结构可靠度分析代理模型方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在结构可靠度分析中,代理模型方法由于能够大幅度减少工程分析中繁重计算量,而得到广泛应用,主要包括传统响应面法以及最近发展起来的kriging法和人工神经网络等。这些方法的基本思想是通过建立近似模型得到变量和响应的函数关系,从而代替可靠度分析中的隐式极限状态函数。然而当面对实际工程问题,特别是多维变量的非线性算例进行可靠度分析时仍存在不足,比如精度不高,效率低下等。本文在现有理论的基础上,对结构可靠性分析代理模型方法进行了深入研究,建立了一些计算精度和效率优于传统方法的结构可靠性分析方法。主要研究工作如下:
     (1)对应用统计学中的实验设计理论做了简要介绍,通过对可靠度分析中拟合响应面的常用若干实验设计方法的比较,为传统多项式响应面法提供了实验设计的选取建议。针对多维变量均匀设计的多项式响应面法,分析了由于数据间存在多重相关性,采用普通最小二乘法拟合回归模型时存在的问题,并在已有方法的基础上提出了基于多项式的结构可靠度分析拟线性偏最小二乘响应面法。该方法将均匀设计与偏最小二乘回归技术相结合来近似响应面模型,进行可靠度分析,有效的解决了数据间多重相关性及小样本条件下建立回归模型误差较大的问题。通过算例验证了该方法的适用性,尤其对于多维变量的可靠度问题,与用普通最小二乘拟合的响应面相比,计算结果更加精确。
     (2)针对传统响应面法局限于多项式函数,当面对复杂程度和非线性程度较高的问题时,难以得到满意精度。本文提出基于B样条函数变换和核函数变换的非线性偏最小二乘响应面法进行可靠度分析,其主要思想是将原始输入数据通过非线性的核函数或B样条函数映射到高维特征空间,然后在高维空间内实施偏最小二乘回归建立代理模型,该方法能够充分利用样本空间信息,有效捕捉输入输出间的非线性关系,避免了假定极限状态函数形式对可靠度分析结果产生的影响,并且有效处理了高维空间内数据间存在的多重相关性。算例结果表明,提出的两种方法在精度和效率上均优于传统多项式响应面法。
     (3)针对可靠度分析中广泛应用的kriging方法,在多维问题中精度和效率较低的问题,通过引入函数的梯度信息,提出了相比与kriging方法精度更高的cokriging方法,并通过算例验证其可靠度分析有效性。同时,将可靠度计算中的重要抽样方法与cokriging模拟技术相结合,提出了一种基于cokriging模拟的重要抽样方法。数值算例表明,该方法在与重要抽样法计算精度相当的情况下,能够大幅度减少模拟的样本数,提高计算效率。
     (4)针对神经网络代理模型在求解结构可靠度问题时存在的网络结构难以确定以及参数值选取无理论依据等缺陷,通过引入偏最小二乘技术分别与BP网络和RBF网络相结合,建立基于偏最小二乘和BP网络的混合模型以及偏最小二乘和RBF网络的混合模型,并分别提出以此为代理模型的结构可靠度分析方法。数值算例分析结果表明,本文提出的方法在计算精度和效率方面均优于传统神经网络方法。
Surrogate model methods are widely used in structural reliability to alleviatethe computational burden of engineering analysis at present. Existing methodsinclude the traditional Response Surface Method (RSM) and recently devolopedArtificial Neural Network (ANN) and kriging et al. The basic idea of these methodsis to create approximate models and provide functional relationships between theresponses and variables to replace the implicit limit state function. However, thesemethods are often confronted with kinds of difficulties such as the low accuracy andthe inefficiency for realistic engineering problems, especially in high-dimensionalsystems. Based on the existing methods, this study throughly investigates thesurrogate model methods for structural reliability analysis. Several new methodsthat have the higher accuracy and the improved efficiency when compared with thetraditional methods are proposed. The main work of this study is as follows:
     (1) The experiment design methods in applied statistics are briefly introduced.Suggestions for the selection of experiment design methods in traditional responsesurface method are provided through the comparison of some experiment designmethods for response surface fitting in reliability analysis. For the response surfacemethods of multidimensional variables with the uniform design, the limitation of th eoriginal Least Squares (LS) regression induced by multidimensional correlation ofdata in model fitting is analysized. To deal with the limitation, a new approachcalled quasi-linearal Partial Least Squares (PLS) response surface method based onthe traditional polynomial has been proposed. This method combines the uniformdesign and Partial Least Squares technique to estimate the response surface andperform reliability analysis. It can effectively cope with the multidimensionalcorrelation of data and high error when building the regression model under thecondition of small samples. The results of several examples show that the proposedmethod based on the polynomial functions is suitable for structural reliabilityanalysis and has higher accuracy, especially in the high dimensional problem.
