侵蚀环境下盾构隧道结构性能全寿命计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:城市轨道交通盾构隧道结构设计寿命为100年,其岩土赋存条件复杂、周边环境敏感、列车运行密度极高,在外界环境长期作用下结构性能不断劣化,一旦损坏不易或不可更换,同时也给结构性能状态评估及预测控制带来了极大的困难。我国城市轨道交通盾构隧道建设正处于飞速发展阶段,面临的健康服役问题日益突出,如何准确评价和预测其结构性能,保证全寿命周期内的良好服役状态,是当前亟需开展系统研究的基础科学问题之一。
     本文以国家重点基础研究发展计划项目(973:2011CB013802)等课题为依托,针对侵蚀环境下盾构隧道结构性能全寿命计算方法这一科学问题,采用理论推导分析和人工环境模拟试验等手段开展研究,以期为我国城市轨道交通盾构隧道建设的合理设计和科学维护提供理论指导。论文主要完成了以下研究内容:
     (1)构建了以人工环境模拟试验为基础的环境时间相似理论,从方法上提出了解决人工环境和自然环境混凝土耐久性试验结果相关性的基本思路。建立了盾构隧道结构混凝土耐久性设计和寿命预计方法,并拓展至半概率基础设计领域。
     (2)设计研发了环境和荷载耦合作用下的盾构隧道结构耐久性试验系统,并进行了人工环境模拟试验。探明了环境离子浓度、侵蚀时间和荷载水平对氯离子入侵及其在混凝土中含量分布的影响规律。
     (3)基于单轴荷载作用下混凝土微观孔隙的变化,建立和推导了荷载对氯离子入侵影响的分析模型和表征函数。通过数值拟合得到了环境离子浓度和侵蚀时间对扩散系数及表面氯离子浓度的影响规律。建立了环境与荷载耦合作用下的盾构隧道结构混凝土耐久性评价模型及计算方法。
     (4)根据钢筋锈蚀层分布模式,分别建立了均匀侵蚀和单向均匀侵蚀两种条件下的平面应变力学模型,并基于厚壁圆筒理论,推导出了钢筋锈胀应力场和位移场的计算公式,据此提出了钢筋锈胀压力的计算方法。
     (5)建立了基于极限分析理论的管片混凝土开裂钢筋锈蚀临界率分析模型和计算方法。引入钢筋锈蚀速率函数,进一步建立了均匀侵蚀和单向均匀侵蚀条件下,混凝土锈胀裂损的全寿命演化方程,形成了基于混凝土钢筋锈胀裂损的盾构隧道结构正常使用寿命预计方法体系。
     (6)从管片接头的传力性质出发,通过接头局部范围截面力学参数的等效换算,将非连续的管片结构转化为连续的非均质结构,建立了一种新的盾构隧道管片结构计算模型——非均质等效梁模型,推导得到了接头截面等效力学参数的解析解,并给出了迭代计算流程和进行了实例验证。
     (7)研究提出了盾构隧道管片接头截面和主截面弯矩的联合失效模式及失效准则。建立了基于增量法的管片结构极限承载能力计算方法。进一步引入钢筋锈蚀率时程函数和锈蚀钢筋力学性能时变演化方程,构建了环境和荷载耦合作用下的盾构隧道结构承载能力评估和安全性寿命预计方法。
     (8)依据试验成果和参考既有研究成果,进行了实例计算和工程应用。验证了本文提出的侵蚀环境盾构隧道结构性能全寿命计算方法是可靠的,且具有较强的可操作性;非均质等效梁模型,能够较好地反映接头的存在对管片结构整体刚度的影响,计算结果可靠,且具有良好的收敛性。
Abstract:The designed life of shield tunnel structure in urban rail transit is100a, its occurrence condition and neighbour environements are complex and sensitive, also the train's transporting density is high, so it is not easy to change of not once it is destroyed because of the structure decayed with the external environments action for long term, meanwhile it brings great difficult to condition acessement and prediction control of structure performance. The shield tunnel construction of urban rail transit in China, the problem of healthy service is increasingly prominent. In that, how to evaluate and predict the structure performance well and turely for ensuring well service state in its life cycle, is one of the basic scientific problems for researching urgingly.
