氟铃脲悬浮剂加工原理及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对氟铃脲悬浮剂进行了配方筛选,并对该悬浮剂的形成稳定机理和不同因素对其流变性的影响进行了系统研究,同时对不同助剂加工的氟铃脲制剂的活性进行了比较。
     在测定不同种类分散剂HLB值和流点基础上,对粒径、粘度、表面张力等进行全面测定和比较,确定MOTAS和NNO为加工氟铃脲悬浮剂的优良分散剂,其最佳用量在3%左右。同时对增稠剂、防冻剂、消泡剂等进行了系统筛选,最后确定20%氟铃脲悬浮剂型优选配方为:氟铃脲20%;润湿分散剂(NNO或者MOTAS)2.5-3%;增稠剂黄原胶0.2%;防冻剂乙二醇2%;消泡剂:0.1%;水补足。
     根据上述配方分别加工成20%氟铃脲悬浮剂,其性能均达到常规农药悬浮剂所要求的控制指标,但从贮存前后粒径、悬浮率、析水率、粘度等指标的变化结果看,以MOTAS作为分散剂加工的20%氟铃脲悬浮剂的性能优于以NNO作为分散剂加工的20%氟铃脲悬浮剂。
     在氟铃脲悬浮剂加工的基础上,测定了两种分散剂在氟铃脲颗粒表面吸附方面的差异,探讨氟铃脲悬浮剂的形成和稳定机理,结果表明:氢键是分散剂分子与氟铃脲表面结合的重要作用力,且聚羧酸类分散剂MOTAS比萘磺酸类分散剂NNO的氢键力作用更加明显。随着分散剂分子量的增大,两种分散剂在氟铃脲表面的饱和吸附量分别增大,但NNO分散剂在氟铃脲表面的饱和吸附量比MOTAS明显偏小,两者的饱和吸附量分别为4.623mg.g-1、5.943mg.g-1。从吸附状态来看,两种分散剂在氟铃脲表面的吸附状态介于垂直与水平之间,属于弯曲状的多点吸附,其中NNO分散剂更接近水平状态。MOTAS、NNO作为阴离子表面活性剂吸附在氟铃脲颗粒表面,增大了氟铃脲颗粒的负电性,其中吸附了MOTAS电位明显高于吸附了NNO的电位,MOTAS产生的静电斥力明显大于NNO产生的静电斥力。NNO在氟铃脲表面达到吸附平衡的时间较MOTAS在氟铃脲表面达到吸附平衡的时间短,吸附速率快。MOTAS在氟铃脲表面的吸附层厚度为8.00nm,大于NNO在氟铃脲表面的吸附层厚度5.97nm,MOTAS在氟铃脲悬浮剂中产生的空间位阻明显大于NNO产生的空间位阻。分散剂吸附在氟铃脲颗粒表面后,由于分散剂的分子带有较强的负电荷,并且与水分子的氢键作用力较强,在分散剂吸附膜层外又形成水化膜,氟铃脲颗粒未吸附和吸附分散剂NNO、MOTAS后,形成水化膜的束缚水含量分别为1.99%、4.92%、7.12%,产生较大的空间位阻作用,也是使氟铃脲颗粒在水悬浮剂中保持稳定的因素之一。由上述原因,以MOTAS为湿润分散剂加工的氟铃脲水悬浮剂稳定性优于以NNO为湿润悬浮剂加工的氟铃脲水悬浮剂稳定性。
     通过采用五种流变模型对采用NNO、MOTAS分散剂制备农药悬浮剂的流变曲线进行拟合,最终确定用拟合相关系数R2最高的Herschel-Bulkley流变模型对实验中制备的农药悬浮剂的流变曲线进行拟合,研究了氟铃脲含量、分散剂种类用量、电解质种类用量、水的PH值等对氟铃脲悬浮剂的流变特性影响。对MOTAS和NNO分散剂制备的氟铃脲悬浮剂来讲,具有明显的“剪切变稀”特征,随着分散剂分子量的增大,屈服值降低,流动行为指数增大。在氟铃脲悬浮剂中,随着黄原胶含量的增加,粘度增加,屈服值τH变大,流动行为指数n变小,假塑性现象越来越明显,是良好的结构调节剂。
     冷贮和热贮两种贮存方式都能够使悬浮剂的粘度提高,但用MOTAS分散剂加工的氟铃脲悬浮剂变化小,其屈服值和流动行为指数基本稳定,而用NNO分散剂加工的氟铃脲悬浮剂变化较大,其屈服值和流动行为指数均明显增加,尤其是热贮后变成胀塑性流体。随着常温贮存天数增加,氟铃脲悬浮剂粘度逐渐增加,屈服值τH逐渐变大,流动行为指数n也逐渐变大。其中用NNO分散剂加工的氟铃脲悬浮剂变化较用MOTAS分散剂的变化大。
     植物叶面的性质、农药药液的性质及农药药液喷洒到植物叶面后与植物叶面形成的固、液、气三相的界面性质都将影响药液的持留效果。根据靶标临界表面张力的大小,可以预测不同表面张力的药液在植物靶标上的润湿、铺展状况,本试验测定了试验用甘蓝和棉花叶片的临界表面张力,其值分别为35.4mN/m、63.7mN/m。甘蓝叶面属于较难润湿的植物叶面,悬浮剂和乳油药液在80-100mg/L时即达到了最大持留,再增加浓度,持留量虽然有小幅增加,但增加幅度有限。棉花叶面属于较容易润湿的植物叶面,悬浮剂和乳油药液在40-60mg/L时即达到了最大的持留,再增加浓度,悬浮剂药液持留量仍然有小幅度增加,但增加不明显,而乳油药液在80mg/L时叶片持留量开始下降。药液的浓度并非越大越好,适当的浓度才能实现理想的持留。否则,将造成药液的流失,持留量下降。
     室内夹毒法测定氟铃脲不同剂型对小菜蛾三龄幼虫和棉大卷叶蛾三龄幼虫毒力基本没有差异,说明加工助剂没有引起氟铃脲毒力的变化,浸渍虫体法的毒力测定结果显示,乳油的毒力略高于悬浮剂的毒力,浸渍叶片法的毒力测定结果显示,悬浮剂药液浸渍甘蓝叶片对小菜蛾三龄幼虫的毒力略低于于乳油药液浸渍甘蓝叶片对小菜蛾三龄幼虫的毒力,悬浮剂药液浸渍棉花叶片对棉大卷叶螟三龄幼虫的毒力显著高于乳油药液浸渍棉花叶片对小菜蛾三龄幼虫的毒力,上述测定结果与药液在作物叶面的持留量呈正相关。
     因此,药剂加工时,不宜片面追求表面张力的降低,应该根据作物和防治对象进行适当选择。一般来讲,接触角越小,药液在植物叶面上的持留就会越好。但如果接触角过小,就会造成药液在植物叶面上的过于展开和润湿,形成过薄的药膜而流失,反而会减小持留。
The pesticide formulations of hexaflumuron SC was selected ,and dispersion stabilization mechanism of the suspension, rheological behaviors of the system impacted by different factors were studied, and the activities of hexaflumuron agents with different additives were compared in this paper.
     Based on traditional selecting methods of suspension dispersants, particle size ,viseosity and surface tension of different dispersants were determined, and MOTAS and NNO were employed as excellent dispersants for hexaflumuron SC.The optimum amount of dispersants was around 3%. Moreover, thickening agent,Defoamer and antifreeze glycol were detected. The optimal formulations of hexaflumuron SC was as follow: hexaflumuron 20%,wetting dispersing agent (NNO or MOTAS) 2.5-3%, thickening agent xanthan gum 0.2%, antifreeze glycol 2%, Defoamer 0.1%, fill water to 100%.
     The product in all respects conformed to the requirements for a suspension concentrate. But Hexaflumuron SC processed with MOTAS had better property than that with NNO based on analysis in size, suspension rates, analysis of water rates,viscosity, and other indicators.
