiimide groups of EDCI and carboxyl groups of acrylic acids;in the second step, AAPBA was formed by the reaction between 0-acylcarbamide intermediates and amino groups of APBA.
     2.The poly(NIPAM-co-AAPBA)microgels were prepared by surfactant-free emulsion polymerization.The microgels displayed spherical shape and very narrow size distribution from the results obtained by scanning electron microscopy(SEM)and dynamic laser light scattering(DLLS),indicating that there was extremely short nucleation period without second nucleation process.The hydrodynamic diameters and swelling ratios of the microgels decreased with the increase of AAPBA component content.The poly(NIPAM-co-AAPBA)microgels were both temperature- and glucose- sensitive,their volume phase transition temperature(VPTT)decreased with the increase of AAPBA component content within the microgels. 3.The poly(NIPAM-co-VPBA)copolymer microgels were prepared by surfactant-free emulsion polymerization,in which 4-vinyl phenylboronic acid(VPBA)was used as functional comonomer.The chemical structure of the microgels was verified by the content analysis of B element,fourier transform infrared spectroscopy(FTIR)and ~(11)B NMR.The hydrodynamic diameters and swelling ratios of the microgels decreased with the increase of VPBA component content.In neutral water media, the physically crosslinked points within the microgels were formed between the polymer chains by the hydrophobic interaction between VPBA units.The poly(NIPAM-co-VPBA)microgels were temperature-sensitive,their VPTT decreased with the increase of VPBA component content.In the water media of pH=10.5,the microgels were glucose-sensitive,and the increase magnitude of their hydrodynamic diameters with the glucose concentration in the media was reduced with the enhancement of VPBA component content within the microgels.
引文
[1]Nayak S.,Lyon L.A.,Soft Nanotechnology with Soft Nanoparticles,Angewandte Chemie International Edition,2005,44(47),7686-7708.
    [2]Peppas N.A.,Hilt J.Z.,Khademhosseini A.,etc.,Hydrogels in Biology and Medicine:From Molecular Principles to Bionanotechnology,Advanced Materials,2006,18(11),1345-1360.
    [3]Miyata T.,Uragami T.,Nakamae K.,Biomolecule-sensitive hydrogels,Advanced Drug Delivery Reviews,2002,54,79-98.
    [4]Albin G.,Horbett T.A.,Ratner B.D.,Glucose sensitive membranes for controlled delivery of insulin:insulin transport studies,Journal of Controlled Release,1985,2,153-164.
    [5]Cartier S.,Horbett T.A.,Rather B.D.,Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir,Journal of Membrane Science,1995,106(1-2),17-24.
    [6]Albin G.W.,Horbett T.A.,Miller S.R.,etc.,Theoretical and experimental studies of glucose sensitive membranes,Journal of Controlled Release,1987,6(1),267-291.
    [7]Hassan C.M.,Doyle F.J.,Peppas N.A.,Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol)hydrogels,Macrmolecules,1997,30(20),6166-6173.
    [8]Parker R.S.,Doyle F.J.,Peppas N.A.,A model-based algorithm for blood glucose control in type Ⅰ diabetic patients,Journal of Biomedical Engineering,1999,46;148-157.
    [9]Podual K.,Doyle F.J.,Peppas N.A.,Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase,Polymer,2000,41(11),3975-3983.
    [10]Podual K.,Doyle F.J.,Peppas N.A.,Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol)grafts,Journal of Controlled Rdease,2000,67(1),9-17.
    [11]Podual K.,Doyle F.J.,Peppas N.A.,Dynamic behaviour of glucose oxidase- containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH,Biomaterials,2000,21(14),1439-1450.
    [12]Podual K.,Doyle F.J.,Peppas N.A.,Modeling of water transport in and release from glucose-sensitive swelling-controlled release systems based on poly(diethylaminoethyl methacrylate-g-ethylene glycol),Industrial and Engineering Chemistry Research,2004,43(23),7500-7512.