     (2) Due to the restriction of polynomial functions, the traditional responsesurface method cannot attain satisfactory accuracy for multidimensional variablesand high non-linearity problems. This paper presents the partial least squaresnon-linear regression methods based on the B-spline transform and kernel transformsubstitute for the surrogate model for the calculation of reliability, and the main ideais to first map the input space into a high-dimensional feature space via a nonlinearkernel function or a B-spline function, then to apply partial least squares regressionin the feature space, which can make full use of the sample space information and effectively capture the nonlinear relationship between input variables and outputvariables compared to linear partial least square. Thus the methods can not onlyavoid the influence of assuming the type of the limit state function but also handlethe correlation among variables after space transform. Numerical examples indicatethat the accuracy and efficiency of the two proposed methods are both superior tothe traditional response surface method.
     (3) To improve the accuracy and efficiency of the widely used kriging method,especially in multidimensional systems, this paper explores the use of the cokrigingmethod by incorporating the secondary information such as the gradients of thefunction. The improvement of the new method is verified by numerical examples.Then, a simulated importance sampling approach, which combines the importancesampling technique with the cokriging method, is presented for structural reliabilityevaluation. Numerical examples illustrate that the proposed method can greatlydecrease the sample number of Monte Carlo method and improve the efficiency withcomparable accuracy.
     (4) To overcome the flaws of artificial neural network (ANN) such as thedifficulty to determine the network struture and the lack of theoretical basis forparameter seletion, two kinds of hybrid artificial neural networks (HANN)integrating Radial Basis Function (RBF) networks and Back Propagation (BP)networks with partial least square technique respectively are proposed. Then thecorresponding structural reliability analysis methods utilizing the hybrid model asthe surrogate model are presented. The results of the numerical examplesdemonstrate that the proposed methods are superior to the traditional artificialneural networks in terms of accuracy and efficiency.
引文
[1] Joint Committee on Structural Safety. Probabilistic Model Code[M].2001.
    [2] ISO/DIS2394. General principles on reliability for structures[S].1986.
    [3] ISO/DIS2394. General principles on reliability for structures[S].1998.
    [4]《工程结构可靠度设计统一标准》 GB50153-92[S].
    [5] Melchers R E. Structural Reliability Analysis and Prediction[M]. Secondedition. Chichester:John Wiley&Sons Ltd,1999.
    [6]伍清玺.结构可靠度分析及随机有限元—理论、方法、工程应用及程序设计[M].北京:机械工业出版社,2005.
    [7] Ditlevsen O, Madsen H O. Structural Reliability Methods[M]. New York:Johnand Wiley&Sons Ltd,1996
    [8] Schueller G I. On the treatment of uncertainties in structural mechanics andanalysis[J]. Computers&Structures.2007,85(5-6):235-243.
    [9]吕震宙,宋述芳,李洪双,袁修开.结构机构可靠性及可靠性灵敏度分析
    [M].北京:科学出版社,2009.
    [10]赵国藩.工程结构可靠性理论与应用[M].辽宁:大连理工大学出版社,1996.
    [11]秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程应用[M].北京:清华大学出版社,2006:169-173.
    [12]邓建.岩土工程结构可靠度[M].长沙:中南大学出版社,2005.
    [13] Freudenthal A M. The safety of structures[J]. Transactions of AmericanSociety of Civil Engineering.1947,112:125-180.
    [14] Freudenthal A M. Safety and the probability of structural failure[J].Transactions of American Society of Civil Engineering.1956,121:1337-1397.
    [15]张伟,崔维成.结构可靠性计算的直接积分法[J].上海交通大学学报.1997,31(2):114-116.
    [16]贡金鑫,陈晓宝,赵国藩.结构可靠度计算的Gauss-Hermite积分方法[J].上海交通大学学报.2002,36(11):1625-1629.
    [17]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:水利电力出版社,1984.
    [18] Cornell C A. A probability based structural systems[J]. Journal of AmericanConcrete Institute.1969,66(12):974-985.
    [19] Rosenblueth E, Esteva L. Reliability basis for some Mexican codes[S].1972.In: Probabilistics design of reinforced concrete buildings. ACI PublicationSP-31, Detroit, MI,1-41.