     In this thesis, the calculation methods for calculating the life cycle structure performance of shield tunnel in aggresive environments were studied by means of theoretical derivation, artificial environment simulation testing and other ways, relying on the subjects supported by the National Basic Research Program of China (973:2011CB013802) and so on. And the results may provide a theory reference for the rational design and scientific maintenance of urban rail transit construction.Thesis completed the following contents:
     (1) The environment-time similarity theory was established based on indoor artificial environment simulation test, which has solved the correlation problem of indoor environment and field exposure test results. And then, the methods of durability design and life prediction of shield tunnel structure were put forwad, also it was extended to half probabilistic design method further.
     (2) The shield tunnel segment concrete durability test system coupling with erosion environment and structure load was developed. And then, the influence laws of environments ion concentration, erosion time and loading level against to the chlorine ion intrusion and distribution were discussed and proved according to the test results.
     (3) Based on the microstructure characteristics of concrete under uniaxial load, an analyzing model of chlorine ion intrusion were established and the calculating expressions were derived out. By using the numerical simulation method, the influence laws of environments ion concentration, corrosion time aginst to surface chloride concentration and diffusion coefficient were obtained. And then, the durability evaluation model and calculation method of sheld tunnel structure under the coupled action of erosion environments and structure loads were put forward.
     (4) According to the rust modes, two linear elastic plane strain models of uniform erosion and unidirectional uniform erosion were established respectively, and then, based on the thick-walled cylinder analysis theory, the calculating formulas of corroded expansion stress and displacement field were derived out, and the specific calculation method used to determine the pressure of corroded expansion were obtained.
     (5) The analysis model and calculation methods of rebar corrosion rate when the segment concrete cracking, were put forward by using the limit analysis theory. And then, the life-cycle evolution equation of shield tunnel structure with rebar corrosive crack damage under the uniform and unidirectional uniform corrosion, were put forward further. Finally, the normal service life prediction method and system of shield tunnel structure under rebar erosin and concrete crack were formed.
     (6) Proceeding from the transmission properties of segment joint, the discontinuous segment structure is transformed into a continuous non-homogeneous structure through mechanical parameters equivalent conversion at the joint local scope section, a new structure calculation model of shield tunnel named non-homogeneous equivalent beam model was established, and the analytical solutions about connector section equivalent mechanical parameters were derived. Finally, the iterative calculation process was given out.
     (7) A failure modes combaning by joint cross-section and the main bending moment of shield tunnel segment and the failure criterias were proposed respectively, and the calculation method of ultimate bearing capacity of shield tunnel segment structure was established based on the incremental method. Further, the bearing capacity evaluation method and safety lifetime forecasting method of shield tunnel structure coupled by the erosion environment and structure load were constructed, in which the time-varied functions of rebar corrosion rate and its mechanical properties after corroded were introduced.
     (8) According to the the test results and refer to the experimental data reported in existing documents, a case was calculated and analyzed as an example. The results indicate that the calculation methods of life cycle strcuctre performance of shield tunnel, advanced in this thesis, under coupling action of aggressive environments and structure loads is reliable, and has well maneuverability; the non-homogeneous equivalent beam model can better reflect the impact of the existence of joint aginst to the overall stiffness of segment structure, its calculation results are reliable, and has good convergence.
引文
[1]成华.城市轨道交通近期建设时序研究[D].成都:西南交通大学,2010.
    [2]刘丰军.盾构法隧道预应力衬砌设计理论及方法研究[D].上海:同济大学,2007.
    [3]同济大学.城市轨道交通地下结构性能演化与感控基础理论[R].973计划项目申请书,2011.
    [4]雷明锋,彭立敏,丁祖德,等.隧道结构全寿命设计理论研究进展[J].现代隧道技术,2010,(增):32-37.
    [5]叶文华.桥梁全寿命设计有关问题探讨[J].世界桥梁,2008,(1):76-80.
    [6]吴培峰,陈艾荣.基于全寿命设计理念的某长江通道桥概念设计[J].桥梁建设,2007,(6):42-46.