    [13]Kang S.,Bae Y.H.,A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase,Journal of Controlled Release,2003,86(1),115-121.
    [14]Tomoaki U.,Yoshihiro K.,Junji W.,etc.,Degradation of phospholipid polymer hydrogel by hydrogen peroxide aiming at insulin release device,Biomaterials,2003,24(28),5183-5190.
    [15]Brownlee M.,Cerami A.,A glucose-controlled insulin delivery system:semisynthetic insulin bound to lectin,Science,1979,206,1190-1191.
    [16]Seminoff L.A.,Olsen G.B.,Kim S.W.,A self-regulating insulin delivery system.I.Characterization of a synthetic glycosylated insulin derivative,International Journal of Pharmaceutics,1989,54(3),241-249.
    [17]Kim S.W.,Pai C.M.,Makino K.,etc.,Self-regulated glycosylated insulin delivery,Journal of Controlled Release,1990,11(1-3),193-201.
    [18]Miyata T.,Jikihara A.,Nakamae K.,etc.,Preparation of poly(2-glucosyloxyethyl methacrylate)-concanavalin A complex hydrogel and its glucose-sensitivity,Macromolecular Chemistry and Physics,1996,197(3),1135-1146.
    [19]Nakamae K,Miyata T.,Jikihara A.,etc.,Formation of poly(glucosyloxyethyl methacrylate)-concanavalin A complex and its glucose-sensitivity,Journal of Biomaterials Science Polymer Edition,1994,6(1),79-90.
    [20]Miyata T.,Jikihara A.,Nakamae K.,etc.,Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose,Journal of Biomaterials Science Polymer Edition,2004,15(9),1085-1098.
    [21]Tanna S.,Sahota T.S.,Sawicka K.,etc.,The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery,Biomaterials,2006,27(25),4498-4507.
    [22]Lee S.J.,Park K.,Synthesis and characterization of SOI-gel phase-reversible hydrogels sensitive to glucose,Journal of Molecular Recognition,1996,9(5-6),549-557.
    [23]Obaidat A.A.,Park K.,Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system,Pharmaceutical Research,1996,13(7),989-995.
    [24]Obaidat A.A.,Park K.,Characterization of protein release through glucose-sensitive hydrogel membranes,Biomaterials,1997,18(11),801-806.
    [25]You L.C.,Lu F.Z.,Li Z.C.,etc.,Glucose-Sensitive Aggregates Formed by Poly(ethylene oxide)-block-poly(2-glucosyloxyethyl acrylate)with Concanavalin A in Dilute Aqueous Medium,Macromolecules,2003,36(1),1-4.
    [26]Kitano S.,Kataoka K.,Koyama Y.,etc.,Glucose-responsive complex formation between poly(vinyl alcoh01)and poly(y-vinyl-2-pyrrolidone)with pendent phenylboronic acid moieties,Macromolecular Rapid Communications,1991,12(4),227-233.
    [27]Kitano S.,Koyama Y.,Kataoka K.,etc.,A novel drug delivery system utilizing a glucose responsive polymer complex between poly(vinyl alcohol)and poly(Nvinyl-2-pyrrolidone)with a phenylboronic acid moiety,Journal of Controlled Release,1992,19(1-3),161-170.
    [28]Kataoka K.,Miyazaki H.,Okano T.,etc.,Sensitive glucose-induced change of the lower critical solution temperature of poly[N,N-dimethylacrylamide-co-3-(acrylamido)phenylboronic acid]in physiological saline,Macromolecules,1994,27(4),1061-1062.
    [29]Aoki T.,Nagao Y.,Sanui K.,etc.,Glucose-sensitive lower critical solution temperature changes of copolymers composed of N-isopropylacrylamide and phenylboronic acid moieties,Polymer Journal,1996,28(4),371-374.
    [30]Kataoka K.,Miyazaki H.,Bunya M.,etc.,Totally synthetic polymer gels responding to external glucose concentration:their preparation and application to on-off regulation of insulin release,Journal of the American Chemical Society,1998,120(48),12694-12695.