     Adsorption Characteristics of the two types of dispersants on the surfaces of hexaflumuron particles were determinated respectively,and the dispersion stabilization mechanism of the suspension was didcussed. The results showed that hydrogen bond was the main acting force between dispersant molecules and the surface of hexaflumuron, and the force of the hydrogen bonds of polycarboxylic acid type dispersing agent MOTAS was significantly higher than naphthalene sulfonic acid type dispersing agent NNO. The saturation adsorption amount of two dispersants increased respectively with increasing the vdispersants molecular weight, and the saturation adsorption amount of NNO on the hexaflumuron surface was lower than that of MOTAS obviously, 4.623mg.g-1 and 5.943mg.g-1 respectively. The adsorption conformation of the two types of dispersants on hexaflumuron surface were between trains and tails, dispersing agent NNO was closer to trains conformation. The negative of hexaflumuron particles was increased after adsorption MOTAS and NNO, and the potential of particles adsorption MOTAS was significantly higher than that NNO, and the electrostatic repulsion between MOTAS and hexaflumuron particles was significantly higher. The surface adsorption equilibrium time of NNO was shorter,and the adsorption rate was more rapidly. The adsorption layer thickness of MOTAS on the hexaflumuron surface was 8.00nm, greater than that 5.97nm of NNO. Because of a strong negative charge after adsorbed dispersant on the hexaflumuron surface and the strong hydrogen bonds, the hydration membrane was formated in the outer layer, Bound Water of hydration membrane with NNO , MOTAS and without these was 4.92%, 7.12%, 1.99% respectively, thus the high stability of the suspension was attributed to the electrostatic repulsion synergistically and the steric interactions. Therefore, the dispersion stability of hexaflumuron SC with MOTAS was higher than that with NNO.
     The rheological behaviors of hexaflumuron suspension were studied. The five rheological model were used to the curve fitting of the hexaflumuron suspension with NNO and MOTAS. The Herschel-Bulkley rheological model which was highest correlation coefficient R2 was determined to fit the rheological curve of pesticide SC. The effects on the rheological behavior of suspensions were studied, such as the content of hexaflumuron, the type and the content of dispersant dosage, the type of electrolyte, the pH value of water, and so on. The“shear-thinning”behavior were obvious in terms of hexaflumuron SC both with MOTAS and NNO. With the molecular weight of dispersant increasing, the yield values decreased, and the flow behavior index increased.With the content of xanthan gum increasing, the viscosity increased, the yield valueτH increased, the flow behavior index n decreased, and the pseudoplastic phenomenona was more obvious, and xanthan gum was structural adjustment.
     The viscosity of suspensions were increased through cold and thermal storage. The viscosity of hexaflumuron SC with MOTAS dispersant changed slightly, and its yield value and flow behavior index were almost maintains stable, but the viscosity of hexaflumuron SC with NNO dispersant changed significantly. in particularly, its yield and flow behavior index values were significantly increased, and it tend to bulging plastic fluid after thermal storage . The viscosity, the yield valueτH and the flow behavior index n of hexaflumuron SC were gradually bigger with the increasing the days stored at room temperature. The hexaflumuron SC with NNO dispersant were significant variations compared with MOTAS.