    [20] Ditlevsen O. Structural Reliability and the Invariant Problem[R]. ResearchReport No.,22, Solid Mechanics Division, University of Waterloo, Waterloo,Canada,1973.
    [21] Hasofer A M, Lind N C. Exact and invariant second moment code format[J].Journal of the Engineering Mechanics Division.1974,100:111-121.
    [22] Rackwitz R, Fiessler B. Structural reliability under combined random loadsequences[J]. Computers and Stuctures.1978,9:489-494.
    [23] Ditlevsen O. Generalized second moment reliability index[J]. Journal ofStructural Mechanics.1979,7:435-451.
    [24] Chen X, Lind N C. Fast probability integration by three-parameter normal tailapproximation[J]. Structural Safety.1983,1:269-276.
    [25] Wu Y T. New algorithm for structural reliability estimation[J]. Journal ofEngineering Mechanics.1987,113(9):1319~1336.
    [26] Wu Y T. Demonstration of a new fast probability integration method forreliability analysis[J]. Journal of Engineering for Industry, ASME.1987,109:24-28.
    [27] Tihcy M. First-order third-moment reliability method[J]. Structural Safety.1994,16(3):189-200.
    [28] Hohenbichler M, Rackwitz R. First-order concepts in system reliability[J].Structural Safety.1983,1(3):177-188.
    [29] Rackwitz R. Reliability Analysis: A review and some perspectives[J].Structural Safety.2001,23(4):365-395.
    [30] Breitung K. Asymptotic Approximation for Probability Integrals[M]. BerlinHeidelberg: Springer Verlag,1994.
    [31] Breitung K. Asymptotic approximations for multi-normal integrals[J]. Journalof Engineering Mechanics.1984,110(3):357-366.
    [32] Breitung K. Asymptotic approximations for probability integrals[J].Probabilistic Engineering Mechanics.1989,4(4):187-190.
    [33] Breitung K. Probability approximations by log likelihood maximization[J].Journal of Engineering Mechanics.1991,117(3):457~477.
    [34] Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R. New light onfirst-and-second-order reliability methods[J]. Structural Safety.1987,4:267-284.
    [35] Polidori D C, Beck J L, Papadimitriou C. New approximations for reliabilityintegrals[J]. Journal of Engineering Mechanics.1999,125(4):466-475.
    [36] Hong H P. Simple approximations for improving second order reliabilityestimates[J]. Journal of Engineering Mechanics.1999,125(5):592-595.
    [37] Tvedt L. Two second order approximations to the failure probability. DetNorske Veritas, RDIV/20-004-83.1983.
    [38] Cai G Q, Elishakoff I. Refined second order reliability analysis[J]. StructuralSafety.1994,14:267-276.
    [39] Koyluoglu H U, Nielsen S R. New approximations for SORM integrals[J].Structural Safety.1994,13:235-246.
    [40] Zhao Y G, Ono T. New approximations for SORM: part1[J]. Journal ofEngineering Mechanics.1999,125(1):79-85.
    [41] Zhao Y G, One T. Third-moment standardization for structural reliabilityanalysis[J]. Journal of Structural Engineering.2000,126(6):724-732.
    [42] Zhao Y G, Ono T. Moment methods for structural reliability[J]. StructuralSafety.2001,23(1):47-75.
    [43] Zhao Y G, One T. On the problems of the fourth moment method[J]. StructuralSafety.2004,26:343-347.
    [44] Zhao Y G, Lu Z H. Fourth-moment standardization for structural reliabilityassessment[J]. Journal of Structural Engineering.2007,133(7):916-924.
    [45] Der Kiureghian A, Lin H Z, Hwang S J. Second-order reliabilityapproximations[J]. Journal of Engineering Mechanics.1987,113(8):1208-1225.
    [46] Der Kiureghian A, De Stefano M. Efficient algorithm for second orderreliability analysis[J]. Journal of Engineering Mechanics.1991,117(12):2904-2923.
    [47]姚继涛,赵国藩,浦聿修.二维标准正态联合概率的计算[J].建筑结构学报,1996,17(4):10-19.
    [48] Shinozuka M. Basic analvsis of structural safety[J]. Journal of StructuralEngineering.1983,109(3):721-740.
    [49] Liu P L, Der Kiureghian A. Optimization algorithms for structural reliability[J].Structural Safety.1991,9:161-177.
    [50] Tandjiria V, Teh C I, Low B K. Reliability analysis of laterally loaded pilesusing response surface methods [J]. Structural Safety.2000,22(4):335-355.