    [31]Lapeyre V.,Gosse I.,Chevreux S.,etc.,Monodispersed glucose-responsive microgels operating at physiological salinity,Biomacromolecules,2006,7(12),3356-3363.
    [32]De Geest B.G.,Jonas A.M.,Demeester J.,etc.,Glucose-responsive polyelectrolyte capsules,Langmuir,2006,22(11),5070-5074.
    [33]Zhang Y.J.,Guan Y.,Zhou S.Q.,Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels,Biomacromolecules 2006,7(11),3196-3201
    [34]Hoare T.,Pelton R.,Engineering Glucose Swelling Responses in Poly(N-isopropylacrylamide)-Based Microgels,Macromolecules,2007,40(3),670-678.
    [35]Hovgaard L.,Br.ndsted H.,Dextran hydrogels for colon-specific drug delivery,Journal of Controlled Release,1995,36(1-2),159-166.
    [36]Yeh P.Y.,Kopeckova P.,Kopecek J.,Biodegradable and pH-sensitive hydrogels:synthesis by crosslinking of N,Ndimethylacrylamide copolymer precursors,Journal of Polymer Science Part A:Polymer Chemistry,1994,32(9),1627-1637.
    [37]Yeh P.Y.,Kopeckova P.,Kopecek J.,Degradability of hydrogels containing azoaromatic crosslinks,Macromolecular Chemistry and Physics,1995,196(7),2183-2202.
    [38]Ghandehari H.,Kopeckova P.,Kopecek J.etc.,Biodegradable and pH sensitive hydrogels:synthesis by a polymer-polymer reaction,Macromolecular Chemistry and Physics,1996,197(9),965-980.
    [39]Ghandehari H.,Kopeckova P.,Kopecek J.,In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds,Biomaterials,1997,18(12),861-872.
    [40]Akala E.O.,Kopeckova P.,Kopecek J.,Novel pH-sensitive hydrogels with adjustable swelling kinetics,Biomaterials,1998,19(11-12),1037-1047.
    [41]Kurisawa M.,Terano M.,Yui N.,Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol)and dextran with an interpenetrating polymer network,Journal of Biomaterials Science,Polymer Edition,1997,8(9),691-708.
    [42]Yamamoto N.,Kurisawa M.,Yui N.,Double-stimuli-responsive degradable hydrogels:interpenetrating polymer networks consisting of gelatin and dextran with different phase separation,Macromolecular Rapid Communications,1996,17(5),313-318.
    [43]Kurisawa M.,Yui N.,Dual-stimuli-responsive drug release from interpenetrating polymer network-structured hydrogels of gelatin and dextran,Journal of Controlled Release,1998,54(2),191-200.
    [44]Miyata T.,Asami N.,Uragami T.,Preparation of an antigen-sensitive hydrogel using antigen-antibody bindings,Macromolecules,1999,32(6),2082-2084.
    [45]Miyata T.,Asami N.,Uragami T.,A reversibly antigen-responsive hydrogel,Nature,1999,399(6738),766-769.
    [46]Natsume T.,Koide T.,Yokota S.K.,etc.,Interactions between collagen-binding stress protein HSP47 and collagen:analysis of kinetic parameters by surface-plasmon resonance biosensor,Journal of Biological Chemistry,1994,269(49),31224-31228.
    [47]Murai N.,Taguchi H.,Yoshida M.,Kinetic analysis of interactions between GroEL and reduced a-lactalbumin:effect of GroES and nucleotides.Journal of Biological Chemistry,1995,270(34),19957-19963.
    [48]Lu Z.R.,Kopeckova P.,Kopecek J.,Antigen responsive hydrogels based on polymerizable antibody Fab'fragment,Macromolecular Bioscience,2003,3(6),296-300.
    [49]Sofiya K.,Ron K.,Marina K.,etc.,Rapid Colorimetric Detection of Antibody-Epitope Recognition at a Biomimetic Membrane Interface,Journal of the American Chemical Society,2001,123(3),417-422.