     The nature of plant leaves, pesticides liquid and the nature of the interface that pesticide liquid spraying to plants and plant leaf formation of solid, liquid, gas would influence the effects of the retention of liquid. According to the target critical surface tension, the wetting, spreading situation of the different of surface tension of the liquid on the targets would be predicted. The critical surface tension of the cabbage and cotton leaves tested in this research, the value were 35.4mN/m, 63.7mN/m respectively. The cabbage leaf surface which difficult to be wet, the maximum retention would obtain at 80-100mg/L liquid of hexaflumuron SC or EC, and then the concentration increasing, the quantity of retention was slightly increasing, but limited. The cotton leaf surface which more easy to wet, the maximum retention would obtain at 40-60mg/L solution of hexaflumuron SC or EC, and then the concentration increasing, the SC quantity of retention increased slightly, but the EC liquid retention declined. Therefor, the desired retention was attributed to appropriate concentration of the preparation, otherwise , the fluid would be loss, and the retention decrease..
     There was no difference in toxicity by testing the diamondback moth (Plutella xylostella) 3rd larvae and the cotton leaf roller (Syllepta derogata) 3rd larvae with three different formulations of hexaflumuron useing the leaf sandwich test, the results illustrated that the processing aids had no difference in toxicity among the formulations. The results of the dipping insects body test showed that the toxicity of hexaflumuron EC was slightly higher than hexaflumuron SC, and the toxicity of hexaflumuron SC is slightly lower than that of hexaflumuron EC for the diamondback moth (Plutella xylostella) 3rd larvae with the dipping cabbage leaf test, but the toxicity of hexaflumuron SC was significant higher than that of hexaflumuron EC with the dipping cotton leaf test for Syllepta derogata 3rd larvae, the above-mentioned results showed that there was positively correlated between the toxicity and the volume of fluid retention on plant leaf.
     Therefore, the appropriate selection of the liquid surface tension should be selected based on the crops and the control object of pesticide formulation processing, but not only reducd the liquid surface tension. The optimum liquid surface tension was slightly lower than the critical surface tension, the surface tension was too high, the liquid was difficultly to be wetted and spread on the target, and liquid had a serious loss; but the surface tension was too low, the liquid on the target was easy to expand and wet, the thinner film formated and the loss of liquid increased.
引文
1. HG/T 2467.5- 2003.《农药悬浮剂产品标准编写规范》[S].国家发展和改革委员会,2004
    2. Tadros T F.农药胶悬剂物理稳定性的控制和评定(周奎南摘译)[J].农药工业译丛,1980,6:7~12.
    3.戴奋奋,袁会珠.植保机械与施药技术规范化.北京:中国农业科学技术出版社,2002
    4.戴奋奋.简论我国施药技术的发展趋势。植物保护,2004,30(4),5-8
    5.丁彬主编.最新农药助剂性能质量控制与品种优化选择及应用技术实用手册[M].吉林省出版发行集团,2004.
    6.董元彦等.物理化学.科学出版社,1998.
    7.傅泽田,祁力钧.国内外农药使用现状及解决农药超量使用问题的途径.农业工程学报,1998,14(2):7-l2
    8.高德霖.农药悬浮剂的物理稳定性问题[J].江苏化工,1997,10,25(5):1-5
    9.顾中言,许小龙。我国农药应用技术现状、发展趋势和需解决的关键问题江苏农药, 2001(2):9-11
    10.郭武棣编.液体制剂[M].农药剂型加工丛书(第三版).北京:化学工业出版社,2004.1
    11.华乃震.2002表面活性剂技术经济文集(9)[C]大连:“精细与专用化学品编辑都,2002:186-191.
    12.华乃震.农药剂型的进展和动向(中)[J].2008,47(3):157-161
    13.华乃震.农药悬浮剂的进展、前景和加工技术[J].现代农药.2007,6(1):l-7.
    14.华南农业大学主编。植物化学保护(第二版)[M].北京:农业出版杜,1990
    15.黄启良,李干佐,张文吉等.高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶[J].中国农业科学.2006,39(6):1173-1178
    16.今井正芳,齐振华.农药新剂型[J].农药译丛,1991:13(5):34—4-4.
    17.梁文平,郑斐能,王仪等,21世纪农药发展的趋势:绿色农药与绿色农药制剂[J].农药.1999,38(9):l-2.
    18.凌世海.农药剂型进展评述.农药,1998,38(8):6~9.
    19.凌世海.浅谈我国农药水性化剂型的开发[J].安徽化工,2005(1):2-6.
    20.凌世海.农药剂型加工工业现状和发展建议[J].安徽化工,2001,118(4):2~5.
    21.凌世海.农药剂型加工工业现状和发展趋势[J]。安徽化工. 2006(3):3-9.
    22.凌世海.我国农药加工工业现状和发展建议[J].农药.1999,38(10):19-24
    23.刘步林主编.农药剂型加工技术[M]北京:化学工业出版社,1998:30
    24.刘明.流悬剂及其加工技术[J]中国化工信息,1987,1:6 13
    25.刘占山,任新国,李旭君等。农药悬浮剂研究现状[J].农药科学与管理。2007,28(11):45-48
    26.路福绥,刘军,薛刚,盛锋.50%复方多菌灵悬浮剂的流变特性研究[J].农药,1999,12(38):11-12.
