鸡脂肪酸结合蛋白相关候选基因遗传效应及表达规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸结合蛋白(Fatty acid binding protein,FABP)是机体脂肪代谢过程的重要调控因子之一,其最基本的功能是参细胞内脂肪酸的摄取,协助将脂肪酸运至甘油三酯和磷脂的合成部位以及进行β-氧化的场所。本研究在如皋黄鸡、安卡鸡、文昌鸡三个鸡种中对鸡A-FABP、H-FABP、Ex-FABP基因外显子和部分内含子进行单核苷酸多态性(SNPs)扫描并分析其胸肌肌内脂肪含量之间的关系;同时采用荧光定量PCR技术分析如皋黄鸡A-FABP和Ex-FABP基因的不同基因型的时空表达规律及聚合基因型在腹脂组织中的表达;主要研究结果如下:
     1.在如皋黄鸡、安卡鸡、文昌鸡三个鸡种中对A-FABP、H-FABP、Ex-FABP基因外显子和部分内含子进行单核苷酸多态性检测,结果发现A-FABP基因位于外显子3的1763 A/G位点突变,将核苷酸序列翻译成对应的氨基酸序列后,发现突变引起Ser突变为Asn;H-FABP基因的2980 A/G位点突变;Ex-FABP基因的内含子1的2913 A/G位点突变、Ex-FABP基因的内含子3的3654 C/T、3699 C/T、3700 A/G突变、Ex-FABP基因外显子4的4223 G/A、4271 G/A和位于内含子4的4281 G/A突变,这两个突变均为沉默突变。
     2.A-FABP基因外显子3及Ex-FABP基因外显子4的突变位点上的不同基因型对12周龄的如皋黄鸡的胸肌肌内脂肪含量进行关联分析。结果发现不同性别的胸肌的肌内脂肪含量差异不显著(P>0.05),但母鸡的IMF含量比公鸡的IMF含量高;A-FABP基因三种基因型中的AA、AB型个体的IMF含量显著地高于BB型个体(P<0.05),AA型IMF含量最高,为有利基因型;Ex-FABP基因三种基因型中的BB型个体的IMF含量显著地高于AA型、AB型,BB型为有利基因型,AA型、AB型间差异不显著;A-FABP基因和Ex-FABP基因聚合时,A-FABP基因中的有利基因型AA型和Ex-FABP基因中的有利基因型BB型聚合后的AABB型在合并后仍然是最佳聚合基因型。初步认为A-FABP及Ex-FABP基因为肌肉肌内脂肪含量的候选标记基因。
     3.A-FABP基因的三种基因型在时间上表达趋势基本一致,在第4周龄表达水平最高,6、8周龄缓慢下降,10周上升,12周龄继续下降。A-FABP不同基因型在不同组织的表达水平存在显著差异。在腹脂和胸肌中,均以AA型表达水平最高,BB型的差异极显著(P<0.01)。心脏和肝脏中以AB型的表达水平最高,BB型存在极显著地差异(P<0.01)。进一步表明A-FABP基因(BB型)可作为肌内脂肪含量候选标记。
     4.Ex-FABP基因在4周龄前表达水平较高,4周龄以后开始下降,10-12周龄后的表达水平有所回升,不同基因型表达规律基本一致。Ex-FABP各基因型在不同组织的表达量没有显著差异,但是在心脏中表达量较高。Ex-FABP不同基因型个体在相同组织中的表达水平不存在显著差异。
     5.本试验进一步检测4、8、12周龄三个时段如皋黄鸡A-FABP和Ex-FABP两基因聚合基因型在腹脂组织中的表达规律。结果发现A-FABP基因聚合基因型在不同时期表达量呈下降趋势,Ex-FABP基因聚合基因型在不同时期表达量也呈下降趋势。就两基因的聚合基因型而言,AAAB型的表达水平最高,BBAB表达水平低,聚合基因型效应肌内脂肪含量差异基本相一致,表明聚合基因型可作为肌内脂肪含量的候选标记而加以应用。
Fatty acid binding protein (FABP) is one of the important regulatory factors in the body's fat metabolism process. The basic function of FABP is involved in intracellular fatty acid intake, and to help fatty acids transport to the site of triglycerides and phospholipids synthesis as well as the place ofβ-oxidation.This study have scanned the single nucleotide polymorphisms (SNPs) in the Exons and part of intron of the A-FABP, H-FABP, Ex-FABP genes among Rugao chicken, Anka chicken, Wenchang Chicken, and analyzed their relationship with intramuscular fat content in breast; simultaneously detected the expression of different genotypes in the various organizations and the pyramiding genotype in abdominal fat tissue between A-FABP and Ex-FABP in Rugao chicken by quantitative Real-Time RT-PCR. The main results were as follows:
     1.PCR-SSCP method and DNA sequencing approach were used to identifying the single nucleotide polymorphisms (SNPs) of A-FABP、H-FABP、Ex-FABP genes in exons and part of intron among Rugao Cao chicken,Anka chicken, Wenchang Chicken, and a 1763 A/G mutation in Exon3 of A-FABP gene were found, which caused the alteration of the corresponging amino acid from Ser to Asn.Other mutations, including a 2980 A/G mutation of H-FABP gene, a 2913 A/G mutation in intron 1 of EX-FABP gene, mutations of 3654 C/T,3699 C/T,3700 A/G in intron 3, 4223 G/A and 4271 G/A mutations in Exon 4 of EX-FABP gene, were all silence mutations.