    [50]Linden H.,Herber S.,Olthuis W.,ere.,Stimulus-sensitive hydrogels and their applications in chemical(micro)analysis,Analyst,2003,128(4),325-331.
    [51]Aoki T.,Nakamura K.,Sanui K.,etc.,Adenosine-induced changes of the phase transition of poly(6-(acryloyloxymethyl)uracil)aqueous solution,Polymer Journal,1999,31(11-2),1185-1188.
    [52]Murakami Y.,Maeda M.,Hybrid Hydrogels to Which Single-Stranded(ss)DNA Probe Is Incorporated Can Recognize Specific ssDNA,Macromolecules,2005,38(5),1535-1537.
    [53]Murakami Y., Maeda M.,DNA-Responsive Hydrogels That Can Shrink or Swell,Biomacromolecules,2005,6(6),2927-2929.
    [54]Mosbach K.,Molecular imprinting,Trends Biochem.Science,1994,19(1),9-14.
    [55]Wang G.Q.,Kuroda K.,Enoki T.,etc.,Gel catalysts that switch on and off,Proceedings of the National Academy of Sciences,2000,97(18),9861-9864.
    [56]Oya T.,Enoki T.,Grosberg A.Y.,etc.,Reversible molecular adsorption based on multiple-pointinteraction by shrinkable gels,Science,1999,286(5444),1543-1545.
    [57]Alvarez-Lorenzo C.,Guney O.,Oya T.,etc.,Polymer gels that memorize elements of molecular conformation,Macromolecules,2000,33(23),8693-8697.
    [58]Alvarez-Lorenzo C.,Guney O.,Oya T,etc.,Reversible adsorption of calcium ions by imprinted temperature sensitive gels,Chemical Physics,2001,114(6),2812-2816.
    [59]Ito K.,Chuang J.Alvarez-Lorenzo C.,etc.,Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting:experiment and theory,Progress in Polymer Science,2003,28(10),1489-1515.
    [60]Parmpi P.,Kofinas P.,Biomimetic Glucose Recognition Using Molecularly Imprinted Polymer Hydrogds,Biomaterials,2004,25(10),1969-1973.
    [61]Wizeman W.J.,Kofinas P.,Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding,Biomaterials,2001,22(12),1485-1491.
    [62]Keiji Y.,Takashi N.,Kozo O.,etc.,Two-step imprinting procedure of inter-penetrating polymer network-type stimuli-responsive hydrogel-adsorbents,Polymer Journal,2003,35(7),545-550.
    [63]Aburto J.,Borgne S L.,Selective adsorption of dibenzothiophene sulfone by an imprinted and stimuli-responsive chitosan hydrogel,Macromolecules,2004,37(8), 2938-2943.
    [64]Aburto J.,Mendez-Orozco A.,Borgne S.L.,Hydrogels as adsorbents of organosulphur compounds currently found in diesel,Chemical Engineering and Processing,2004,43(12),1587-1595.
    [65]Oral E.,Peppas N.A.,Responsive and recognitive hydrogels using star polymers,Journal of Biomedical Materials Research,PartA,2004,68A(3),439-447.
    [66]Watanabe M.,Akahoshi T.,Tabata Y.,etc.,Molecular Specific Swelling Change of Hydrogels in Accordance with the Concentration of Guest Molecules,Journal of the American Chemical Society.1998,120(22),5577-5578.
    [67]Aoki T.,Nishimura T.,Sanui K.,etc.,Phase-transition changes of poly(N-(S)-see-butylacrylamide-co-N-iso-propylacrylamide)in response to amino acids and its chiral recognition,Reactive and Functional Polymers,1998,37(1-3),299-303.