    [7]Frangopol D M. Life-cycle-cost analysis for bridges [M]//Frangopol D M. Bridge Safety and Reliability. Reston:ASCE,1999:210-236.
    [8]Kong J S, Frangopol D M. Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges[J]. J Struct Engng,2003,129(6):818.
    [9]Hawk H. NCHRP report 483:Bridge life cycle cost analysis (BLCCA)[R]. Washigton D C:Transportation Research Board,2003.
    [10]Das P C. Prioritization of bridge maintenance needs[M]//Frangopol D M.Case studies in optimal design and maintenance planning of civil infrastructure systems. Reston:ASCE,1999:26-44.
    [11]vail Ncortwijk J M, Frangopol D M. Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures[J]. Probabilistic Engineering Mechanics,2004,19:345.
    [12]Furuta H. Life-cycle cost based maintenance of infrastructure systems considering prediction uncertainties[M]//Frangopol D M, Furuta H, Life-cycle cost analysis and design of civil infrastructure systems, Reston:ASCE,2001: 120-129.
    [13]马军海,陈艾荣,贺君.桥梁全寿命设计总体框架研究[Jr].同济大学学报(自然科学版),2007,35(80):1003-1008.
    [14]黄侨.桥梁的全寿命设计理论[J].中国公路,2007,(23):71-72.
    [15]洪乃丰.钢筋混凝土基础设施的腐蚀与全寿命经济分析[J].建筑技术,2002,33(4):254-258.
    [16]洪乃丰.氯盐环境中混凝土耐久性与全寿命经济分析[J].混凝土,2005,(8):29-34.
    [17]郭琦,贺拴海.基于全寿命理念的公路桥梁钢结构抗疲劳设计[J].郑州大学学报(工学版),2007,38(3):33-37.
    [18]Freas,G. Craig,etc. Precast prestressed underground fuel storage tanks in Adak [J]. ALASKA, Journal of the Prestressed Concrete Institute,1985,30:52-63.
    [19]Rollin J, Lepers J, Benard P. Laying and operating problems arising with underground HV and EHV cables[J]. Revue Generale de l'Electricite,1974,83: 45-56.
    [20]Schoppel, Klaus Stenzel, Gerhard. Rules for designing underground car parks in reinforced concrete[J]. Betonund Stahlbetonbau,2003,98:111-122.
    [21]Hironaga, Michihiko, et al. Establishment of a method for evaluating the long-term water-tighness durability of underground concrete structures taking into account of some deteriorations[R]. Proceedings of the Japan Society of Civil Engineers,1994:63-72.
    [22]Kawai T, et al. Dock Construction work using newly developed high quality underwater concrete[R]. Papers for the International Conference on Concrete in the Marine Environment,1986,257-267.
    [23]James A N, Edworthy K J. Effects of Water Interactions on Engineering Structures[J]. Hydrological Sciences Journal,30:395-406.
    [24]Su Nan, et al. Effect of wash water and underground water on properties of concrete[J]. Cement and Concrete Research,2002,32:777-782.
    [25]Lomax Rob. Cathodic protection system protects underground reservoir[J]. Water and Wastewater International,2002,17:23-29.
    [26]Mogilevskaya S E. Questions of Creep and Lasting Strength of Clay Soils in Connection with Pressure on Foundation Walls[C]//Compiled and Distributed by the NTIS, U.S. Department of Commerce,1964.
    [27]Escalante E. Corrosion Testing in Soil[C]//Compiled and Distributed by the NTIS, U.S. Department of Commerce. Pub. in Metals Handbook,1987,13:208-211.
    [28]Clarke, William J. Performance Characteristics of Microfine Cement[J]. Preprints-1984 ASCE Convention.
    [29]Suprenant, Bruce A. Serviceability and Durability of Construction Materials[C]// Proceedings of the First Materials Engineering Congress. Part 2 (of 2),1990: 593-1364.
    [30]Barry D L. Material Durability in Aggressive Ground[J]. Foreign technology, 1983.
    [31]Park, Young-Shik, et al. Strength deterioration of high strength concrete in sulfate environment[J]. Cement and Concrete Research,1999,29:1397-1402.