    [51] Stevenson J, Moses F. Reliability analysis of frame structures[J]. Journal ofStructural Division.1970,96:2409-2427.
    [52] Guenard Y F. Application of system reliability analysis to offshorestructures[R]. Report No.71, John A. Blume Earthquake Engineering Center,Stanford University, California, USA,1984.
    [53] Moses F. New directions and research needs in system reliability research[J].Structural Safety.1990,7:93-100.
    [54] Moses F, Stahl B. Reliability analysis format for offshore structures[J].Journal of Petroleum Technology.1979,40:347-354.
    [55] Moses F, Rashedi M R. The application of syetem reliability to structuralsafety[C]. The4th International Conference on Applications of Statistics andProbability in Soil and Structural Englineering, Italy,1983.
    [56] Moses F. System reliability developments in structural engineering[J].Structural Safety.1982,1:3-13.
    [57] Feng Y S. Enumerating siginificant failure modes of a structural system byusing criterion methods[J]. Computer&Structure.1988,30(5):1153-1157.
    [58]董聪,冯元生.枚举结构主要失效模式的一种新方法[J].西北工业大学学报.1991,9(3):284-289.
    [59]董聪,杨庆雄.冗余桁架结构系统可靠性分析理论与算法[J].计算结构力学及其应用.1992,9(4):393-398.
    [60] Murotsu Y. Reliability analysis of trusss structures using matrix method[J].Journal of Mechanical Design.1980,102(4).
    [61] Tang L K, Melchers R E. Improved approximation for multi-normal integral[J].Structural Safety.1987,4:81-93.
    [62] Thoft-Christensen P. Calculation of failure probabilities of ductile structuresby the-unzipping method[C]. Institute of Building Technology andStructural Engineering, The University of Aalborg,1982.
    [63]董聪,现代结构系统可靠性理论及其应用[M].北京:科学出版社.2001.
    [64] Bennett R M. Reliability analysis frame structures with brittle components[J].Structural Safety.1985,2:281-290.
    [65] Bennett R M, Ang A H. Formulation of structural system reliability[J]. Journalof Engineering Mechanics.1986,112(11):1135-1151.
    [66] Cornell C A. Bounds on the reliability of structural systems[J]. Journal of theStructural Division.1967,93(ST1):171-200.
    [67] Ang A H, Amin M. Reliability of structures and structural syestems[J]. Journalof Engineering Mechanics Divison.1968,94:671-691.
    [68] Ditlevsen O. Narrow reliability bounds for structural systems[J]. Journal ofStructural Mechanics.1979,7(4):453-472.
    [69] Greig G L. An assessment of high-order bounds for structural reliability[J].Structural Safety.1992,11:213-225.
    [70] Zhang Y C. Higher-order reliability bounds for series systems and applicationto structural systems[J]. Computer&Structure.1993,46(2):381-386.
    [71] Ramachandran K. System reliability bounds: a new look with improvements[J].Civil Engineering and Environmental Systems.2004,21(4):265-278.
    [72] Harbitz A. An efficient sampling method for probability of failurecalculation[J]. Structural Safety.1986,3:109-115.
    [73] Schu ller G I, Stix R. A critical appraisal of methods to determine failureprobabilities[J]. Structural Safety.1987,4(4):293-309.
    [74] Fu G, Moses F. Importance sampling in structural system reliability[C].Procedings of the5th ASCE Specialty Conference on Probabilistic Methods inCivil Engineering, Blacksburg, Virginia,1988.
    [75] Fu G, Moses F. Multimodal simulation method for system reliabilityanalysis[J], Journal of Engineering Mechanics.1993,119(6):1173-1179.
    [76] Melchers R E. Importance sampling in structural systems[J]. Structural Safety.1989,6:3-10.
    [77] Ibrahim Y. Observations on applications of Importance sampling in structuralreliability analysis[J]. Structural Safety.1991,9(4):269-281.
    [78] Fujita M, Rackwitz R. Updating first-and second-order reliability estimates byimportance sampling[J]. Structural Engineering/Earthquake Engineering.1998,5(1):53-59.
    [79] Schueller G I, Pradlwarter H J, Koutsourelakis P S. A comaparative study ofreliability estimation procedures for hign dimensions[C].16th ASCEEngineering Mechanics Conference, University of Washington, Seattle,2003.
    [80] Bucher C G. Adaptive sampling-an iterative fast Monte Carlo procedure[J].Strural Safety.1988,5:119-126.
    [81] Karamchandani A K. New method in system reliability[D]. PhD Dissertationof Stanford University. Supervisor: Cornell C A,1990.