    27.路福绥,刘军,薛刚.铜高尚悬浮剂的流变特性研究[J].农药,2000,39(6):19~20.
    28.路福绥.农药水悬浮剂的研究开发。农化新世纪,2007:(1):14-16
    29.路福绥.农药悬浮剂的物理稳定性[J].农药, 2000,39(10),8-10
    30.路福绥.农药悬浮剂的物理稳定性.农药.2000,39(10):8-10
    31.明亮娄远来。国内外农药剂型研究进展及发展方向.江苏农业科学,2007(6):102-105
    32.农业部、国家林业局、国家质量监督检验检疫总局.“十一五”国家科技支撑计划项目“农林重大生物灾害防控技术研究”课题申报指南,2006年10月。
    33.倪鹏农药-LDHs纳米杂化物-农药微乳液复合体系研究[D].山东大学,2008
    34.潘立刚,陶岭梅,张兴.农药悬浮剂研究进展[J].植物保护,2005,31(2):17—20.
    35.沙家骏,张敏恒等编.国外新农药品种手册[M].北京:化学工业出版杜,1993:123
    36.邵振润,郭永旺。我国施药机械与施药技术现状及对策。植物保护第2006、32(2):5-8、
    37.邵振润,赵清.更新药械改进技术努力提高农药利用率[J].中国植保导刊,2004,(1):36-38.
    38.沈阳化工研究院.氟铃脲生产可行性报告[M].1998
    39.唐大江.氟铃脲乳油对棉花药害的调查[J].安徽农学通报, 2006,12(2):12-16
    40. Jules P. Pesticide Use and the Environment[A].Jules P.The Pesticide Detox -Towards a sustainable agriulture[M].Earthscan Publications,2005.1一15.
    41.屠豫钦.农药使用技术标准化.北京:中国标准出版社,2001。160-189
    42.屠豫钦等.农药应用工艺学导论.北京:化学工业出版社,2006。
    43.屠豫钦等.我国农药的有效利用率与农药的负面影响问题。2003、25(6):1-4
    44.王彦华,王鸣华,张久双.农药剂型发展概况.农药, 2007,46(5):300-304
    45.王勇,张文革,张宗俭.水基性农药新剂型技术的进展及展望[J].湖北植保, 2003, 5: 36-38.
    46.王郁罗大全.农药悬浮剂发展现状与展望[J].广西热带农业,2008,21-23
    47.吴秀华.浅谈农药剂型的发展动向[J].安徽化工, 1999,3:5-7.
    48.肖勇,陈建国,李良.我国农药剂型加工工业的现状和发展建议[J].云南大学学报, 2004, 26(增刊):194-198.
    49.谢毅,吴学民.浅谈现代农药剂型进展[J].世界农药,2007,29(2):19-22.
    50.徐年凤,闻柳.有关悬浮剂稳定性的几个问题[J].世界农药,2000,22(3): 42 -44
    51.袁会珠,陈万权,杨代斌.药剂浓度、雾滴密度与氧乐果防治麦蚜的关系研究.农药学学报,2000,2(1):58-62
    52.袁会珠,黄启良,杨代斌.环境相容性农药使用技术的研究进展。农药与环境安全国际会议论文集.北京:中国农业出版社,2003:52-59.
    53.袁会珠,齐淑华,杨代斌.药液在作物叶片的流失点和最大稳定持留量研究.农药学学报,2000,2(4):66-71
    54.袁会珠。生物行为与农药使用相关性的研究进展,农药译丛,1997,19(6):52-54
    55.袁会珠编译。农药施用:现状和展望。世界农药,1999,21(6):27-31
    56.中国农药制剂行业应“油”少“水”多。中国化工信息网。2008-04-29.
    57.中国植物保护学会.面向21世纪的植物保护发展战略.北京:中国科学技术出版社,2001.
    58.中华人民共和国农业部农药检定所.农药管理信息汇编[M]. 2008
    59.周本新等编。农药新剂型[M〕.北京:化学工业出版社,1994.6
    60.朱和平冼福生高良润。静电喷雾技术的理论与应用研究综述,农业机械学报, 1989(2):23-59
    61.朱金文,吴慧明,程敬丽,魏方林,朱国念。雾滴体积中径与施药量对毒死蜱在棉花叶片沉积的影响,棉花学报。2004,16(2):123-125
    62.庄占兴路福绥刘月陈甜甜罗万春。MOTAS分散剂在氟铃脲颗粒界面的吸附性能研究[J].高等学校化学学报,2009,30(2):332-336
    63.庄占兴路福绥刘月陈甜甜罗万春。萘羧酸甲醛缩合物分散剂在氟铃脲颗粒界面的吸附性能研究[J]。农药学学报,2007,10(4):477~482.
    64.庄占兴路福绥刘月陈甜甜.表面活性剂在农药研究进展[J].农药,2007,(7):469-475.
    65.庄占兴、路福绥等.界面吸附与农药悬浮剂加工。山东省农药信息会议交流论文,2008
    66. Frisch D P. Oxe-alcohol acetates:a new family of inerts for agricultural hemcal use[A].Goss G R, Pesticide formulations and appliation systems[M].seenteenth volume. ASTM STP,1997:23-38
    67. Frisch D P.The Phyotoxicity of solvents to seedslAI,Tana,Pesticide formulations and appliation systems: Global pest control formulations for the next millennium [M].nineteenth volume.ASTM STP,1999:118一134.