    [32]Imbe, Masahiro, et al. Monitoring and analysis of implemented infiltration system over past 20 years[R]. Proceedings of the Ninth International Conference on:Urban Drainage,2002:1-13.
    [33]马孝轩,等.硅酸盐材料在地下耐久性试验研究[J].混凝土与水泥制品,1995,(4):8-11.
    [34]刘宗光.软土地层中钢筋混凝土排水管道结构的纵向变形及其耐久性研究[D].上海:同济大学,2002.
    [35]孙富学,梁本亮.隧道衬砌结构耐久性寿命影响因素敏感性分析[J].地下空间与工程学报,2006,(2):214-216+220.
    [36]孙富学,荣耀.隧道衬砌结构耐久寿命预测研究[J].地下空间与工程学报,2006,(3):358-360.
    [37]孙钧.海底隧道耐久性/服务寿命设计预测研究[A].首届地下工程服务寿命国际专题研讨会报告[R].上海,2006
    [38]蔺安林、周晓军.地铁迷流对混凝土中钢筋的腐蚀及混凝土强度影响的试验研究[Jr].世界隧道,1999,(6):1-8.
    [39]周晓军,高波.地铁杂散电流分布及其对衬砌结构耐久性的影响[J_].西部探矿工程,1999,11(6):31-39.
    [40]赵宇辉.地铁杂散电流腐蚀及其对隧道结构可靠度与耐久性的影响[D].成都:西南交通大学,2006.
    [41]黄慷.水底盾构隧道结构的耐久性及可靠度设计的理论与方法[D].上海:同济大学,2004.
    [42]黄慷,杨林德.崇明越江盾构隧道工程耐久性失效风险研究[J].现代隧道技术,2004,(2):8-13.
    [43]杜应吉.地铁工程混凝土耐久性研究与寿命预测[D].南京:河海大学,2003.
    [44]招国忠,谭忠盛.龙头山隧道衬砌结构耐久性试验分析[J].混凝土,2007,(9):107-109.
    [45]申禄坤.影响隧道衬砌结构耐久性的主要因素[J].四川建筑,2007,(1):100-101.
    [46]孙钧.崇明长江隧道盾构管片衬砌结构的耐久性设计[J].建筑科学与工程学报,2008,25(1):1-9.
    [47]Smolczyk, N K. Proceedings of 5th International Symposiumon Chemistry of Cement[A]. Tokyo,1968,3:343-368.
    [48]Gonzalez J A, Fe liu S, R odriguez. Some Questions onthe Corrosion of Steel in Concrete 2 Part I:When, How and How much Steel Corrodes[J]. Materials and Structures,1996,29 (3):40-46.
    [49]Bazant. Physical model for steel corrosion in concrete sea structures application [J]. Journal of the Structural Division,1979, (6):1155-166.
    [50]Hausmannl A K. Ghosh, Yasuhiro Mori, S Ramanujam. Model for cover cracking due to rebar corrosion in RC structures[J]. Engineering Structures,2006,28 (6): 1093-1109.
    [51]Maage H Rose, George A Matzkanin. Improved Access to Corrosion Research Will Reduce Total Ownership Costs[J]. The AMPTIAC Quarterly,2003,4 (7): 67-88.
    [52]Thomas M D A. Chloride thresholds in marine concrete[J]. Cement and Concrete Research,1996,4 (4):513-519.
    [53]Alonso C. Chloride threshold values to depassivate reinforcing bar embedded in a standard OPC motar [J]. Cementand Concrete Research,2000,30 (7):1047-1055.
    [54]Moris W Vico A. Chloride induced corrosion of reinforcedsteel evaluated by concrete resistivity measurements[J]. Electrochimica Acta,2004,49 (10):4447-4453.
    [55]Morinaga S. Prediction of service lives of reinforced concrete buildings based on the rate of corrosion[R]. Institute of Technology Shimuzu Corporation,1988, Special Report No.23.
    [56]Funahashi M. Investigations on the Influence of Oxygen on Corrosion of Steel in Concrete 2 Part Ⅰ[J]. Materials and Structures,1997,29 (5):226-232.