    [82] Ang G L, Ang A H, Tang W H. Optimal importance sampling densityestimator[J]. ournal of Engineering Mechanics.1992,6:1146-1163.
    [83] Ang G L. Kernel method in Monte Carlo importance sampling[D]. PhDDissertation of University of Illinois at Urbana-Champaign. Supervisor: Ang AH,1991.
    [84] Wang G S. Adaptive kernel method of importance sampling[D]. PhDDissertation of University of California, Irvine. Supervisor: Ang A H,1993.
    [85] Au S K, Beck J L. A new adaptive importance sampling scheme for reliabilitycalculations[J]. Structural Safety.1999,21(2):135-158.
    [86] Ditlevsen O, Bjerager P. Plastic reliability analysis by directional simulation[J].Journal of Engineering Mechanics.1989,115(6):1347-1362.
    [87] Melchers R E. Radial importance sampling for structural reliability[J]. Journalof Engineering Mechanics.1990,116(1):189-203.
    [88] Nie J, Ellingwood B R. Directional methods for structural reliabilityanalysis[J]. Structural Safety.2000,22(3):233-249.
    [89] Nie J, Ellingwood B R. A new directional simulation method for systemreliability. part: application of deterministic point sets[J]. ProbabilisticEngineering Mechanics.2004,19(4):425-436.
    [90] Olsson A, Sandberg G E, Dahlblom O. On latin hypercube sampling forstructural reliability analysis[J]. Structural Safety.2003,25(1):47-68.
    [91] Huntington D E, Lyrintzis C S. Improvements and Limitations of latinhypercube sampling[J]. Probabilistic Engineering Mechanics.1998,13(4):245-253.
    [92] Olsson A, Sandberg G E. Latin hypercube sampling for stochastic finiteelement analysis[J]. Journal of Engineering Mechanics.2002,128(1):121-125.
    [93] Au S K, Beck J L. First excursion probabilities for linear systems by efficientimportance sampling[J]. Probabilistic Engineering Mechanics.2001,16(3):193-207.
    [94] Au S K, Ching J, Beck J L. Application of subset simulation methods toreliability benchmark problems[J]. Structural Safety.2007,29(3):183-193.
    [95] Ching J, Au S K, Beck J L. Reliability estimation for dynamical systemssubjected to stochastic excitation using subset simulation with splitting[J].Computer Methods in Applied Mechanics and Engineering.2005,12(16):1557-1579.
    [96] Ching J, Beck J L, Au S K. Hybrid subset simulation method for reliabilityestimation of dynamical systems subjected to stochastic excitation[J].Probabilistic Engineering Mechanics.2005,20(3):199-214.
    [97] Schu ller G I, Pradlwarter H J, Koutsourelakis P S. A Critical Appraisal ofReliability Estimation Procedures for High Dimensions. ProbabilisticEngineering Mechanics.2004,19(4):463-474.
    [98] Pradlwarter H J, Schu ller G I, Koutsourelakis P S. Application of linesampling simulation method to reliability benchmark problems[J]. StructuralSafety.2007,29(3):208-221.
    [99] Schu ller G I, Pradlwarter H J. Benchmark study on reliability estimation inhigher dimensions of structural systems–an overview[J]. Structural Safety.2007,29(3):167-182.
    [100]彭泽.结构可靠度Metamodel方法研究[D].武汉:中南大学硕士学位论文,2010.
    [101] Quesada M G. Topics in the optimization of response surface and parameterdesign problems[D]. PhD Dissertation of the Pennsylvania State University.Supervisor: Castilo E D,2003.
    [102] Wong S F. Uncertainties in dynamic soil-structure interaction[J]. Journal ofEngineering Mechanics.1984,110(2):308-324.
    [103] Wong F S. First-order second-moment methods[J]. Computers and Structures.1985,20(4):779-791.
    [104] Faravelli L. Response surface approach for reliability analysis[J]. Journal ofEngineering Mechanics.1989,115(12):2763-2781.
    [105] Schueller G I. On efficient computational schemes to calculate structuralfailure probabilities[J]. Probabilistic Engineering Mechanics.1989,4(1):10-18.
    [106] Bucher C G, Bourgund U. A fast and efficient response surface approach forstructural reliability problems[J]. Structural Safety,1990,7:57-66.
    [107] Rajashekher M R, Ellingwood B R. A new look at the response surfaceapproach for reliability analysis[J]. Structural Safety,1993,12:205-220.
    [108] Liu Y W, Moses F. A sequential response surface method and its application inthe reliability analysis of aircraft structural system[J]. Structural Safety,1994,16:39-46.