     2.Association analysis the SNPs with intramuscular fat content of breast muscle belonged to the different genotypes of A-FABP Exon 3 and Ex-FABP Exon 4 in 12 weeks Rugao chicken, showed that the intramuscular fat content of breast muscle was not significant between different sex,while the IMF content of hen was higher than that of cock. In three genotypes of A-FABP gene ,IMF content of the AA and AB genotype was significantly higher than the BB genotype (P <0.05), so the AA genotype was the dominant type with the highest IMF content. Likewise, in three genotypes of Ex-FABP gene, the IMF content of the BB genotype, which was the dominant genotype, was significantly higher than that of the AA type and AB type, and there was no significant difference between the AA and AB genotype. After merging the dominant genotype AA of A-FABP and the dominant genotype BB of Ex-FABP,we found the AABB was still the best genotype. In conclusion, it can be preliminary inferred that A-FABP gene and Ex-FABP gene were effect markers on IMF content.
     3. The expression of A-FABP gene of different tissues was high in 4 weeks old, then decline in 6 weeks old, but rebound after 10 weeks old, and remains to decline in 12 weeks old. There was significant difference between the mRNA expressions of different A-FABP genotypes in various organizations. The Expression of AA genotype was the highest in abdominal fat and breast muscle,which was significantly different from that of BB type; Besides, the expression of the AB genotype is the highest in heart and liver, which was significant different from that of BB genotype.
     4.The expression of Ex-FABP gene was high in early stage before 4 weeks old, then decline after 4 weeks old, but rebound after 10-12 weeks old. There was no difference in various organizations, but the highest was in hearts. The Ex-FABP mRNA expression levels analyzed by Q-PCR technique revealed that there was no significant difference between different genotypes in various organizations.
     5.We had further inspected the Expression of the pyramiding genotypes between A-FABP and Ex-FABP in the abdominal fat tissue at 4, 8, and 12 weeks old, showing that the epression of pyramiding genotype of the A-FABP decreased at different times, while the expression of the Ex-FABP pyramiding genotype also decreased at different times. In the pyramiding genotypes of both genes, the expression level of AABB was the highest, BBAB was the lowest, that is consistent with the differences in intramuscular fat content of the pyramiding genotypes. These results indicated that pyramiding genotypes could be used as one of candidate markers on IMF content.
引文
[1]段铭.鸡体脂肪代谢调控[J].山东家禽, 2001, 1: 28-29.
    [2]顾志良.肉鸡体脂和腹脂遗传标记的研究进展[J].国外畜牧科技,1994, 1: 4-6.
    [3]陈继兰.肉鸡肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究: [学位论文][D].北京:中国农业大学, 2004.
    [4]杨烨.优质鸡肌内脂肪代谢调控及其肉质性状关系的研究: [学位论文][D].北京:中国农业科学院, 2005.
    [5]罗轶.鸡FATP1基因cDNA的克隆、组织表达及其生物信息学分析: [学位论文][D].四川:四川农业大学, 2008.
    [6]江新业,宋焕禄.部分家禽肉肌内脂肪含量及脂肪酸含量的测定分析[J].无锡轻工大学学报,食品生物技术,2004, 23(5): 26-28.