    [57]Shigeru Morinagu. Prediction of service lives of reinforced concrete building based on rate of corrosion of reinforcing steel[M], SHIMIZU Corpration,1986.
    [58]Swamy R N, Hamada H, Laiw J C. A critical evaluation of choride penetration into concrete in marine environment[A].//Internation Syposium on the Corrosion and Corrosion Protection of Reinforcement, Shielfild University, ed. R N Swamy,1994.
    [59]蒋之峰,何肇弘.钢筋混凝土建筑物劣化诊断技术规程及说明[R].冶金部建筑研究总院建筑技术情报研究室,1987.
    [60]朱安民.混凝土碳化与钢筋混凝土耐久性,混凝土[Jr].1992(6):18-22.
    [61]李明顺.坚持科研促使混凝土结构设计规范水平跻身世界先进行列[J].工程建设标准化,1997(1):88-96.
    [62]龚洛书,刘春圃.混凝土的耐久性及其防护修补[M].中国建筑工业出版社,北京,1990.
    [63]张誉,蒋利学等.混凝土结构耐久性概论[M].上海科学技术出版社,2003
    [64]邸小坛,周燕.混凝土碳化规律研究[A].中国建筑科学研究院,1995.
    [65]牛荻涛.混凝土结构耐久性与寿命预测[M].科学出版社,2003年第一版
    [66]王建强.地铁隧道衬砌结构钢筋锈蚀及耐久性研究[D].西安:长安大学,2009.
    [67]王娴明.一般大气条件下钢筋混凝土构件剩余寿命预测[J].建筑结构学报,1996,(3):58-61.
    [68]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法[D].北京:清华大学,1995.
    [69]李积平,潘德强等.海工高性能混凝土抗氯离子侵蚀耐久性寿命预测[A].土建结构工程的安全性与耐久性,北京,2001.
    [70]孙伟,余洪发.混凝土结构工程的耐久性与寿命研究进展,土建结构工程的安全性与耐久性[A].北京,2001.
    [71]金伟良,袁迎曙,卫军,等.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京:科学出版社,2011.
    [72]Chan H Y, Melchers R E. Time-dependent resistance deterioration in probabilistic structure systems[J]. Civil Engineering,1995,12:115-132.
    [73]陈朝辉,卢有杰,刘西拉.服役结构抗震维修决策[A].//现有混凝土结构耐久性评估年度研究报告[R].清华大学土木系,1995.
    [74]Tao Zongwei, Corotis Ross B, Ellis J Hugh. Reliability-based structure design with Markov decision process[J]. Journal of Structure Engineering,1995,121 (6):971-980.
    [75]武振国,常翔,叶飞.盾构隧道结构设计模型概述[J].隧道建设,2008,28(2):182-185.
    [76]Hudoba. Contribution to static analysis of load-bearing concrete tunnel lining built by shield-driven technology[J]. Tunnelling and Underground Space Technology,1997,12(1):55-58.
    [77]覃维祖.混凝土结构耐久性的整体论[J].建筑技术,2003,30(1):19-22.
    [78]邓敏,唐明述.混凝土的耐久性与建筑业的可持续发展[J].混凝土,1999,(2):8-12.
    [79]Mehta P K. Fifth year's progress[C]//Durability of Concrete 2nd International Conference, Montreal,1991:1-31.
    [80]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [81]张友红,曹勇,陈晓斌.氯盐侵蚀隧道结构寿命预测及耐久性技术研究[J].湖南交通科技,2009,35(3):151-155.
    [82]周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [83]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [84]陈肇元.土建结构的安全性与耐久性[M].北京:中国建筑工业出版社,2003.
    [85]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [86]龚晓南.工程安全性与耐久性[C]//中国土木工程学会第九届年会论文集.北京:中国水利水电出版社,2000.
    [87]Ho D W S, Chirgwin G J. A performance specification for durable concrete[J]. Construction and Building Materials,1996,10(5):375-379.
    [88]Mather B. Concrete durability [J]. Cement and Concrete Composites,2004,26 (1): 3-4.