    68. Jules P. Pesticide Use and the Environment[A].Jules P.The Pesticide Detox-Towards a sustainable agriulture[M].Earthscan Publications,2005.1-15.
    69. Knowles D A.Trends in Pesticide Formulions[M].London:200l:45-68.
    70. Krenek H W,Rhode W H.an overview-solvents for agricultural chemicals [A]. Hovde D A. Pesticide formulations and appliation systems[M]. Eighth volume. ASTM STP,1988:113-127
    71. Malcolm A F,Graham R Kneebone. Application of rheological measurements for probing the sedimentation of suspension concentrate formulations[J].Pesticide Science,1999,55(3):312-25
    72. Steven A C,Richard K M,Susan E Z,Nelson K,Paul R H.Pest Management Science,2001,57:479-490.
    73. Tadros T F. Correlation of Viscoelastic properties of stable and flocculated suspensions with their interparticle interactions[J]. Adv. Colloid and interface Sci.,1996,68:97-200.
    74. Thomas S W. The forlnulators toolbox-Product forms for modern agriculture [A]. Brooks G T,Roberts T R. Pesticide Chemistry and Bioscience: TheFood-environment Challenge[M] Bookcraft(Bath)LTD,1999. 121-133.
    75. Thomtorn J.Implementing green chemistry. An environmental po1icy for sustainab1lity[J].Pure Appl Chem,2001,73(8):1231-1236
    76. Wheeler W B.Role of research and regulation in 50 year of Pest management in agriculture[J].J Agric Food Chem, 2002, 50(15): 4151- 4155.
    1.卜小莉.吡虫啉触变性悬浮体系构建及其性能研究[D].湖南农业大学,2006.
    2.成家壮.助剂在农药悬浮剂中的作用[J].广州化工,2002,30(3):1-
    3.崔福德.药剂学[M].北京:人民卫生出版社,2003
    4.高德霖.农药悬浮剂的物理稳定性问题[J].江苏化工. 1997(10): 1-5
    5.郭武棣编.农药剂型加工丛书《液体制剂》(第三版)[M].北京:化学[业出版社,2004。l:228-230.
    6.郝龙云.分散剂对超细有机颜料水性分散体系稳定性的影响[D]。2003,青岛大学
    7.何林,慕立义,王金信.氰津·莠悬浮剂配方优选、安全性及应用技术研究[J].农药,2002,41(4):22—24.
    8.华乃震.水基性农药制剂的开发和前景[J].农药,2006,45(12):805-809.
    9.黄建荣编。现代农药剂型加工技术与质量控制实务全书[M].北京电子出版社, 2004年7月
    10.黄啟良李风敏袁会珠等.颗粒粒径和粒谱对悬浮剂贮存物理稳定性影响研究[J].农药学学报,2001,3(2):77-80.
    11.黄啟良,李风敏,袁会珠,杨代斌,齐淑华.悬浮剂润湿分散剂选择方法研究[J].农药学学报, 2001,(03):66-70
    12.黄啟良.悬浮剂润湿分散剂选择方法研究及在嘧霉胺剂型加工中的应用[D].中国农业大学,2006.
    13.林雨佳,赵军,华乃震.6OO g/L吡虫啉悬浮剂的开发和研制.农药,2008,47(12):877-879.
    14.刘步林.农药剂型加工技术[M].北京:化学工业出版社. 1999
    15.路福绥.农药悬浮剂的物理稳定性[J].农药. 2000, 39(10): 8-10
    16.路福绥.农药悬浮剂的研究开发[J].农药论坛.中国农药,2006,(6):9-11.
    17.潘立刚.种衣剂关键技术及其应用研究[D].2005,西北农林科技大学.
    18.山东中石药业有限公司企业标准,Q/SZS 017-2007,4.5%高渗氟铃脲悬浮剂企业标准,山东省技术监督局备案。
    19.石键,刘淼涤.农用表面活性剂125—C的研究与开发[J].河北农业大学学报,1996,19(3):56-61
    20.唐伦成杜希林.焦水煤浆流变性及其核磁共振研究.应用科技, 2002, 29(7):71-74
    21.王军.特种表面活性剂[M].北京:中国纺织出版社,2007
    22.王早骧.农药助剂[M].北京:化学工业出版社. 1991
    23.徐年凤,闻柳.有关悬浮剂稳定性的几个问题[J].世界农药, 2000 , (03):42-44
    24.徐燕莉,朱苑林.苯乙烯一马来酸醉共聚物的部分酷化物在颜料分散中的应用[J].染料工业,2002(1):28-31.
    25.郑华华.分散剂对超细重质碳酸钙在水中分散性的影响[D].2006,广西大学。
    26.中华人民共和国国家质量监督检验检疫总局. GB/T19136-2003,农药热贮稳定性测定方法.中国标准出版社.2004.
    27.中华人民共和国国家质量监督检验检疫总局. GB/T19137-2003,农药低温稳定性测定方法.中国标准出版社.2004
    28.中华人民共和国国家质量监督检验检疫总局. HG/T 2467.2-2003,农药乳油产品标准编写规范.中国标准出版社.2004
    29.中华人民共和国国家质量监督检验检疫总局. HG/T 2467.5-2003,农药水悬浮剂产品标准编写规范.中国标准出版社.2004
    30.中华人民共和国国家质量监督检验检疫总局.GB/T14825-2006,农药悬浮率测定方法,中国标准出版社.2007
    31.周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究(D),2007,华南理工大学.