    [109] Kim S H, Na S W. Response surface method using vector projected samplingpoints[J]. Structural Safety,1997,19(1):3-19.
    [110] Zheng Y, Das P K. Improved response surface method and its application tostiffened plate reliability analysis[J]. Engineering Structures,2000,22(5):544-551.
    [111] Yu L, Das P K, Zheng Y. Stepwise response surface method and its applicationin reliability analysis of ship hull structure[J]. Transactions of the ASME,2002,124:226-230.
    [112] Guan X L, Melchers R E. Effect of response surface parameter variation onstructural reliability estimates[J]. Structural Safety,2001,23(4):429-444.
    [113] Gayton N, Bourinet J M, Lemaire M. CQ2RS: A new statistical approach tothe response surface method for reliability analysis[J]. Structural Safety,2003,25(1):99-121.
    [114] Guan X L, Melchers R E. Multiplane surface method for reliability analysis[C].Proc. Of13th Australasian Conference on the Mechanics of Structures andMaterials, Wollongong, Australia,1993.
    [115] Guan X L, Melchers R E. Multitangent-Plane surface method for reliabilitycalculation[J]. Journal of Engineering Mechanics,1997,113(10):996-1002.
    [116] Katsuki S, Frangopol D M. Hyperspace division method for structuralreliability[J]. Journal of Engineering Mechanics,1994,120(11):2405-2427.
    [117] Rais-Rohani M, Singh M N. Comparison of global and local response surfacetechniques in reliability-based optimization of composite structures[J]. Structmultidisc Optim.2004,26:333-345.
    [118] Wong S M, Hobbs R E, Onof C. An adaptive response surface method forreliability analysis of structures with multiple loading sequences[J]. StructuralSafety.2005,27(4):287-308.
    [119] Duprat F, Sellier A. Probabilistic approach to corrosion risk due to carbonationvia an adaptive response surface method[J]. Probabilistic EngineeringMechanics,2006,21(3):207-216.
    [120] Lee S H, Kwak B M. Response surface augmented moment method forefficient reliability analysis[J]. Structural Safety,2006,28(3):261-272.
    [121] Gavin H P, Yau S C. High-order limit state functions in the response surfacemethod for structural reliability anslysis[J]. Structural Safety,2008,30:162-179.
    [122] Kaymaz I, McMahon C A. A response surface method based on weightedregression for structural reliability Analysis[J]. Probabilistic EngineeringMechanics,2005,20(1):11-17.
    [123] Nguyen X S, Sellier A, Duprat F. Adaptive response surface method based on adouble weighted regression technique[J]. Probabilistic Engineering Mechanics,2009,24(2):135-143.
    [124] Breitkopf P, Naceur H, Rassineux A. Moving least squares response surfaceapproximation: Formulation and metal forming applications[J]. Computers&Structures.2005,83:1411-1428.
    [125] Kang S C, Koh H M, Choo J F. An efficient response surface method usingmoving least squares approximation for structural reliability analysis[J].Probabilistic Engineering Mechanics.2010,25(4):365-371.
    [126] Krige D G. A statistical approach to some basic mine valuation problems onthe witwatersrand[J]. Journal of the Chemical, Metallurgical and MiningSociety of South Africa.1951,52:119-139.
    [127] Sacks J, Schiller S B, Welch W J. Design for computer experiment[J].Technometrics.1989,31(1):41-47.
    [128] Kaymaz I. Application of krging method to structural reliability problems[J].Structural Safety,2005,27(2):133-151.
    [129]张琦,李兴斯.基于kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):176-179.
    [130]谢延敏,于沪平,陈军.基于Kriging模型的可靠度计算[J].上海交通大学学报,2007,41(2):177-180.
    [131] Gomes H M, Awruch A M. Comparison of response surface and neuralnetwork with other methods for structural reliability analysis[J]. StructuralSafety,2004,26(1):49-67.
    [132] Deng J, Gu D S, Li X B. Structural reliability analysis for implicitperformance functions using artificial neural network[J]. Structural Safety,2005,27(1):25-48.
    [133] Deng J. Structural reliability analysis for implicit performance functions usingradial basis function network[J]. Int. J. of Solids and Structures,2006,43:3255-3291.
    [134] Schueremans L, Gemert D V. Benefit of splines and neural networks insimulation based structural reliability analysis[J]. Structural Safety,2005,27(3):246-261.