    [89]邸小坛,周燕.混凝土结构的耐久性设计方法[J].建筑科学,1997,(1):16-20.
    [90]ISO 2394,结构可靠性总原则[S].陈定外译.北京:中国建筑工业出版社,1997.
    [91]WD 1382, General principles on the design of structures for durability[S].2005.
    [92]GB 50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,1995.
    [93]邸小坛,周燕,顾红祥.WD 13823的概念与结构耐久性设计方法研讨[C]//第四届混凝土结构耐久性科技论坛论文集“混凝土结构耐久性设计与评估方法”.北京:机械工业出版社,2006.
    [94]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003,34(5):328-333.
    [95]LIFECON. General technical handbook for a predictive life cycle management system of concrete structures (LMS)[R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainablility,2003.
    [96]田俊峰,王胜年,黄君哲,等.海港工程耐久性设计与寿命预测[J].中国港湾建设,2004,133(6):1-3+44.
    [97]王涛,朴香兰,朱慎林.高等传递过程原理[M].北京:化学工业出版社,2005.
    [98]姚诗伟.氯离子扩散理论[J]..港工技术与管理,2003,(5):1-4.
    [99]Collepardi M Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concrete[J]. Journal of the American Ceramic Society,1972,55(10): 534-535.
    [100]Zhang T W, Odd E G Diffusion behavior of chloride ions in concrete[J]. Cement and Concrete Research,1996,26(6):907-917.
    [101]LIFECON. Service life model:instructions on methodology and application of models for the prediction of the residual service life for classified environment loads and types of structures in Europe[R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainablility,2003.
    [102]陈伟,许宏发.考虑干湿交替影响的氯离子侵入混凝土模型[J].和尔滨工业大学学报,2006,38(12):2191-2193.
    [103]de Rincon O T, Castro P, Moreno E I, et al. Chloride profiles in two marine structures-Meaning and some predictions[J]. Building and Environment,2004, 39(9):1065-1070.
    [104]Stephen I A, Dwayne A J, Matthew AM, et al. Predicting the service life of concrete marine structures:An environmental methodology[J]. ACI Structure Journal,1998,95(2):205-214.
    [105]Uji K, Matsuoka, Maruya Y. Formulation of an equation for surface chloride content of concrete due to permeation of chloride[J]. Corrosion of Reinforcement in Concrete, Cement and Concrete Research,1998:258-267.
    [106]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004.
    [107]Thmidajski P J, Chan G W. Boltzmann-Matano analysis of chloride diffusion into blended cement concrete[J]. Journal of Materials in Civil Engineering, 1996,8(4):195-200.
    [108]Dhir P K, Jones M R, Ng S I D. Prediction of total chloride content of concrete profile and concentration/time-dependent diffusion coefficients for concrete[J]. Magazine of Concrete Research,1998,50(1):37-48.
    [109]B Assouli, F Simescu, G Debicki, et al. Detection and identification of concrete cracking during corrosion of reinforced concrete by acoustic emission coupled to the electrochemical techniques[J]. NDT&E International,2005, (38): 682-689.
    [110]姬永生.钢筋混凝土的全寿命过程与预计[M].北京:中国铁道出版社,2011.
    [111]刘志勇.基于环境的海洋混凝土耐久性试验与寿命预测研究[D].杭州:东南大学,2006.
    [112]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [113]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007.
    [114]Michael T, Allan S, Ted B, et al. Performance of slag concrete in a marine environment[J]. ACI Materials Journal,2008,105(6):628-634.
    [115]Nilsson L O. Models for chloride ingress into concrete-from collepardi to today[C]//Jin W L, Ueda T, Basheer P A M. Advances in Concrete Structural Durability, Hangzhou,2008.
    [116]DuraCrete. General guidelines for durability design and redesign[R]. Probabilistic Performance Based Durability Design of Concrete Structure, 2000.
    [117]Life-365. Computer program for predicting the service life and life cycle coast of RC exposed to chloride[R]. Version 3.0.0,2006.
    [118]CCES01-2004,混凝土结构耐久性设计与施工指南[S].北京:中国建筑工业出版社,2005.