    [7]曹盛丰、杨丽娥、张占芳,等.日粮LFA3对AA肉用公鸡肉品质的影响[J].江西农业大学学报, 1995, 17(3): 321-325.
    [8]仲伟静,蒋宗勇,邹书通,等.鸡肉品质的营养调控研究进展[J].2006, 28(20): 83-87.
    [9]刘宁,王清义,康相涛.鸡肌内脂肪性状研究的方法和策略[J].中国家禽, 2005, 27(8): 48-51.
    [10]杜志强.通过基因组扫描定位鸡的重要性状基因座: [学位论文][D].北京:中国农业大学, 2003.
    [11]户国,王守志,李晓存,等.候选基因标记间的连锁不平衡模式分析[C].第十五次全国动物遗传育种学术讨论会论文集,杨凌, 2009.
    [12]李俊英,李慧锋,姜润深,等.优质鸡肌内脂肪含量屠体及肉质性状间的关系.中国畜牧杂志, 2004, 40(12): 12-15.
    [13]DeVol D.L., Mckeith P., Bechtel P.J., et al. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses[J]. Journal of Animal Science, 1988, 66: 385-395.
    [14]许宁迎,赵兴波,蒋思文,等.猪鸡肉质性状分子标记及主效基因的研究进展[J].中国畜牧杂志, 2004, 40(4): 42-43.
    [15]蒋金津,陈立祥,邹增丁.脂肪酸结合蛋白的研究进展[J].畜牧饲料科学, 2009, 30(2): 6-8.
    [16]Zimmerman A.W., Veerkamp J H. New insights in to the structure and function of fatty acid-binding proteins[J]. Cellular and Molecular Life Sciences, 2002, 59(7): 1096-1116.
    [17]Hertzel V.A., Bernlohr D.A. The mammalian fatty acid-binding protein multigene family, molecular and genetic insight into function[J]. Trends Endocrinol Metab, 2000, 11: 175-180.
    [18]Kurian E., Kirk W.R., Prendergast FG.Affinity of fatty acid for (r)rat intestinal fatty acid binding protein: Futher Examination[J]. Biochemistry, 1996, 35(12): 3865-3874.
    [19]Veerkamp J.H., Fatty acid binding protein and its relation to fatty acid oxidation[J]. Mol Cell Biochem.1993, 123: 101-106.
    [20]Veerkamp J.H., Van Kuppevelt T.H., Maatman R.G., et al. Structural and functional aspects of cytosolic fatty acid binding proteins[J]. Prostaglandins Leukot Essent Faty Acids, 1993, 49(6): 887-906.
    [21]Veerkamp J.H., Maatman R.G. Cytoplasmic fatty acid-binding proteins: their structure and genes[J]. Prog Lidid Res, 1995, 34(1):17-52
    [22]Clavel S., Farout L., Briand M., et al. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart[J]. Appl physiol, 2002, 87: 193-201.
    [23]Guglielmo C.G., Haunerland N.H., Williams T.D., Fatty acid binding protein a major protein in the flight muscle of migrating western sandpipers[J]. Comp Biochem Physiol B Biochem Mol Biol, 1998, 119: 549-555.
    [24]Zschiesche W., Kleine A.H., Spitzer E., et al. Histochemical localization of heart-type fatty acid-binding protein in human and murine tissues[J]. Histochem Cell Biol, 1995, 103: 147-156.
    [25]Makowski, L., Hotamisligil, G. Fatty Acid Binding Proteins-The Evolutionary Crossroads of Inflammatory and Metabolic Responses[J]. American Society forNutritional Sciences, 2004: 2464-2468.
    [26]F. Gerbens. Effect of Genetic Variants of the Heart Fatty Acid-Binding Protein Gene on Intramuscular Fat and Performance Traits in pigs[J]. Anim.Sci, 1999, 77:846-852.
    [27]F. Gerbens, D. J. de Koning, F. L. Harders et al. The effect of adipocyte and heart fatty acid-binding protein gene on intramuscular fat and backfat content in Meishan crossed pigs[J]. Anim.Sci, 2000, 78: 552-559.
    [28]庞卫军,杨公社,龙火生,等.猪心脏型脂肪酸结合蛋白基因PCR-RFLP分子标记研究[J].生物技术通讯, 2004, 15(2): 124-127.