    [135] Nie J, Ellingwood B R. A new directional simulation method for systemreliability. part2: application of neural networks[J]. Probabilistic EngineeringMechanics,2004,19(4):437~447.
    [136] Elhewy A H, Mesbahi E, Pu Y. Reliability analysis of structures using neuralnetwork method[J]. Probabilistic Engineering Mechanics,2006,21(1):44-53.
    [137] Zhang J, Foschi R O. Performance-based design and seismic reliabilityanalysis using designed experiments and neural networks[J]. ProbabilisticEngineering Mechanics,2004,19(3):259-267.
    [138] Hurtado J E. An examination of methods for approximating implicit limit statefunctions from the viewpoint of statistical learning theory[J]. Structural Safety,2004,26(3):271~293.
    [139] Hurtado J E. Analysis of one-dimensional stochastic finite element usingneural networks[J]. Probabilistic Engineering Mechanics.2002,17(1):35~44.
    [140] Hurtado J E, Alvarez D A. Neural-network-based reliability analysis: acomparative study[J]. Computer Methods in Applied Mechanics andEngineering.2001,191:113~132.
    [141]闫宏生.基于神经网络响应面的结构可靠性分析方法研究[J].海洋工程,2002,20:1-6.
    [142]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用[J].计算力学学报,2002,19(2):217-221.
    [143]桂劲松,康海贵.计算结构可靠度的RBF神经网络响应面法研究[J].海洋工程,2004,22(3):81-85.
    [144]桂劲松,康海贵.结构可靠度分析的全局响应面法研究[J].建筑结构学报,2004,25(4):100-105.
    [145] Gui J, Liu H and Kang H. An intelligent method for structural reliabilityanalysis based on response surface[J]. China Ocean Engineering.2004,18(4):653-661.
    [146]潘丽军,陈锦权.实验设计与数据处理[M].南京:东南大学出版社,2008.
    [147] Douglas C. Design and Analysis of Experiments[M],6th Edition. JohnWily&Sons,2005.
    [148] Box GEP, Wilson B. On the experimental attainment of optimum conditions [J].Journal of the Royal Statistical Society,1951,13(1):1-45.
    [149]方开泰.均匀设计——数论方法在实验设计的应用[J].应用数学学报,1980,3(4):363-372.
    [150]王元.均匀设计——一种试验设计方法[J].科学,1994,5:20-22.
    [151]吕大刚,贾明明,李刚.结构可靠度分析的均匀设计响应面法[J].工程力学.2011,28(7):109-116.
    [152]向昌盛,周子英,张林峰.基于均匀设计的最小二乘支持向量机改进算法[J].计算机仿真.2011,28(3):194-197.
    [153] Mckay M D, Beckman R J, Conover W J. A comparison of three methods forselecting values of input variables in the analysis of output from a computercode[J]. Technometrics,1979(21):239-245.
    [154]王惠文.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社,2006:35-38.
    [155] Wold Herman. Partial Least Squares[M]. Encyclopedia of Statistica Sciences,New York: John Wiley,1985:581-591.
    [156] De Jong. SIMPLS: An alternative approach to partial least squaresregression[J]. Chemometrics and Intelligent Laboratory Systems,1993,18:251-263.
    [157] Trygg J, Wold S. Orthogonalized projections to latent structures[J].Chemometrics and Intelligent Laboratory Systems,2001,58:156-164.
    [158] Yoon H B, Chang K Y. Nonlinear PLS modeling with fuzzy inferencesystem[J]. Chemometrics and Intelligent Laboratory Systems,2003,64:137-155.
    [159]李寿安,张恒喜.一种基于主元选择的偏最小二乘回归方法[J].计算机工程,2005,31(16):7-9.
    [160]王惠文.偏最小二乘回归方法及应用[M].北京:国防工业出版社,1999:67-88.
    [161] Chen F H, Wang X F. Quadratic b-spline curve interpolation[J]. Computers&Mathematics with Applications.2001,41:39-50.
    [162] Tim G, Doug H. Refinable multivariate spline functions[J]. Studies inComputational Mathematics.2006,12:55-83.
    [163] Cao J, Wang G Z. The structure of uniform B-spline curves with parameters[J].Progress in Natural Science.2008,18:303-308.
    [164] Schueremans L, Gemert D V. Benefit of splines and neural networks insimulation based structural reliability analysis[J]. Structural Safety.2005,27(3):246-261.
    [165] Gijbels I. Inference for nonsmooth regression curves and surfaces usingkernel-based methods[J]. Recent Advances and Trends in NonparametricStatistics.2003:183-201.