    [119]GB50086-2001,建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2002.
    [120]徐芝纶.弹性力学简明教程(第3版)[M].北京:高等教育出版社,2002.
    [121]Dagher H J, Kulendran S. Finite element modeling of corrosion damage in concrete structures[J]. ACI Structural Journal,1995,89(6):1179-1190.
    [122]Youping Liu, Richard E Weyers. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal, 1998,95(6):675-680.
    [123]Molina F J, Andrade C. Cover cracking as a function of rebar corrosion:Part 2-Numercial model[J]. Materials and Structures,1993,26(163):532-548.
    [124]R Piltner, Paulo J M Monteiro. Stress analysis of expansive reactions in concrete[J]. Cement and Concrete Research,2000,30:843-848.
    [125]王军强.钢筋锈蚀产物膨胀在混凝土中产生的应力分析[J.].建筑技术开发,2002,29(1):7-9+20.
    [126]金伟良,赵羽习,鄢飞.钢筋混凝土构件的俊秀钢筋锈胀力的机理研究[J].水力学报,2001,(07):57-62.
    [127]王光钦.弹性力学理论概要与典型题解[M].成都:西南交通大学出版社,2009.
    [128]Andrade C, Alonso C, Monlia F J. Cover cracking as a function of rebar corrosion:Part Ⅰ-Experimental Test[J]. Material and Structures,1993, 26(163):453-464.
    [129]Alonso C, Andrade C, Rodriguez J, et al. Factors controlling cracking of concrete affected reinforcement corrosion[J]. Material and Structures,1998,31 (211):435-441.
    [130]Rasheeduzzafar, Al-Sandom S S. Corrosion cracking in relation to bar diameter, cover and concrete quality[J]. Journal of Materials in Civil Engineering,1992, 4(4):327-342.
    [131]Cabera J G. Deterioration of concrete due to reinforcement steel corrosion[J]. Cement and Concrete Composites,1996,18:47-59.
    [132]李海波,鄢飞,赵羽习,等.钢筋混凝土结构开裂时刻的钢筋锈胀力模型[J].浙江大学学报,2000,34(4):415-422.
    [133]潘振华,牛荻涛,王庆霖.钢筋开裂锈蚀条件的试验研究[J].工业建筑,1999,29(5):46-49.
    [134]丁威,崔国惠.钢筋锈蚀引起混凝土保护层初裂时间的推定研究[J].施工技术,2000,29(5):19-20.
    [135]Morinaga S. Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel[A]//Durability of building materials and components[C]. Proceedings of the 5th international conference helded in Brighton, UK,1990.
    [136]Mcleish A. Cracking due to corrosion[J]. Taywood Engineering,1986, Technical Note No.1632.
    [137]Williamson S J, Clark L A. Pressure required to cause cover cracking of concrete due to reinforcement corrosion[J]. Magazine of Concrete Research, 2000,52(6):455-467.
    [138]Allan M I. Probability of corrosion induced cracking in reinforced concrete[J]. Cement and Concrete Research,1995,25(6):1179-1190.
    [139]Bazant Z P, et al. Physical model for steel corrosion in concrete sea structures application[J]. ASCE Journal of Structure Division,1997,105(6):1155-1166.
    [140]淡丹辉,王庆霖.钢筋混凝土结构锈胀裂缝的计算模拟[J].西安交通大学学报,2000,35(5):484-487.
    [141]Hansen E J, Saoma V E. Numerical simulation of reinforced concrete deterioration:.Part Ⅱ-Steel corrosion and concrete cracking[J]. ACI Materials Journal,1999,96(3):331-338.
    [142]Noghabai K. FE-Modelling of cover splitting due to corrosion by use of inner softening band[J]. Materials and Structures,1999,32:486-491.
    [143]Bazant Z P, et al. Physical model for steel corrosion in concrete sea structures theory[J]. ASCE Journal of Structure Division,1997,105(6):1137-1153.
    [144]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法[D].北京:清华大学,1995.
    [145]牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,26(4):8-10+62.
    [146]牛荻涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测[J_].工业建筑,1996,26(4):11-13.