    [29]李武峰,许尚忠,曹红鹤,等. 3个杂交牛种H-FABP基因第二内含子的遗传变异肉品质性状的相关分析[J].畜牧兽医学报, 2004, 35(3): 252-255.
    [30]游小燕,刘益平,朱庆,等.鸡H-FABP基因多态性及其屠宰性能的关联分析[J].遗传, 2007, 29(2): 230-234.
    [31]叶满红,曹红鹤,文杰,等.北京油鸡和矮脚鸡心脏型、脂肪型脂肪酸结合蛋白基因多态性的研究[J].畜牧兽医学报, 2003, 34(5): 422-426.
    [32]Brockmann G., Timtchenko D., Das P., et al. Detection of QTL for body weight and body fat content in mice using genetic markers [J]. Anim Breed Genet, 1996, 113: 373-379.
    [33]Gerbens F., Associations of heart and adipocyte fatty acid-binding protein gene Expression with intramuscular fat content in pigs[J]. Journal of Animal Science, 2001, 79: 347-354.
    [34]叶满红.鸡脂肪酸结合蛋白基因的克隆及其肌内脂肪的关系: [学位论文][D].北京:中国农业科学院, 2003.
    [35]罗桂芬,陈继兰,孙世铎,等.鸡A-FABP基因多态性分析及其脂肪性状的相关研究.中国家禽研究论文集,中国四川2005, 9: 142-145.
    [36]敖金霞.鹅GH和A-FABP基因的克隆及其与生长体组成性状的相关研究: [学位论文][D].哈尔滨:东北农业大学, 2003.
    [37]Gentili C. Expression of the Extracellular fatty binding protein during muscle fiber formation in vivo and vitro[J]. Experimental Cell Research, 1998,242(2): 410-418.
    [38]Pagano A., Crooijmans R., Groenen M. et al. A chondrogenesis-related lipocalin cluster includes a third new gene[J]. CAL gamma. Gene.2003, 305(2): 185-194.
    [39]王彦.鸡Ex-FABP基因单核苷酸多态性的群体遗传分析.[C].中国畜牧兽医学会家禽学分会学术研讨会论文集, 2005.
    [40]Gentili C., Tutolo G., Zerega B., et al. Acute phase lipocalin Ex-FABP is involved in heart development and cell survival[J]. Journal of cellular physiology, 2005, 202(3): 683-689.
    [41]Fiorella Descalzi Cancedda, Beatrice Dozin, Barbara Zerega et al. Ex-FABP, Extracellular fatty acid binding protein, is a stress lipocalin Expressed during chicken embryo development[J]. Molecular and Cellular Biochemistry, 2002, 239(1-2): 221-225.
    [42]王启贵,李宁,邓雪梅,等.鸡脂肪酸结合蛋白基因的克隆和测序分析[J].遗传学报, 2002, 9(2): 115-118.
    [43]李慧锋,付渊,姜润深,等.鸡Ex-FABP基因多态性脂肪性状的相关研究.中国畜牧兽医学会.学术年会暨第五届全国畜牧兽医青年科技工作者学术研讨会论文集(上册), 2004.
    [44]仇雪梅.影响鸡生长和肉质性状主要候选基因的研究: [学位论文][D].北京:中国农业大学, 2004.
    [45]仇雪梅,李宁,邓学梅,等. Ex-FABP作为鸡腹脂性状主要候选基因的研究[J].生物化学生物物理进展, 2005, 32(5): 429-434.
    [46]Saiki R.K., Scharf S., Faloona F., et al. Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science. 1985, 230(4732): 1350-1354.
    [47]HEID C. A., STEVENS J., LIVAK K. J., et al. Real time quantitative PCR[J]. Genome Res.1996, 6: 986-994.
    [48]Gibson U. E., Heid C.A., Williams P.M. A novel method for real time quantitative RT-PCR[J].Genome Res.1996, 6: 995-1001.
    [49]康波.籽鹅卵巢组织基因差异表达及产蛋相关基因定量的研究.学位论文[D].吉林:吉林大学, 2009.
    [50]任广睦,王英元.实时荧光定量PCR技术的研究进展[J].临床医药实践杂志, 2007, 16(4): 243-245.