    32. Holloway P.Possibale mechanisms for surfactant-induced foliar uptake of agrochemicals[J].Pesticide Science,1993,38:165-177
    33. Huaying H. Marianne O.Alec G.Some observations of the interactions between water and coal by proton magnetic resonance[J].Fuel,1994,73(3):456—469.
    34. Liu Y Q,Gao L.Dispersion of aqueous alumina suspensions using copolymers with synergisticfunctional groups[J] . Materials Chemistry and Physics , 2003 , 82 :362·369.
    35. Luckham P.F.. The physical stability of suspension concentrates with particular reference to pharmaceutical and pesticide formulations [J].Pesticide science,1989,25(1):25-34
    36. Palmqvist L,Lyckfeldt O,Carlstr6m E,et a1.Dispersion mechanisms in aqueousalumina suspemiom at high solids loadings [J].Colloids and surfaces A:Physicochem EngAspects,2006,274:100-109.
    37. Tang F Q,Uchikoshi T,Ozawa k et a1.Effect of polyethylenimine On the dispersion and electrophoreticdeposition of.nano-sized titania aqueous suspensions[J].Journal of the European Ceramic Society,2006,26:1555.1560.
    38. Taylor W. The effect of drop speed,size and surfactant on the deposition of spray on barley and radish or mustard[J].Pesticide science,1987,14:707-714
    1.曹亚,李惠林,张爱民.CMC型高分子表面活性剂在固/液界面上的吸附[J].物理化学学报,1999,15(10):952-955.
    2.曹亚,李惠林.高分子表面活性剂在固/液界面上的吸附形态[J].物理化学学报,1999,15(10):895-899.
    3.陈小泉,彭建南.表面活性剂在固液界面吸附研究的某些新进展[J].表面活性剂工业,1997(3) :1-6 .
    4.冯中军,傅乐峰,沈军等.聚羧酸高效减水剂的结构与性能关系研究[J].化学建材, 2006, 22( 2) : 39- 42.
    5.黄啟良,李干佐,张文吉等.高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶[J]。中国农业科学,2006,39(6):1173-1178
    6.李新芳朱冬生王先菊汪南.纳米Cu分散稳定性能影响因素及作用机理研究。化学工程,2007,35(12):46-50
    7.梁文平,郑斐能,王仪,等.21世纪农药发展的趋势:绿色农药与绿色农药制剂[J].农药,1999.38(9):1—2.
    8.刘付胜聪,肖汉宁,李玉平.聚丙烯酸在纳米TiO2表面吸附行为的研究[J].高等学校化学学报)[J],2005,26(4):742-746
    9.路福绥.农药悬浮剂的物理稳定性[J].农药,2000,39(10): 8-10
    10.牟伯中,姚恒申,罗平亚.高分子吸附层分子形貌的理论描述[J].中国科学(B辑),2000 ,30 (6 ):5 57-562.
    11.潘立刚,陶岭梅,张兴.农药悬浮剂研究进展[J].植物保护,2005,31(2):17-20.
    12.邱学青,王卫星,周明松等.不同分子质量木质素磺酸钠对煤粉的分散作用研究[J].燃料化学学报)[J],2005,33(2):179-183
    13.邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J] .化工学报,2003,54(8):1155-1159.
    14.任俊,卢寿慈,沈健等.微细颗粒在水、乙醇及煤油中的分散行为特征.科学通报,2000,45(6):583~586
    15.宋玉泉,范登进,张宏,等.氟铃脲活性与应用研究[J].农药,1996,35(9): 10-14
    16.苏海云,赵传钧.十二烷基苯磺酸钠-石英砂体系吸附等温线的研究[J].北京化工大学学报,1996,23(2):1-4.
    17.屠豫钦,王以燕.农药的剂型问题与我国农药工业的发展[J].农药,2005,44(3):97-102
    18.王相田,胡英.固液界面多分散高分子吸附[J].化工学报,1999,50(5):678一686.
    19.吴刚.材料结构表征与应用)[M],北京:高等教育出版社, 2002:356-357
    20.谢毅,吴学民.浅谈现代农药剂型进展[J].世界农药,2007,29(2):19-22.
    21.薛奇.高分子结构研究中的光谱方法[M],北京:高等教育出版社, 1995:170-195
    22.张恒敏.农药商品手册[M].沈阳出版社, 1999: 392-39
    23.张力,何学秋,王恩元等.煤吸附特性的研究[J].太原理工大学学报,2001,32(5):49-451
    24.中华人民共和国农业部农药检定所.农药管理信息汇编[M].中国农业出版社, 2008
    25.周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究[D].2007,华南理工大学.
    26.朱协彬,段学臣,陈海清。MC对ITO水相浆料的稳定作用及其分散机理。中南大学学报(自然科学版), 2007,38(4):612-616.
    27.邹明强,王飞,张锁秦,等.分析用标准样品氟铃脲的合成、纯化及表征[J].分析科学学报,2005,21(6): 630-632
    28. Agibalova L V, Voznyakovskii A P, Dolmatov V Yu. Structure of suspensions of explosion-sytnthesized ultradispersed [J]. Sverkhtverdye Materialy, 1998, 8(4) : 87-95.