    [147]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].上海:同济大学,1999.
    [148]P S Mangat, B T Mollo. Prediction of long term chloride concentration in concrete[J]. Materials and Structure,1994,27(170):338-346.
    [149]Maage M, Helland S, Poulsen E, et al. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal, 1996,93(6):602-608.
    [150]James R. Clifton. Predicting the service life of concrete[J]. ACI Materials Journal,1993,90(6):33-35.
    [151]Mili Funahashi. Predicting corrosion-free service life of a concrete structure in a chloride environment[J]. ACI Materials Journal,1990,87(6):581-587.
    [152]Eric J Hansen, Victor E Saouma. Numerical simulation of reinforced concrete deterioration:chloride diffusion[J]. ACI Materials Journal,1999,96(2):173-180.
    [153]V G Papadakis, G G Vagenas, M N Fardis. Physical and chemical characteristics affecting the durability of concrete[J]. ACI Materials Journal, 1991,88(2):186-196.
    [154]Macdonald D D, Mckubre M C H, Urquidi-Macdonald M. Corrosion.1988,44: 2.
    [155]朱伟译.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2011.
    [156]郭瑞,何川,苏宗贤.盾构隧道管片接头抗剪力学性能研究[M].现代隧道技术,2011,48(4):72-77.
    [157]刘鸿文.材料力学[M].北京:高等教育出版社,2004.
    [158]东南大学,天津大学,同济大学.混凝土结构设计原理[M].北京:中国建筑工业出版社,2007.
    [159]黄钟晖.盾构法隧道管片衬砌纵缝接头受力模型的研究[J].地下空间,2003,23(3):296-301.
    [160]Teodor Iftimie. Design considerations and testing in shield-driven tunnels[A]// Towards New Worlds in Tunneling. Balkema Rotterdam,1992.
    [161]Teodor Iftimine. Prefabricated Lining, Conceptional analysis and comparative studies for optional solution[A]//Abdel Salam, ed. Tunnelling and Ground Conditions,1994.
    [162]黄钟晖.盾构法隧道错缝拼装衬砌受力机理研究[D].上海:同济大学,2001.
    [163]黄建明.盾构管片计算模型的选择[J].铁道建筑,2004,(6):29-31.
    [164]施成华,雷明锋,彭立敏.隧道衬砌结构体系可靠度研究[J].铁道科学与工程学报,2010,7(4):20-24.
    [165]彭立敏.隧道火灾后衬砌结构力学特性与损伤机理研究[D].长沙:长沙铁道学院,2000.
    [166]彭立敏,刘小兵,韩玉华.隧道火灾后衬砌承载能力的可靠度评估方法[J].中国铁道科学,1998,19(4):88-94.
    [167]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构,2002,33(10):14-17.
    [168]惠云玲,李荣,林志坤,等.混凝土基本构件钢筋锈蚀后性能试验研究[J_].工业建筑,1997,27(6):14-18.
    [169]GB 50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [170]田瑞华,颜桂云,孙炳南.锈蚀钢筋混凝土构件抗剪承载力的试验研究与理论分析[J].四川建筑科学研究,2003,29(3):36-38.
    [171]金伟良,赵羽习.锈蚀箍筋混凝土梁的抗剪承载力分析[J.].浙江大学学报(工学版),2008,42(1):19-24.
    [172]金伟良,赵羽习.锈蚀箍筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11.
    [173]刘曙光,余红发,江大虎,等.盾构隧道混凝土管片的承载能力退化模型[J].混凝土,2012,(7):108-113.
    [174]黄正荣,朱伟,梁精华,秦建设.盾构法隧道开挖面极限支护力研究[J].土木工程学报,2006,39(10):112-116.
    [175]GB/T 50476-2008,混凝土结构耐久性设计规范[S].北京:中国建筑工业出版社,2008.
    [176]林宝玉,蔡跃波.海工钢筋混凝土耐久性室内与现场长期暴露试验研究[A].//金伟良,赵羽习.混凝土结构耐久性设计与评估方法[C].第四届混凝土结构耐久性科技论坛文集,北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700