    [51]黄留玉, PCR最新技术原理、方法及应用[M].北京:化学工业出版社, 2005.
    [52]丁晓东,马国文.实时荧光定量PCR技术研究进展及其应用[J].内蒙古民族大学学报(自然科学版), 2006, 21(6): 665-668.
    [53]Wall S.J., Edward D.R.. Quantitative reverse transcription-polymerase chain reaction (RT-PCR): a comparison of prime-dropping, competitive, and real-time RT-PCRs[J]. Anal Biochem, 2002, 300(2): 269-273.
    [54]Heid C.A., Stevens J., Livak K.J., et al. Real time quantitative PCR[J]. Genome Res, 1996, 6(10): 986-994.
    [55]Tyagi S., Kramer F.R. Molecular beacons: probes thant fluoresce upon hybridization[J]. Nat Biotechnol, 1996, 14(2): 303-308.
    [56]Marras S.A., Kramer F.R., Tyagi S. MultiplEx detection of single-nucleotide variations using molecular beacons[J]. Genetic Analysis, 1999, 37(2): 327-332.
    [57]姜晓峰,王雅杰,张锟.毛细管电泳技术分子信标技术结合检测基因[J].中国实验诊断学. 2003, (3): 185-189.
    [58]张智俊,李亚玲,田兴军.用于SARA冠状病毒快速诊断的分子信标探针设计[J].生物信息学.2004, 2(3): 23-26.
    [59]张贺,李波,周虚,等.实时荧光定量PCR技术研究进展及应用[J].动物医学进展, 2006, 27(增): 5-12.
    [60]王建英,用RNA干涉技术研究MAD2在小鼠卵母细胞减数分裂成熟中的作用[学位论文][D].山东:山东师范大学, 2007
    [61]岳华,黄兴,杨发龙,等.荧光定量RT-PCR检测鸡CD4、CD8基因表达水平[J]. 2008, 39(6): 784-790.
    [62]黄治国,熊俐,刘振山,等.绵羊肌肉H-FABP和PPARγ基因表达的发育性变化及其对肌内脂肪含量的影响[J].遗传学报, 2006, 33(6): 507-514.
    [63]李媛媛.猪CRHR1、CRHR2基因的克隆及mRNA表达规律的研究[学位论文][D].上海:上海交通大学, 2008.
    [64]蔡霞,龙健儿. DNA甲基化对牛IGF-2r表达的影响及其在克隆牛发育中的作用[J].动物学研究, 2007, 28(5): 470-476.
    [65]阳成波,印遇龙,龚建华等.实时定量PCR研究进展及其应用明[J].中国预防兽医学报, 2003, 25(5): 395-399.
    [66]严冰冰,虞涛,方华红,等.应用实时荧光PCR分析apoE3、4等位基因[J].临床检验杂志, 2006, 26(3): 197-199.
    [67]李晓莉,姚慧,焦振山,等.应用新型荧光定量PCR技术检测FGFR2基因SNP[J].现代仪器, 2008, 6: 22-25.
    [68]黄培堂(译)分子克隆实验指南(第三版)[M].北京:科技出版社, 2002.
    [69]陈继兰,文杰,王述柏,等.鸡肉肌苷酸和肌内脂肪沉积规律研究[J]畜牧兽医学报, 2005, 36(8): 843-845.
    [70]洪坤月,汪峰,虞得兵,等.太湖鸡PRL、PRLR和FSHβ基因多态前期产蛋性状关系研究[J].西北农业学报, 2007, 16(5): 11-14.
    [71]赵小玲.鸡ADFP和PLIN基因脂肪组织生长发育关系的遗传学研究[D].四川:四川农业大学, 2008.
    [72]Livak K.J., Schmitthen T. Analysis of relative gene Expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method[J]. Methods, 2001, 25(4): 402-408.
    [73]束婧婷,鸡肌苷酸相关候选基因遗传效应及表达规律研究:学位论文[D].扬州:扬州大学, 2008.
    [74]王启贵.鸡FABP基因克隆、表达特性及功能研究:学位论文[D]哈尔滨:东北农业大学, 2004.
    [75]李文娟,李宏宾,文杰,等.鸡H-FABP和A-FABP基因表达肌内脂肪含量相关研究[J].畜牧兽医学报, 2006, 37(5), 417- 423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700