    [166] Kang K H, Koo J Y, Park C W. Kernel estimation of discontinuous regressionfunctions[J].2000,47:277-285.
    [167] Oliver L. Yield curve estimation by kernel smoothing methods[J]. Journal ofEconometrics.2001,105:185-223.
    [168] Matheron G. Principles of geostatistics[J]. Economic Geology.1963,58:1246-1266.
    [169] Lophaven S N, Nielsen H B and Sonderdergaard J. DACE, a Matlab krigingtoolbox,2003.
    [170] Simpson T W, Mauery T M, Korte J J, et al. Comparison of response surfaceand kriging models for multidisciplinary design optimization[C].7thAIAA/USAF/NASA/ISSMO Symp. on multidisciplinary analysis andoptimization (St. Louis: MI). AIAA-98-4755,1998.
    [171] Giunta A, Watson L T, Koehler J A. Comparison of approximation modelingtechniques: polynomial versus interpolating models[C].7thAIAA/USAF/NASA/ISSMO Symp. on multidisciplinary analysis andoptimization (St. Louis: MI). AIAA-98-4758,1998.
    [172] Sakata A, Ashida F, Zako M. Structural optimization using krigingapproximation[J]. J. Comput. Meth. Appl. Mech. Eng.2003,192:923–39.
    [173] Sakata A, Ashida F, Zako M. An efficient algorithm for kriging approximationand optimization with large scale sampling data[J]. J.Comput. Meth. Appl.Mech. Eng.2004,193:385–404.
    [174] Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliabilitymethod combining kriging and Monte Carlo simulation[J]. Structural Safety,2011,33:145-154.
    [175] Martin J D. Robust kriging models[C].51st AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference. Orlando, Florida,2010.
    [176] Zhao L, Choi K K, Lee I. A metamodeling method using dynamic kriging andsequential sampling[C].13th AIAA/ISSMO Multidisciplinary AnalysisOptimization Conference. Fort Worth, Texas,2010.
    [177] Liu W Y. Gradient-enhanced response surface approximations using krigingmodels[C].9th AIAA/ISSMO Symp. on Multidisciplinary Analysis andOptimization. Atlanta, Georgia,2002.
    [178] Chung H S, Alonso J J. Design of a low-boom supersonic business jet usingcokriging approximation models[C].9th AIAA/ISSMO Symp. onMultidisciplinary Analysis and Optimization,2002.
    [179] Chung H S, Alonso J J. Using gradients to construct cokriging approximationmodels for high dimensional design optimization problems[C].40th AerospaceScience Meeting and Exhibit,2002.
    [180] Laurenceau J. Building efficient response surfaces of aerodynamic functionswith kriging and cokriging[J]. AIAA,2008,46(2):498-507.
    [181] Brown J M, Grandhi R V. Probabilistic gradient kriging to efficiently predictfailure probability conffidence intervals[C].49th AIAA/ASME/ASCE/ASCStructures, Structural Dynamics, and Materials Conference. Schaumburg,Illinois,2008.
    [182]姜绍飞,张春丽,钟善桐. BP网络模型的改进方法探讨[J].哈尔滨建筑大学学报,2000,33(5):57~60.
    [183]李杰,韩正之.神经网络的学习误差函数及泛化能力[J].控制与决策,2000,1:95-97.
    [184]郝培锋,肖文栋,祝刚,徐心和.关于BP网络结构问题的研究[J].控制与决策,2001,5:
    [185] Fabri S G, Kadirkamanathan V. Dynamic structure neural networks for stableadaptive control of nonlinear systems[J]. IEEE Trans. on Neural Networks.1996,7(5):1151-1167.
    [186]张明.结构可靠度分析方法与程序[M].北京:科学出版社,2009.
    [187] Karayiannis N B. Reformulated radial basis neural networks trained bygradient descent[J]. IEEE Trans. on Neural Networks.1999,10(3):657~671.
    [188] Elanayar Y T, Shin Y C. Radial basis function neural network forapproximation and estimation of nonlinear stochastic dynamic systems[J].IEEE Trans. on Neural Networks.1994,5(5):594-603.
    [189] Chen S. Nonlinear time series modeling and prediction using gaussian RBFnetworks with enhanced crusting and RLS learning[J]. Electronics Letters.1995,31(2):117-118.
    [190]黄靓,易建伟,汪优.基于RBF神经网络的结构可靠度分析方法[J].湘潭大学自然科学学报.2006,28(4):109~114.
    [191]沙丽荣.基于正交基神经网络的结构可靠性分析[D].吉林大学.2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700