    29. Alonso.M.V.Rodriguez.J.J.Oliet.M. Characterization and structural modification of ammonic lignosulfonates by methylolation [J]. Journal of Applied Polymer Science.2001,82(11):2661-2668
    30. Hiemenz P C.Principles of Colloid and Surface Chemistry[M].New York:Marcel Dekker,INC,1986.
    31. Lisunova M O, Lebovka N I, Melezhyk O V, et al. Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant [J].Journal of Colloid and Interface Science, 2006, 299(2) : 740-746.
    32. Seah M. P., Dench W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids [J]. Surface and Interface Analysis,1979,1(1):2-11
    33. Steven A C, Richard K M, Susan E Z, Nelson K, Paul R H. Designing herbicide formulation characteristics to maximize efficacy and minimize rice injury in paddy environments[J].Pest Management Science,2001,57:479-490.
    34. Stuart M.A.,Fleer Q.J. Scheutjens.Displacement of Polymers.Ⅰ.Theory. Segmental adsorption energy from polymer desorption in binary solvents [J]. J.colloid Interface Sci. 1984, 97 (2) :515-525
    35. Victor K D,Robert D V. The effect of adsorbed polystyrene on the stability of graphon dispersions in touene [J].Journal of Colloid and Interface Science, 1976,54(1): 22- 26
    36. Voznyakovskii A P, Dolmatov V Yu, Klyubin V V, et al. Structure and sedimentation stability of suspensions of detonation nanodia-monds in nonaqueous liquid media [J]. Sverkhtverdye Materialy, 2000,10(2):64-71.
    37. Yavuz.R.An investigation of some factors affecting the dispersant adsorption of lignite[J]. Powder Technology.2001,119:89-94
    1. Barnes H.A. Hutton J.F.Elsevier K .W.流变学导引[M].北京:中国石化出版社,1989
    2. Nielsen L E.聚合物流变学[M](范庆容译).北京:科学出版社.1983.
    3. Paul F. Luck h.对医药和农药制剂有特殊参考价值的悬浮剂物理稳定性[J].农药译丛,1990,12(6):30-35
    4. Tharwat F. Tadros.农药胶悬剂物理稳定性的控制和评定[J].农药工业译丛,1980,6:7-12
    5.陈宗淇,石林,吴世英,等.负触变性现象[J]北学通报,1991,54(2):31-32
    6.高德霖.农药悬浮剂的物理稳定性问题[J].江苏化工,1997,10,25(5):1-5
    7.郭武棣编.液体制剂[M].农药剂型加工丛书(第三版).北京:化学工业出版社,2004.1
    8.黄啟良,李风敏,袁会珠,等.颗粒粒径和粒谱对悬浮剂贮存物理稳定性影响研究[J].农药学学报,2001,6,3(2):77-80
    9.吉武科,译.黄原胶在食品及其它工业上的应用[J].Shanxi Food Industry (山西食品工业),1994,(4):11.
    10.江体乾.流变学在我国发展的回顾与展望[A].流变学进展[C].华中理工大学出版社,1999:1-5
    11.廖福龙.血液流变学的规范化与新进展.中国微循环,2002,3(6):133-135.
    12.刘步林主编.农药剂型加工技术[M]北京:化学工业出版社,1998
    13.刘明.流悬剂及其加工技术[J]中国化工信息,1987,1:6-13
    14.路福绥,刘军,薛刚.铜高尚悬浮剂的流变特性研究[J],农药,2000,
    15.路福绥.50%复方多菌灵悬浮剂的流变特性研究[J]农药,1995,(5):11-12
    16.路福绥.农药悬浮剂的物理稳定性[J].农药,2000,39(10):8-10
    17.邵维忠编.农药助剂[M].农药剂型加工丛书(第三版).北京:化学工业出版社,2003.9
    18.沈德隆,周瑛,唐霭淑,等.农药多组分悬浮体系的流变学行为研究[J].农药,1995,34(5):6-9
    19.沈娟,黄啟良,夏建波,陈丹,折冬梅,李凤敏,胡炜.分散剂及黄原胶对多菌灵悬浮剂流变性质的影响[J].农药学报,2008,10(3):354-360.
    20.沈娟,黄啟良,夏建波,陈丹,折冬梅,李凤敏.分散剂与黄原胶协同作用对农药悬浮体系流变性质的影响.农药学学报,2008,10(2):354-360
    21.唐学原.SiC陶瓷浆料流变性能的研究.厦门大学学报,2004,43(4):528-531.
    22.唐中山,苏红军,徐世艾.黄原胶流变学性质的实验研究[J].烟台大学学报(自然科学与工程版),2008,21(2):130-133
    23.王燕民,李新衡.湿法超细研磨中无机材料浆体的流变性研究.硅酸盐学报,2006,5(34):585-592.
    24.王元兰李忠海.黄原胶溶液流变特性及应用研究进展[J].经济林研究2007,25(1):66-69
    25.杨代斌,黄啟良,袁会珠,等.农药悬乳体系流变学特性研究[J].农药学学报,2002,4(4):75-78
    26.杨代斌,黄啟良,袁会珠.农药悬乳体系流变学特性研究[J].农药学学报,2002,4(4):75-78.
    27.杨化桂,张辉,古宏晨,等.剪切稀化悬浮体触变性的研究[J].高校化学工程学报, 1999,13(6):506-510
    28.袁龙蔚.流变力学[M].北京:科学出版社.1986
    29.张文吉,李学锋,王成菊编.农药加工及使用技术[M].北京:中国农业大学出版社,1998.9
    30.赵向阳,张洁,尤源.钻井液黄原胶胶液的流变特性研究[J].天然气工业,2007,3(27):72-75.