    [68]Aoki T.,Muramatsu M.,Torii T.,etc,Thermosensitive phase transition of an optical active polymer in aqueous milieu,Macromolecules,2001,34(10),3118-3119
    [69]常建华,董绮功,波谱原理及解析,北京,科学出版社,2001年,139
    [70]Daijiro Shiino,Yoshishige Murata,Kazunori Kataoka,etc.,Preparation and characterization of a glucose-responsive insulin-releasing polymer device.Biomatefials,1994,15(2),121-128
    [71]Shigeru Kitano,lssei Hisamitsu,Yoshiyuki Koyama,etc.,Effect of the Incorporation of Amino Groups in a Glucose-responsive Polymer Complex Having Phenylboronic Acid Moieties.Polymers for Advanced Technologies,1991,2(5),261-264
    [72]Tanaka,T.;Fillmore,D.J.J.,Chemical Physics,1979,70,1214.
    [73]Serpe,M.J.,Yarmey,K.A.,Nolan,C.M.,ere.,Biomacromolecules,2005,6,408
    [74]Gao,J.,Hu,Z.B.,Langmuir,2002,18,1360.
    [75]Ve'ronique Lapeyre,Isabelle Gosse,Sylviane Chevreux,etc.,Monodispersed Glucose-Responsive Microgels Operating at Physiological Salinity, Biomacromolecules,2006,7,3356-3363.
    [76]Yongjun Zhang,Ying Guan,Shuiqin Zhou,Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels,Biomacromolecules,2006,7,3196-3201.
    [77]朱颖,郑梁元,葡萄糖敏感型水凝胶纳米粒的制备及理化特性研究,中国药学杂志2005年6月,40(12),918-921.
    [78]董朝霞,林梅钦,李明远,等,光散射技术在研究高分子溶液和凝胶方面的应用,高分子通报,2001年,5,25-33.
    [79]Justin D,Debord L,Andrew Lyon,Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures,Langmuir,2003,19(18),17662-17664.
    [80]Kataoka,K.,Miyaski,H.,Bunya,M.,etc.,Y.J.Am.Chem.Soc.1998,37,12694.
    [81]Erdal Uguzdogan,Emir Baki Denkbas,Ali Tunce,RNA-Sensitive N-Isopropylacrylamide/Vinylphenylboronic Acid Random Copolymer,Macromol.Biosci.2002,2(5),214-222.
    [82]Elmas B.,Send M.A.,Tuncel A.,Temperature controlled RNA isolation by N-isopropylacrylamide-vinylphenyl boronic acid copolymer latex,Colloid Polym Sci,2002,280,1137-1146.
    [83]ElmasB.,OnurM.A.,SenelS.,A.Tuncel,Thermosensitive N-isopropylacryl amide-vinylphenyl boronic acid copolymer latex particles for nucleotide isolation,Colloids and Surfaces A:Physicochem.Eng.Aspects,2004,232,253-259.
    [84]Elmas B.,Senel.S.,Tuncel.A.,Anew thermosensitive fluorescent probe for diol sensing:Poly(N-isopropylacrylarrfide-co-vinylphenylboronic acid)-alizarin red S complex,Reactive & Functional Polymers,2007,67(2),87-96.
    [85]方道斌,郭睿威,哈润华,丙烯酰胺聚合物,北京,化学工业出版社,2006年,171.
    [86]Wu X.,Pelton R.H.,Hamielec A.E.,etc.,The kinetics of pony(N-isopropylacrylamide)microgel latex formation,Colloid Polym.Sci.,1994,272(4),467-477.
    [87]张青松,查刘生,马敬红,梁伯润,N-异丙基丙烯酰胺与丙烯酸叔丁酯共聚合成温敏性微凝胶,华东理工大学学报(自然科学版),2006,32(10),1216-1220.
    [88]Maestas R.R.,Prieto J.R.,Kuehn G.D.,etc.,Polyacrylamide-Boronate Beads Saturated with Biomolecules:A New General Support for Affinity Chromatography of Enzymes,Chromatogr.,1980,189 225-231.
    [89]Shibayama M.,Mizutani S.,Nomura S.,Macromolecules,1996,26,2496.
    [90]Badiger M.V,Llele A.K.,Chemphys,1998,109,1175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700