    31.周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究[D].2007,华南理工大学.
    32.朱书全,邹立壮,黄波等.研究水煤浆添加剂和煤之间相互作用规律研究Ⅰ.复合煤颗粒间的相互作用对水煤浆流变性的影响.燃料化学学报,2003,6(31):519-524.
    33. Hou W G. Sun D J.Han S H. et al. A novel thixotropic phenomenon -complex thixotropic behavior[J]. Chem Res Chin Univ,1997,13(1):86-88
    34. Luckham Paul F. The physical stability of suspension concentrates with particular reference to pharmaceutical and pesticide formulations [J]. Pesticide Science,1989,25: 25-34.
    1.戴奋奋,袁会珠.植保机械与施药技术规范化[M].北京:中国农业科学技术出版社,2002.
    2.戴奋奋.简论我国施药技术的发展趋势[J].植物保护,2004,30(4),5-8.
    3.傅泽田,祁力钧.国内外农药使用现状及解决农药超量使用问题的途径[J].农业工程学报,1998,14 (2):7-l2.
    4.顾中言,陈明亮,许小龙,韩丽娟。表面活性剂TX-10对溶液表面张力及水稻植株持液量的影响。江苏农业学报,2006,22(4):394~397
    5.顾中言,许小龙.我国农药应用技术现状、发展趋势和需解决的关键问题[J].江苏农药, 2001,(2):9-11.
    6.黄启良农药微乳剂形成与稳定的机理及其性能表征,中国农业大学博士论文,2006
    7.李丽芳,王开运.悬乳剂及其稳定性[J].农药,2000,39(5):14-16
    8.罗延红一种新型农药水分散粒剂.西北农林科技大学博士论文,2005
    9.邱占奎,袁会珠,楼少巍等。水溶性染色剂诱惑红和丽春红-G作为农药沉积分布的示踪剂研究。农药,2007,46(5):334-337
    10.邵振润,郭永旺.我国施药机械与施药技术现状及对策[J].植物保护,2006、32(2):5-8.
    11.邵振润,赵清.更新药械改进技术努力提高农药利用率[J].中国植保导刊,2004,(1):36-38.
    12.屠豫钦我国农药科学之发展[J].植物保护,2007,33(5):22-28.
    13.屠豫钦药械革新的同时应注意农药剂型的开发农药市场信息[J].2007.23
    14.屠豫钦,李秉礼主编.农药应用工艺学导论[M].北京:化学工业出版社,2006.
    15.屠豫钦,王以燕.农药的剂型问题与我国农药工业的发展[J].农药,2005,44(3):97-102.
    16.屠豫钦,袁会珠,齐淑华等.我国农药的有效利用率与农药的负面影响问题[J].世界农药,2003、25(6):1-4.
    17.屠豫钦.农药剂型和制剂与农药的剂量传递.农药学学报,1999,1(1):1-6
    18.屠豫钦.农药使用技术标准化[M].北京:中国标准出版社,2001。160—189.
    19.吴玉先,袁会珠,黄启良,李保同等.两种剂型的毒死蟀对棉铃虫生物活性及表皮穿透性的比较研究。农药与环境安全国际会议论文集,中国农业大学出版社,2003:363-370
    20.袁会珠,陈万权,杨代斌.药剂浓度、雾滴密度与氧乐果防治麦蚜的关系研究[J].农药学学报,2000,2(1):58-62.
    21.袁会珠,黄启良,杨代斌.环境相容性农药使用技术的研究进展.农药与环境安全国际会议论文集[M],北京:中国农业出版社,2003:52-59.
    22.袁会珠,齐淑华,杨代斌.药液在作物叶片的流失点和最大稳定持留量研究[J].农药学学报,2000,2 (4):66-71.
    23.袁会珠,齐淑华,杨代斌。药液在作物叶片的流失点和最大稳定持留量研究。农药学学报。2002,12(4):66-67
    24.袁会珠编译.农药施用:现状和展望[J].世界农药,1999,21(6):27-31.
    25.中国植物保护学会.面向21世纪的植物保护发展战略[M].北京:中国科学技术出版社,2001.
    26.邹明强,王飞,张锁秦,等:分析用标准样品氟铃脲的合成、纯化及表征[J].分析科学学报,2005,21(6):630-632.
    27. Oxford. Weed control handbook:Principles(8th).Blackwell Scientific Publication, 2002. 183-200
    28. Soltani N ,Delbecque J P ,Delachambre J .Penetration and insecticidal activity of diflubenzuron in tenebriomolitor pupae. Pesticide Science,1983,14:615-622.
    29. Sunaram K M S, Sundaram A. In fluence of formulation on spray deposit patterns, dislogeable and penetrated residues, and persistence characteristics of fenitrothion in conifer needles .Pesticide Science,1 987,18:259-271
    30. W Alison Forster, Jerzy A Z, Zhiqian Liu. Cuticular uptake of xenobiotics into living plants. Part 2: Influence of the xenobiotic dose on the uptake of bentazone, epoxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves。Pest Manag Sci. 2006,
    62 : 664–672
    31 W Alison Forster ,Jerzy A.,et al.Mechanisms of Cuticular Uptake of Xenobiotics into Living Plants: Evaluation of a Logistic-Kinetic Penetration Model。J. Agric. Food Chem. 2006, 54, 3025-3032

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700